Lecturer: Klaus Kröncke Trainer: Sari Ghanem

Partial Differential Equations Winter Semester 2017–2018

Worksheet 11

Tuesday, January 09, 2018

Problem 1

Let X, Y be Banach spaces. Let $L: X \to Y$ be bounded and linear. Prove that:

- (i) $(x_k) \to x$ in $X \Rightarrow (Lx_k) \to Lx$ in Y
- (ii) $(x_k) \rightharpoonup x$ in $X \Rightarrow (Lx_k) \rightharpoonup Lx$ in Y
- (iii) The operator $K: X \to Y$ is compact if and only if for any sequence (x_k) in X such that $(x_k) \rightharpoonup x$, we have $(Kx_k) \to Kx$ in Y.

Problem 2

Let H be a Hilbert space and let $K: H \to H$ be a compact operator. Then prove that:

- (i) dim $Ker(Id K) < \infty$
- (ii) Im(Id K) is closed

Problem 3

- (i) Let $x \in \mathbb{R}^n$ and let δ_x be the Delta distribution centered on x. Let $k \in \mathbb{N}$ and $i_1, \ldots, i_k \in \{1, \ldots, n\}$. Compute the distributional derivative $(\delta_x)_{x_{i_1}x_{i_2}...x_{i_k}}$.
- (ii) Let H be the Heaviside function on \mathbb{R} , defined by

$$H(x) = \begin{cases} 1 & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}$$

The map $u \mapsto (H, u)_{L^2(\mathbb{R})}, u \in C_c^{\infty}(\mathbb{R})$ defines a distribution on \mathbb{R} which we again denote by H.

- (a) Compute H' in the sense of distributions.
- (b) Find a distribution F such that F' = H. Can it be realized as a function, i.e. is it of the form $u \mapsto (F, u)_{L^2(\mathbb{R})}$?

Problem 4

Let $U \subset \mathbb{R}^n$ open, bounded set with smooth boundary. Let L be the following operator with smooth coefficients and satisfy the uniform ellipticity condition:

$$Lu = -\sum_{i,j=1}^{n} (a^{ij}u_{x_i})_{x_j} + cu$$

Prove that there exists a constant $\mu > 0$ such that the corresponding bilinear form B[,] satisfies the hypotheses of the Lax-Milgram Theorem, provided

$$c(x) \ge -\mu$$
 for all $x \in U$.