
Gödel’s Incompleteness Theorem

by Yurii Khomskii

We give three different proofs of Gödel’s First Incompleteness Theorem. All
three proofs are essentially variations of one another, but some people may find
one of them more appealing than the others. We leave out all details about
representability.

First of all, we fix some axiomatization N of arithmetic. This can be the
way it was done in Piet’s notes, it can be Robinson’s arithmetic Q, or simply
Peano Arithemtic (PA). Which one we chose has no relevance for the rest of the
proof.

1. Definition. Let R ⊆ N
k be a k-ary relation. We say that R is repre-

sentable (in N) if there is a formula φ(x1, . . . , xk) in the language of arithmetic,
such that for all n1, . . . , nk:

(n1, . . . , nk) ∈ R =⇒ N ` φ(n1, . . . , nk)

(n1, . . . , nk) /∈ R =⇒ N ` ¬φ(n1, . . . , nk)

2. Main Theorem. If R ⊆ N
k is a computable relation, then R is repre-

sentable.

Proof. This requires some technical work, using e.g. the β-function as in the
notes. We won’t go into the details.

There is a weaker notion called semi-representability:

3. Definition. Let R ⊆ N
k be a k-ary relation. We say that R is semi-

representable (in N), or N -definable, if there is a formula φ(x1, . . . , xk) in the
language of arithmetic, such that for all n1, . . . , nk:

(n1, . . . , nk) ∈ R ⇐⇒ N ` φ(n1, . . . , nk)

Now we are going to encode first order logic, and all the operations it involves,
into natural numbers.

4. Definition.

• First, we assign Gödel numbers to formulae in an effective way. If φ is a
formula, pφq denotes its Gödel number. If e = pφq then we write φ = φe.
Thus we have an effective listing of all first order formulae: φ0, φ1, φ2, . . . .

• Next, we assign Gödel numbers to finite sequences of formulas, in an
effective way.
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• Now we can define a couple of relations and functions:

– AxT := {n | φn ∈ T} (the axioms of T )

– ThT := {n | T ` φn} (the theorems of T )

– RefT := {n | T ` ¬φn} (the sententes refutable from T )

– ProofT := {(s, n) | s codes a proof of φn from T}.

– Sub : N
2 → N, a function defined by Sub(n,m) := pφn(m)q.

• We say that a theory T is computably axiomatized, or computably

formalized, or effectively formalized, if AxT is a computable set.

5. Theorem. If T is computably axiomatized then ProofT is a computable
relation.

Proof. Given (s, n), recover the finite sequence φn1
, . . . , φnk

coded by s. Check
whether n1 ∈ AxT which can be done by assumption. Furthermore, check
whether each step φni

7→ φni+1
is a correct derivation according to the rules of

logic. This operation is also computable. Finally, check whether nk = n. If all of
this is satisfied, then s indeed codes a proof of φn from T , i.e. (s, n) ∈ ProofT ,
and otherwise (s, n) /∈ ProofT .

Using this theorem, it immediately follows that many interesting sets re-
garding consequences of T are c.e. In particular:

6. Theorem. If T is computably axiomatized then the following sets are all
c.e.:

1. ThT

2. RefT

3. For every φ(x), the set {n | T ` φ(n)}.

4. Every set A semi-representable in T (called “T -definable” in the notes).

Proof.

1. We have ThT = {n | ∃s ProofT (s, n)}, and by the previous theorem,
ProofT (s, n) is a computable relation, so ThT is Σ1, hence c.e.

2. Here we note that the function Negate : N → N defined by Negate(n) :=
p¬φnq is obviously computable. ThenRefT = {n | ∃s ProofT (s,Negate(n))},
which is c.e.

3. Here, let e be the Gödel number of φ. Then the set in question is equal
to {n | ∃s ProofT (s, Sub(e, n))}, which is c.e.

4. This follows immediately from the previous point.
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One consequence of point 4 above is the converse of Main Theorem 2: if R is
representable, then R is computable. This follows because if R is representable
by φ, then R is semi-representable by φ and R is semi-representable by ¬φ (as-
suming that N is consistent), so, since N is obviously computably axiomatized,
by the above both R and R are c.e., hence R is computable.

But more important is this: now we know that the theory of T (i.e. the set
of sentences provable from T ) is c.e. Is it also computable?

7. Definition. We say that T is decidable if ThT is computable.

8. Theorem. If T is computably axiomatized and complete, then T is decidable.

Proof. If T is inconsistent, then it is trivially decidable since every formula
follows form T . If T is consistent and complete, then for all φ we have that
T 6` φ iff T ` ¬φ. Therefore ThT = {n | T 6` φn} = {n | T ` ¬φn} = RefT . But
both ThT and RefT are c.e. by Theorem 6., i.e., both ThT and its complement
are c.e., so ThT is computable.

Now we can give the first (in a sense the most direct) proof of the incom-
pleteness theorem.

9. Gödel’s First Incompleteness Theorem. If T is a computably axioma-
tized, consistent extension of N , then T is undecidable and hence incomplete.

First Proof. Let D := {n | T ` φn(n)}. Assume, towards contradiction, that
T is decidable, i.e., ThT is computable. Then D is also computable, since it can
be written as {n | Sub(n, n) ∈ ThT} and Sub is a computable function. Hence
D is also computable. Then by Main Theorem 2, D is representable (in N),
say, by φe. But then:

e ∈ D ⇒ e /∈ D ⇒ N ` ¬φe(e) ⇒ T ` ¬φe(e) ⇒ T 6` φe(e) ⇒ e /∈ D

e /∈ D ⇒ e ∈ D ⇒ N ` φe(e) ⇒ T ` φe(e) ⇒ e ∈ D

which is a contradiction.

∗

You may notice that the above proof is quite similar to our proof that K is
not computable. We can give another proof of Gödel’s incompleteness theorem
which builds more directly on what we already know about basic recursion
theory. This requires the additional assumption of ω-consistency (although
there may be a way to avoid that.)

10. Definition. A theory T in the language of arithmetic is ω-consistent if
for all formulas φ(x) the following holds:
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If for all n ∈ N, T ` φ(n), then T 6` ∃x¬φ(x)

For ω-consistent extensions of N we can prove the converse of (6.4.)

11. Lemma. Suppose T is an ω-consistent extension of N . Then every c.e.
set A ⊆ N is semi-representable in T .

Proof. Let A = {n | ∃m R(n,m)}, with R a computable relation. Suppose R
is represented by ψ(x, y) (in N). Let

φ(x) ≡ ∃y ψ(x, y)

We will show that φ semi-represents A. Indeed, if n ∈ A then for some m,
R(n,m) holds, so N ` ψ(n,m) and hence N ` ∃y ψ(n, y), i.e., N ` φ(n). Hence
T ` φ(n). On the other hand, if n /∈ A then for all m, R(n,m) does not hold
and so for all m we have N ` ¬ψ(n,m), and hence T ` ¬ψ(n,m). Then by
ω-consistency, T 6` ∃y ψ(n, y), i.e., T 6` φ(n). This proves that φ semi-represents
A in T .

As simple as the Lemma looks, it has the following consequence:

12. Theorem. Let T be an ω-consistent extension of N . Then for all c.e. sets
A we have

A ≤m ThT

(i.e., ThT is Σ1-complete.)

Proof. Suppose φe semi-represents A in T . Let f be the function defined by
f(n) := Sub(e, n) = pφe(n)q. Obviously f is computable. Then

n ∈ A ⇒ T ` φe(n) ⇒ f(n) ∈ ThT

n /∈ A ⇒ T 6` φe(n) ⇒ f(n) /∈ ThT

Now, of course, it follows immediately that ThT is not computable: choose
any non-computable c.e. set, such as K, and the result follows from K ≤m ThT .
Therefore:

Second proof of Gödel’s Theorem: If T is an ω-consistent extension of N
then it follows from the above discussion that T is undecidable. Moreover, if T
is computably axiomatized, then it follows by Theorem 8 that T is incomplete.

∗
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Both proofs above proceed via decidability, but that is not actually the
way Gödel originally proved his theorem. What he did instead was, roughly
speaking, the following:

Third proof of Gödel’s Theorem. Let T be the ω-consistent, computably
axiomatized extension of N . Suppose φSub(x, y, z) represents the computable
function Sub and φProofT

(x, y) represents the computable relation ProofT . Let
ψ(x) ≡ ¬∃s ∃y (φProofT

(s, y) ∧ φSub(x, x, y)). So ψ(x) codes the statement
“T 6` φx(x)”. Let e be the Gödel number of ψ.

Then if T ` φe(e), there is a proof of φe(e) from T , so there is an s such
that ProofT (s, Sub(e, e)). Then N ` ∃y (φProofT

(s, y)∧φSub(e, e, y)) and hence
N ` ∃s ∃y (φProofT

(s, y) ∧ φSub(e, e, y)), i.e. N ` ¬ψ(e). Then also T ` ¬ψ(e).
But ψ = φe, so T ` ¬φe(e). Since T is consistent, T 6` φe(e)—contradiction.

On the other hand, suppose T ` ¬φe(e), then, since T is consistent, T 6`
φe(e). Then for all s, ProofT (s, Sub(e, e)) is false. Therefore, for all s, N `
¬[∃y (φProofT

(s, y) ∧ φSub(e, e, y))], and so T proves the same. Now by ω-
consistency of T , T 6` ∃s ∃y (φProofT

(s, y) ∧ φSub(e, e, y)), i.e., T 6` ¬ψ(e), i.e.,
T 6` ¬φe(e)—contradiction.

Therefore T 6` φe(e) and T 6` ¬φe(e), so T is incomplete.

The above proof can be stated somewhat colloquially which, though techan-
ically imprecise, may give a better impression of the essence of the proof:

• Let e be the Gödel number of the formula φ(x) ≡“T 6` φx(x)”.

• Then, in particular, φe(e) ≡“T 6` φe(e)”.

• Now, if T ` φe(e) holds “in reality”, then by representability its coded
version holds in T , so T `“T ` φe(e)”, so T ` ¬φe(e), so by consistency,
T 6` φe(e).

• And if T ` ¬φe(e) holds, then by consistency T 6` φe(e), so by repre-

sentability T `“s is not the code of the proof ‘T ` φe(e)’ ”, for all s ∈ N.
Then by ω-consistency, T 6`“T ` φe(e)”, so T 6` ¬φe(e).

.
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