Forcing and Independence Proofs: Assignment 2

- 1. Let \mathbb{P} be a (forcing) partial order and $A \subseteq \mathbb{P}$. A is called a *maximal antichain* if it is an antichain (i.e., all $p, q \in A$ are incompatible) which cannot be extended to a larger antichain (i.e., for every $p \in \mathbb{P}$ there is a $q \in A$ which is compatible to p. Show:
 - (a) If $A \subseteq \mathbb{P}$ is a maximal antichain, then $\{q \in \mathbb{P} \mid \exists p \in A \ (q \leq p)\}$ is a dense subset of \mathbb{P} .
 - (b) (AC) If $D \subseteq \mathbb{P}$ is a dense set, then there exists a maximal antichain $A \subseteq D$.
 - (c) The following are equivalent for all κ :
 - if $\{D_{\alpha} \mid \alpha < \kappa\}$ is a collection of dense sets, then there exists a filter G, such that $G \cap D_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.
 - if $\{A_{\alpha} \mid \alpha < \kappa\}$ is a collection of maximal antichains, then there exists a filter G, such that $G \cap A_{\alpha} \neq \emptyset$ for all $\alpha < \kappa$.

(Thus, in the definition of " \mathscr{D} -generic filter" in the statement of Martin's Axiom (and later for forcing) it does not matter whether we consider dense subsets of \mathbb{P} or maximal antichains in \mathbb{P} .)

2. Let I be an infinite set and J an arbitrary non-empty set, and let $\operatorname{Fn}(I, J) := \{p : p \text{ is a finite function with } \operatorname{dom}(p) \subseteq I \text{ and } \operatorname{ran}(p) \subseteq J\}$. Consider the forcing

$$\mathbb{P} = (\operatorname{Fn}(I, J), \supseteq, \varnothing),$$

i.e., \mathbb{P} is the forcing with conditions from $\operatorname{Fn}(I, J)$, with the order given by $q \leq p$ iff $q \supseteq p$ (i.e., q extends p as a function), and $\mathbf{1} = \emptyset$.

- (a) Let $D_x := \{p : x \in \text{dom}(p)\}$ and $R_y := \{p : y \in \text{ran}(p)\}$. Show that these sets are dense, and if G is a filter which is generic for $\mathscr{D} := \{D_x : x \in I\} \cup \{R_y : y \in J\}$, then $f_G := \bigcup G$ is a surjection from I to J (i.e., it is a function, its domain is I, and its range is J).
- (b) Show that, if $|I| < |J| = \kappa$, then $\mathsf{MA}_{\mathbb{P}}(\kappa)$ is inconsistent.