Lecturer: Klaus Kröncke
Trainer: Sari Ghanem

Partial Differential Equations
 Winter Semester 2017-2018

Worksheet 2

Tuesday, October 24, 2017
We assume all the functions to be smooth, unless stated otherwise.

Problem 1

Write down an explicit formula for a function u solving the initial value problem

$$
\begin{cases}u_{t}+b \cdot \mathcal{D} u+c u=0 & \text { in } \mathbb{R}^{n} \times(0, \infty) \\ u=g & \text { on } \mathbb{R}^{n} \times\{t=0\}\end{cases}
$$

where $c \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ are constants.

Problem 2

Prove that the Laplace's equation, $\Delta u=0$, is invariant under rotations and translations. That is, if O is an orthogonal $n \times n$ matrix, if $y \in \mathbb{R}^{n}$ is a constant, and if we define

$$
v(x):=u(O x+y) \quad \text { for all } x \in \mathbb{R}^{n}
$$

then, $\Delta v=0$.

Problem 3

Modify the proof of the mean value formulas to show that for $n \geq 3$, we have

$$
u(0)=\int_{\partial B(0, r)} g d S+\frac{1}{n(n-2) \alpha(n)} \int_{B(0, r)}\left(\frac{1}{|x|^{n-2}}-\frac{1}{r^{n-2}}\right) f d x
$$

provided that

$$
\begin{cases}-\Delta u=f & \text { in } B^{o}(0, r) \\ u=g & \text { on } \partial B(0, r)\end{cases}
$$

Problem 4

We say for $v \in C^{2}(\bar{U})$ is subharmonic if

$$
-\Delta v \leq 0 \quad \text { in } U
$$

(a) Prove that if v is a subharmonic function, then

$$
v(x) \leq \int_{B(x, r)} v d y \quad \text { for all } B(x, r) \subset U
$$

(b) Prove that therefore $\max _{\bar{U}} v=\max _{\partial U} v$.
(c) Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be smooth and convex. Assume u is harmonic and let $v:=\phi(u)$. Prove that v is subharmonic.
(d) Prove that $v:=|\mathcal{D} u|^{2}$ is subharmonic whenever u is harmonic.

