Lecturer: Klaus Kröncke
Trainer: Sari Ghanem

Partial Differential Equations
 Winter Semester 2017-2018

Worksheet 1

Tuesday, October 17, 2017

Problem 1

Let u be a smooth function defined on an open subset U such that

$$
\begin{aligned}
u: U \subset \mathbb{R}^{n} & \rightarrow \mathbb{R} \\
x & \rightarrow u(x)
\end{aligned}
$$

or

$$
\begin{aligned}
u: U \subset \mathbb{R}^{n} \times \mathbb{R} & \rightarrow \mathbb{R} \\
(x, t) & \rightarrow u(x, t)
\end{aligned}
$$

Classify each of the following partial differential equations as follows:
a) Is the PDE linear, semilinear, quasilinear or fully nonlinear?
b) What is the order of the PDE?

$$
\begin{aligned}
i u_{t}+\Delta u & =0 \\
u_{t t}-\sum_{i, j=1}^{n} a^{i j} u_{x_{i} x_{j}}+\sum_{i=1}^{n} b^{i} u_{x_{i}} & =0 \\
|\mathcal{D} u| & =1 \\
\operatorname{div}\left(\frac{\mathcal{D} u}{\left(1+|\mathcal{D} u|^{2}\right)^{\frac{1}{2}}}\right) & =0 \\
\operatorname{det}\left(\mathcal{D}^{2} u\right) & =f \\
u_{t t}-\operatorname{div}\left(\mathbf{a}\left(\mathcal{D}_{x} u\right)\right) & =0, \quad \text { where } \mathbf{a}(x) \text { is a } n \times n \text { matrix }
\end{aligned}
$$

Problem 2

Prove the Multinomial Thoerem

$$
\left(x_{1}+\ldots+x_{n}\right)^{k}=\sum_{|\alpha|=k}\binom{|\alpha|}{\alpha} x^{\alpha}
$$

where $\binom{(\alpha \mid}{\alpha}:=\frac{|\alpha|!}{\alpha}, \alpha!=\alpha_{1}!\alpha_{2}!\ldots \alpha_{n}!$, and $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$. The sum is taken over all multiindices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $|\alpha|=k$.

Problem 3

Prove Leibniz' formula

$$
\mathcal{D}^{\alpha}(u v)=\sum_{|\beta| \leq \alpha}\binom{\alpha}{\beta} \mathcal{D}^{\beta} u \mathcal{D}^{\alpha-\beta} v
$$

where $u, v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are smooth, $\binom{\alpha}{\beta}:=\frac{\alpha!}{\beta!(\alpha-\beta)!}, \beta \leq \alpha$ means $\beta_{i} \leq \alpha_{i}$ for all $i=1, \ldots, n$.

Problem 4

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth. Prove that

$$
f(x)=\sum_{|\alpha| \leq k} \frac{1}{\alpha!} \mathcal{D}^{\alpha} f(0) x^{\alpha}+O\left(|x|^{k+1}\right) \quad \text { as } \quad x \rightarrow 0
$$

for each $k=1,2, \ldots$. This is Taylor's formula in multiindex notation. (Hint: fix $x \in \mathbb{R}^{n}$ and consider the function of one variable $g(t):=f(t x)$.)

