Name(n):

Dozent: Jun.-Prof. Dr. Klaus Kröncke

Übungsleiter: Christian Gloy, BSc

Übungsgruppe:

Jun.-Prof. Dr. Klaus Kröncke Dr. Immanuel van Santen

Höhere Analysis

Wintersemester 2016/17

Übungsblatt 3

Do, 27. Oktober 2016

Aufgabe 1 (2+2 Punkte)

- a) Zeigen Sie: $\lambda: \mathcal{E} \to \mathbb{R}^+_{\mathrm{erw}}$ ist ein Prämaß (Lemma 1.3.5 aus der Vorlesung).
- b) Bestimmen Sie für das Borel-Lebesguesche äußere Maß λ^* auf \mathbb{R} den Wert $\lambda^*(\mathbb{Q})$.

Aufgabe 2 (4 Punkte)

Zeigen Sie, zu jeder Menge $X \in \mathfrak{L}$ in der Lebesgue-Algebra und zu jedem $\epsilon > 0$ gibt es eine offene Menge Y mit $X \subset Y$ und eine abgeschlossene Menge $Z \subset X$, so dass $\lambda(Y \setminus Z) < \epsilon$. Dabei ist λ das Borel-Lebesguesche Maß auf \mathbb{R}^n .

Aufgabe 3 (2+2) Punkte)

a) Beweisen Sie die Translationsinvarianz des Lebesgueschen und des Borel-Lebesgueschen Maßes auf \mathbb{R}^n , d.h. für $X \in \mathcal{L}$ (bzw. $X \in \mathcal{B}^n$) und $a \in \mathbb{R}^n$ gilt

$$\bar{\lambda}(X) = \bar{\lambda}(X+a)$$
 (bzw. $\lambda(X) = \lambda(X+a)$)

b) Beweisen Sie: Für $X \in \mathcal{L}$ (bzw. $X \in \mathcal{B}^n$) und $\alpha > 0$ gilt

$$\bar{\lambda}(\alpha \cdot X) = \alpha^n \cdot \bar{\lambda}(X)$$
 (bzw. $\lambda(\alpha \cdot X) = \alpha^n \lambda(X)$)

Aufgabe 4 (2+2 Punkte)

- a) Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^n$ eine stetig differenzierbare Abbildung. Zeigen Sie: Ist $A \subset \mathbb{R}^n$ eine Nullmenge, dann ist auch das Bild f(A) eine Nullmenge. Hinweis: Zeigen Sie zunächst, dass $F(A \cap K)$ für jede kompakte Teilmenge $K \subset \mathbb{R}^n$ eine Nullmenge ist, indem Sie die gleichmäßige Stetigkeit von f auf K verwenden.
- b) Zeigen Sie, dass jede Hyperebene in \mathbb{R}^n (d.h. eine Nullstellenmenge einer nichttrivialen linearen Funktion auf \mathbb{R}^n) eine Nullmenge ist. Hinweis: Zeigen Sie zunächst, dass $\mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n$ eine Nullmenge ist.