Lecturer: Klaus Kröncke Trainer: Sari Ghanem

Partial Differential Equations Winter Semester 2017–2018

Worksheet 10 Tuesday, December 19, 2017

Problem 1 Let X, Y be Banach spaces, let $V \subset X$ be a dense subspace of X and $A: V \to Y$ be a bounded linear operator. Show that there exists a unique extension $\tilde{A}: X \to Y$, i.e. a unique bounded linear operator $\tilde{A}: X \to Y$ such that $\tilde{A}|_V = A$.

Problem 2

As functions on \mathbb{R}^n of the parameters α, β , determine for which $n \in \mathbb{N}$, $k \in \mathbb{N}$, the following functions belong to $H^k(B_{1/2}(0))$:

(a) $u(x) = |x|^{\alpha}$

(b)
$$u(x) = |\ln |x||^{\beta}$$

(c) $u(x) = |x|^{\alpha} |\ln |x||^{\beta}$

Problem 3

Let U be a bounded open subset of \mathbb{R}^n with smooth boundary. Prove that in general $H_0^1(U) \neq H^1(U)$, i.e. show that they are not equal for any U.

(Hint: consider the function equal to 1 on the unit ball of \mathbb{R}^{n} .)

Problem 4

Let $\Omega = B_1(0) \subset \mathbb{R}^2$ and $u : \Omega \to \mathbb{R}$ with

$$u(x) := \ln(|\ln \frac{1}{|x|}|).$$

Prove that $u \in H^1(\Omega) \setminus C(\Omega)$.