Forcing and Independence Proofs: Assignment 3

- 1. In the following, σ, τ, θ are P-names in M and G is a P-generic filter over M. Are the following true or false?
 - (a) If $(\sigma, \mathbf{1}) \in \tau$ then $\sigma_G \in \tau_G$.
 - (b) If $(\sigma, p) \in \tau$ and $p \in G$, then $\sigma_G \in \tau_G$.
 - (c) If $\sigma_G \in \tau_G$ then $(\sigma, \mathbf{1}) \in \tau$.
 - (d) If $x \in \tau_G$ then there exists $(\sigma, p) \in \tau$ such that $p \in G$ and $x = \sigma_G$.
 - (e) If $\sigma_G \in \tau_G$ then there exists $p \in G$ such that $(\sigma, p) \in \tau$.
 - (f) If $\sigma_G \in \tau_G$ then there exists $(\theta, r) \in \tau$ such that $r \in G$ and $\theta_G = \sigma_G$.
- 2. A condition $p \in \mathbb{P}$ is called an *atom* if all q, r extending p are compatible. A forcing partial order \mathbb{P} is called *atomless* if it does not contain any atoms. In Kunen, there is a proof showing that if $\mathbb{P} \in M$ is atomless than \mathbb{P} -generic filters over M cannot exist in M. Prove the converse, i.e., if $\mathbb{P} \in M$ is not atomless (contains at least one atom), then there exists a $G \in M$ which is a \mathbb{P} -generic filter over M.

(*Hint:* let G be the set of all p which are compatible to r, for suitable r.)

3. Let M be a countable transitive model and let $\mathbb{P} \in M$ be an atomless forcing. Prove that

 $|\{G: G \text{ is a } \mathbb{P}\text{-generic filter over } M\}| = 2^{\aleph_0}.$

4. (a) For $p \in \mathbb{P}$ and ϕ in the forcing language, we say that

"p decides ϕ "

if $p \Vdash \phi$ or $p \Vdash \neg \phi$. Show that for every $p \in \mathbb{P}$ and every ϕ , there is $q \leq p$ which decides ϕ .

- (b) Let τ be a name such that $p \Vdash \tau \in \check{\omega}$. Show that there exists $q \leq p$ and $n \in \omega$ such that $q \Vdash \tau = \check{n}$ (we say that "q decides τ ").
- (c) Consider the partial order $Fn(\omega, \omega)$, i.e., finite functions p with dom(p), ran $(p) \subseteq \omega$ ordered by $q \leq p$ iff $q \supseteq p$ (the standard partial order for adding a new real). This forcing is typically called *Cohen forcing*.

Let G be Cohen-forcing-generic over M. Show that $f_G := \bigcup G$ has the following property: for every $x \in \omega^{\omega} \cap M$, there are infinitely many $n \in \omega$, such that $x(n) < f_G(n)$ (we say that f_G is an unbounded real over M).

(*Hint:* for every $x \in \omega^{\omega} \cap M$ and every $k \in \omega$, define appropriate dense sets $D_{x,k} = \dots$)