Lecturer: Klaus Kröncke Trainer: Sari Ghanem

Partial Differential Equations Winter Semester 2017–2018

Worksheet 13

Tuesday, January 23, 2018

Problem 1

A function $u \in H^2_0(U)$ is called a weak solution of this boundary-value problem for the biharmonic equation

$$\begin{cases} \Delta^2 u = f & \text{in } U \\ u = \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \end{cases}$$
(1)

if

$$\int_U \Delta u \cdot \Delta v \, dx = \int_U f v \, dx$$

holds for all $v \in H_0^2(U)$. Prove that for each $f \in L^2(U)$, there exists a unique weak solution of (1). (Hint: Use the Max-Milgram theorem.)

Problem 2

Assume U is connected. A function $u \in H^1(U)$ is called a weak solution of Neumann's problem

$$\begin{cases} -\Delta u = f & \text{in } U \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial U \end{cases}$$
(2)

if

$$\int_{U} Du \cdot Dv dx = \int_{U} fv dx$$

for all $v \in H^1(U)$. Suppose $f \in L^2(U)$. Prove that (2) has a weak solution if and only if

$$\int_{U} f dx = 0.$$

(Hint: Use the Poincaré inequality $||u - \overline{u}||_{L^2(U)} \leq C ||Du||_{L^2(U)}$ which holds for all $u \in H^1(U)$. Here, $\overline{u} = \frac{1}{|U|} \int_U u \, dx$. Use the subspace consisting of $u \in H^1(U)$ such that $\overline{u} = 0$.)

Problem 3

Let $u \in H^1(\mathbb{R}^n)$ have a compact support and be a weak solution of the semilinear PDE

$$-\Delta u + c(u) = f$$
 in \mathbb{R}^n

where $f \in L^2(\mathbb{R}^n)$, and $c : \mathbb{R} \to \mathbb{R}$ is smooth, with c(0) = 0 and $c' \ge 0$. Prove $u \in H^2(\mathbb{R}^n)$. (Hint: mimic the proof of interior regularity Theorem, but without the cutoff function).

Problem 4

Let $U \subset \mathbb{R}^n$ be open and bounded, L be a uniformly elliptic operator of non-divergence form (5.68) with continuous coefficients and $u \in C^2(U) \cap C(\overline{U})$ be such that Lu = 0 holds in the classical sense. Show that $c \geq 0$ is a nessecary condition to ensure

$$\max_{U} u = \max_{\partial U} u.$$

(Hint: Find a counterexample in dimension n = 1 when the condition $c \ge 0$ is violated.)

For January 30, 2018, at 08:15 A.M.