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Part II

Recall what we did

AD := “All infinite games G (A) are determined”.

Definition

Let Γ ⊆ NN be a (usually topological) class of sets. Det(Γ) abbreviates
the statement “for all A ∈ Γ, the infinite game G (A) is determined”.

We have seen:

Det(Open) and Det(Closed) (Gale-Stewart, 1953).

Det(Fσ) and Det(Gδ) (Wolfe, 1955).

Det(Fσδ) and Det(Gδσ) (Morton Davis, 1964).

Det(Borel) (Tony Martin, 1975).

Assuming “large cardinals”, Det(projective) (Martin-Steel, 1989).

AD = Det(P(NN)); it is inconsistent with AC.
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Part II

What we will do today

The results we prove today have the following pattern: if P is some
property of sets (subsets of NN or R), construct a game G ′ and prove that
if G ′(A) is determined then A satisfies P.

We will formulate such results as follows:

Theorem

AD =⇒ every set A satisfies P.

However, for each such result, there is a corresponding local version:

Theorem

If Γ is a class satisfying certain closure properties, then Det(Γ) =⇒ all
sets A ∈ Γ satisfy P.

For the second result, we need to check that the coding we use is
sufficiently simple (we will skip this).
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Part II Lebesgue measure

1. Lebesgue measure
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Part II Lebesgue measure

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)

AD =⇒ every set is measurable.

The local version

Assume Γ is closed under continuous pre-images, finite unions,
intersections and complements, and contains the Fσ sets. Then Det(Γ) ⇒
all sets in Γ are measurable.

The original proof is due to Mycielski-Świerczkowski (1964) but we present
a proof of Harrington.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 6 / 59



Part II Lebesgue measure

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)
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Part II Lebesgue measure

Setting up the game

Note that it is sufficient to prove the result for all A ⊆ [0, 1].

Notation: 2N := {f : N −→ {0, 1}} (infinite binary sequences).

Fix an enumeration {In | n ∈ N} of all possible finite unions of open
intervals in [0, 1] with rational endpoints (there are only countably
many).

For x ∈ 2N, let a : 2N −→ [0, 1] be the function given by

a(x) :=
∞∑
n=0

xn
2n+1

Easy to see that a : 2N → [0, 1] is continuous and ran(a) = [0, 1]
(think of x as the binary expansion of a(x)).
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Part II Lebesgue measure

The Covering Game

Given A ⊆ [0, 1] and ε > 0, we define a game Gµ(A, ε).

Definition (Gµ(A, ε))

I : x0 x1 x2 . . .

II : y0 y1 y2

xi ∈ {0, 1} and yi ∈ N.

At every move n, Player II must make sure that

µ(Iyn) <
ε

22(n+1)

Player I wins iff a(x) ∈ A \
⋃∞

n=0 Iyn .

Intuition: I attempts to play a real number in A, while II attempts to “cover” that real

number with the In’s (of an increasingly smaller measure.)
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Part II Lebesgue measure

The main result

Theorem

Let A ⊆ NN and ε be given.

1 If I has w.s. in Gµ(A, ε) then there is a measurable Z ⊆ A with
µ(Z ) > 0.

2 If II has w.s. in Gµ(A, ε) then there is an open O such that A ⊆ O
and µ(O) < ε.
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Part II Lebesgue measure

Proof

Proof.
1. Let σ be winning for I. Define

f (z)(n) := z(2n) and

g(z)(n) := z(2n + 1).

It is clear that both f and g are continuous (from NN to NN), and also the
mapping y 7→ σ ∗ y is continuous. Hence y 7→ a(f (σ ∗ y)) is continuous.
Let Z := {a(f (σ ∗ y)) | y ∈ NN}. This is an analytic set (continuous
image of a closed set), hence measurable. As σ was winning, Z ⊆ A.

But if µ(Z ) = 0 then Z can be covered by {Iyn | n ∈ N} satisfying
∀n (µ(Iyn) < ε

22(n+1) ). Then if II plays y = 〈y0, y1, . . . 〉

a(f (σ ∗ y)) ∈ Z ⊆
∞⋃
n=0

Iyn ,

contradicting that σ is winning for I.
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Part II Lebesgue measure

Proof (continued)

2. Now suppose τ is winning for II. For every s ∈ {0, 1}∗ of length n,
define

Is := I(s∗ρ)(2n−1)

(Is is the Iyn−1 where yn−1 is the last move of the game in which I played s
and II used τ). As τ is winning for II, for every a ∈ A and every x ∈ 2N

such that a(x) = a, there must be some n such that a ∈ Ix�n. In other
words, a ∈

⋃
{Is | s C x} where x is such that a(x) = a.

In particular

A ⊆
⋃
s∈2N

Is =
∞⋃
n=1

⋃
s∈{0,1}n

Is .

Since τ was winning, for every s of length n ≥ 1, µ(Is) < ε/22n.

µ(
⋃

s∈{0,1}n
Is) <

ε

22n
· 2n =

ε

2n
.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 11 / 59



Part II Lebesgue measure

Proof (continued)

2. Now suppose τ is winning for II. For every s ∈ {0, 1}∗ of length n,
define

Is := I(s∗ρ)(2n−1)

(Is is the Iyn−1 where yn−1 is the last move of the game in which I played s
and II used τ). As τ is winning for II, for every a ∈ A and every x ∈ 2N

such that a(x) = a, there must be some n such that a ∈ Ix�n. In other
words, a ∈

⋃
{Is | s C x} where x is such that a(x) = a.

In particular

A ⊆
⋃
s∈2N

Is =
∞⋃
n=1

⋃
s∈{0,1}n

Is .

Since τ was winning, for every s of length n ≥ 1, µ(Is) < ε/22n.

µ(
⋃

s∈{0,1}n
Is) <

ε

22n
· 2n =

ε

2n
.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 11 / 59



Part II Lebesgue measure

Proof (continued)

2. Now suppose τ is winning for II. For every s ∈ {0, 1}∗ of length n,
define

Is := I(s∗ρ)(2n−1)

(Is is the Iyn−1 where yn−1 is the last move of the game in which I played s
and II used τ). As τ is winning for II, for every a ∈ A and every x ∈ 2N

such that a(x) = a, there must be some n such that a ∈ Ix�n. In other
words, a ∈

⋃
{Is | s C x} where x is such that a(x) = a.

In particular

A ⊆
⋃
s∈2N

Is =
∞⋃
n=1

⋃
s∈{0,1}n

Is .

Since τ was winning, for every s of length n ≥ 1, µ(Is) < ε/22n.

µ(
⋃

s∈{0,1}n
Is) <

ε

22n
· 2n =

ε

2n
.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 11 / 59



Part II Lebesgue measure

Proof (continued)

2. Now suppose τ is winning for II. For every s ∈ {0, 1}∗ of length n,
define

Is := I(s∗ρ)(2n−1)

(Is is the Iyn−1 where yn−1 is the last move of the game in which I played s
and II used τ). As τ is winning for II, for every a ∈ A and every x ∈ 2N

such that a(x) = a, there must be some n such that a ∈ Ix�n. In other
words, a ∈

⋃
{Is | s C x} where x is such that a(x) = a.

In particular

A ⊆
⋃
s∈2N

Is =
∞⋃
n=1

⋃
s∈{0,1}n

Is .

Since τ was winning, for every s of length n ≥ 1, µ(Is) < ε/22n.

µ(
⋃

s∈{0,1}n
Is) <

ε

22n
· 2n =

ε

2n
.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 11 / 59



Part II Lebesgue measure

Proof (continued)

µ(
⋃

s∈{0,1}n
Is) <

ε

22n
· 2n =

ε

2n
.

µ(
⋃
s∈2N

Is) = µ(
∞⋃
n=1

⋃
s∈{0,1}n

Is) <
∞∑
n=1

ε

2n
= ε.

So, indeed, A is contained in an open set of measure < ε.
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Part II Lebesgue measure
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Part II Lebesgue measure

Proof (continued)

µ(
⋃

s∈{0,1}n
Is) <

ε

22n
· 2n =

ε

2n
.

µ(
⋃
s∈2N

Is) = µ(
∞⋃
n=1

⋃
s∈{0,1}n

Is) <
∞∑
n=1

ε

2n
= ε.

So, indeed, A is contained in an open set of measure < ε.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 12 / 59



Part II Lebesgue measure

Corollary

Corollary

Let X ⊆ [0, 1] be any set and assume AD. Then X is measurable.

Proof. Let µ∗(X ) = δ. Let B be a Gδ set such that X ⊆ B and µ(B) = δ.

Now consider the games Gµ(B \ X , ε), for all ε. If, for at least one ε > 0, I has a w.s.,

then there is a measurable set Z ⊆ B \X of positive measure, contradicting µ∗(X ) = δ.

Hence, by determinacy, II must have

a w.s. in Gµ(B \ X , ε) for every ε >

0. Hence B \ X ⊆ O for µ(O) < ε,

for every ε > 0, therefore B \ X has

measure 0. So X is measurable.
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Part II Related properties

2. Related properties
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Part II Related properties

Baire Property

Definition

A set A in a topological space has the Baire Property if for some Borel
set B, A = B modulo a meager set.

Theorem (Banach-Mazur)

AD =⇒ all sets have the Baire Property.

The local version

Assume Γ is closed under continuous pre-images. Then Det(Γ) ⇒ all sets
in Γ have the Baire Property.
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Part II Related properties

Banach-Mazur game

Definition (Banach-Mazur game)

I: s0 s1 . . .

II: t0 t1 . . .

si , ti ∈ N∗ \ {〈〉}.
Let z := s0

_t0
_s1

_t1
_ . . . ; Player I wins iff z ∈ A.

This works on the space NN; actually there is a version of the
Banach-Mazur game on any Polish space: the players choose basic open
sets Ui and Vi such that U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . . with decreasing
diameter. Then

⋂∞
i=0 Ui =

⋂∞
i=0 Vi = {z} and I wins iff z ∈ A.
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Part II Related properties

Perfect Set Property

Definition

A set A ⊆ R, or A ⊆ NN, satisfies the Perfect Set Property if it is either
countable or contains a perfect set (a homeomorphic image of the full
binary tree 2N).

Note: the Perfect Set Property arose from Cantor’s original attempts to
prove the Continuum Hypothesis. If all subsets of R satisfied this property,
then all subsets of R would be either countable or have cardinality 2ℵ0

(since |2N| = 2ℵ0). But using AC one can construct counterexamples.
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Part II Related properties

Perfect Set Property and AD

Theorem (Morton Davis)

AD =⇒ all sets have the Perfect Set Property.

The local version

Assume Γ is closed under continuous pre-images and intersections with
closed sets. Then Det(Γ) ⇒ all sets in Γ have the Perfect Set Property.
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Part II Related properties

The ∗-game

Definition (∗-game)

I: s0 s1 s2

II: n1 n2 . . .

si ∈ N∗ \ {〈〉}.
ni ∈ N.

I must make sure that, for each i ≥ 1, si (0) 6= ni (otherwise he loses)

Let z := s0
_s1

_s2
_ . . . ; Player I wins iff z ∈ A.

Again, this works on NN, but there are versions that work on R, Rn etc.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 19 / 59



Part II Related properties

The ∗-game

Definition (∗-game)

I: s0 s1 s2

II: n1 n2 . . .

si ∈ N∗ \ {〈〉}.
ni ∈ N.

I must make sure that, for each i ≥ 1, si (0) 6= ni (otherwise he loses)

Let z := s0
_s1

_s2
_ . . . ; Player I wins iff z ∈ A.

Again, this works on NN, but there are versions that work on R, Rn etc.

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 19 / 59



Part II Flip Sets

3. Flip Sets
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Part II Flip Sets

Flip Sets

Definition

A set X ⊆ 2N is called a flip set if for all x , y ∈ 2N which differ on exactly
one digit:

x ∈ X ⇐⇒ y /∈ X

Computer Scientists also call this “infinitary XOR gates”.

Clearly:

If x and y differ on an even number of digits then x ∈ X ⇐⇒ y ∈ X .

If they differ on an odd number then x ∈ X ⇐⇒ y /∈ X .

If they differ on an infinite number of digits, we do not know what
happens.

Question: do flip sets exist?
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Part II Flip Sets

Flip sets and AC

Lemma

Assuming AC, flip sets exist.

Proof.

Let ∼ be the equivalent relation on 2N such that x ∼ y iff
{n | x(n) 6= y(n)} is finite. For each equivalence class [x ]∼, let s[x]∼ be
some fixed element from that class. Now define X by

x ∈ X ⇐⇒ |{n | x(n) 6= s[x]∼(n)}| is even.

This is a flip set: if x , y differ by exactly one digit, then s[x]∼ = s[y ]∼ . But
then, by definition, exactly one of x , y is in X .
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Part II Flip Sets

Flip sets and AD

Theorem

AD =⇒ flip sets don’t exist.

The local version

Assume Γ is closed under continuous pre-images. Then Det(Γ) ⇒ there
are no flip sets in Γ.
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Part II Flip Sets

The game

The game is the Banach-Mazur game on 2N, we will denote it by G ∗∗(X ).

Definition (G ∗∗(X ))

I: s0 s1 . . .

II: t0 t1 . . .

si , ti ∈ {0, 1}∗ \ {〈〉}.
Let z := s0

_t0
_s1

_t1
_ . . . ; Player I wins iff z ∈ X .
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Part II Flip Sets

Strategy stealing

We will not present a direct proof, but rather, a sequence of Lemmas
which, assuming flip sets exist, lead to absurdity.

Lemma 1

1 If I has a w.s. in G ∗∗(X ) then I has a w.s. in G ∗∗(2N \ X ).

2 If II has a w.s. in G ∗∗(X ) then II has a w.s. in G ∗∗(2N \ X ).

Proof.

Assume σ is a w.s. for I in G∗∗(X ), then define σ′:

The first move σ′(〈〉) is a sequence of the same length as σ(〈〉) but differs from it
at exactly one digit.

Next, play according to σ, as if the first move was σ(〈〉).

Clearly, for any sequence y of II’s moves, σ ∗ y and σ′ ∗ y differ by exactly one digit.
Since σ ∗ y ∈ X and X is a flip set, σ′ ∗ y /∈ X , hence σ′ is winning for I in G∗∗(2N \ X ).

The proof of 2 is analogous.
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Part II Flip Sets

Strategy stealing (continued)

Lemma 2

If II has a w.s. in G ∗∗(X ) then I has a w.s. in the game G ∗∗(2N \ X ).

Proof.

Let τ be winning for II in G∗∗(X ). Player I will steal the strategy from II, as follows:

G∗∗(2N \ X ) :

I: s s0 s1

II: t t0 . . .

G∗∗(X ) :

I: s_t t0 . . .

II: s0 s1

Let x = s_t_s0
_t0

_ . . . ; then x /∈ X since τ was winning in the auxiliary game

G∗∗(X ). Hence the strategy we just described is winning for I in G∗∗(2N \ X ).
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Part II Flip Sets
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Part II Flip Sets
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Part II Flip Sets

Strategy stealing (continued)

Lemma 3

If I has w.s. in G ∗∗(X ) then II has w.s. in G ∗∗(2N \ X ).

Proof.

Let σ be winning for I in G∗∗(X ). Player II will do the following:
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Part II Flip Sets

Strategy stealing (continued)

Lemma 3

If I has w.s. in G ∗∗(X ) then II has w.s. in G ∗∗(2N \ X ).

Proof.

Let σ be winning for I in G∗∗(X ). Player II will do the following:

G∗∗(2N \ X ) :
I: s0 s1 s2

II: t0 t1

. . .

G∗∗(X ) :
I: s t′ t1

. . .

II: t s1 s2

Case 2. |s0| ≥ |s|. Play any t such that |s_t| > |s0|. Play t0 such that
|s0
_t0| = |s_t_t′| and s0
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Part II Flip Sets

Corollary

Combining Lemmas 1, 2 and 3:

Corollary

AD ⇒ flip sets don’t exist.

Proof.

Suppose X is a flip set. By determinacy I or II has a w.s.

I has w.s. in G∗∗(X )

=⇒ I has w.s. in G∗∗(2N \ X )

=⇒ II has w.s. in G∗∗(X ).

II has w.s. in G∗∗(X )

=⇒ II has w.s. in G∗∗(2N \ X )

=⇒ I has w.s. in G∗∗(X ).

Both situations are clearly absurd.
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Part II Wadge reducibility

4. Wadge reducibility
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Part II Wadge reducibility

Continuous functions on the Baire space

Recall that on the Baire space, f : NN → NN is continuous at x ∈ NN iff

∀s C f (x) ∃t C x ∀y (t C y → s C f (y))

In words: every initial segment of f (x) depends only on an initial segment
of x .

William Wadge (1983) studied continuous functions as a notion of
reducibility on the Baire space.

Definition

Let A,B ⊆ NN. A is Wadge reducible to B, notation A ≤W B, iff there
is a continuous function f : NN −→ NN such that for all x :

x ∈ A ⇐⇒ f (x) ∈ B
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Part II Wadge reducibility

For convenience: A := NN \ A.

Properties of ≤W

A ≤W B iff A ≤W B.

≤W is a pre-wellorder (transitive and reflexive but not
anti-symmetric).

We can define A ≡W B iff A ≤W B and B ≤W A and consider
NN/ ≡W (the equivalence classes [A]W are called Wadge degrees).

Wadge reducibility plays a role in topology/analysis but also in computer
science.

Remark: The results in this section don’t directly apply to R or Rn (but
they do apply to R \Q, other product spaces etc.)
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Part II Wadge reducibility

Wadge reducibility and AD

Without determinacy, not much can be said about Wadge reducibility.
However, under AD we get a very rich structure theory.

Theorem

AD =⇒ for all A,B ⊆ NN, either A ≤W B or B ≤W A.

The local version

Assume Γ is closed under continuous pre-images, finite unions,
intersections and complements, and contains closed sets. Then Det(Γ) ⇒
for all A,B ∈ Γ, either A ≤W B or B ≤W A.

Non-trivial corollary

For Borel subsets A,B ⊆ NN either A ≤W B or B ≤W A.
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Part II Wadge reducibility

The Wadge game

Definition (Wadge game)

Let A,B ⊆ NN. The game GW (A,B) is played as follows:

I: x0 x1 . . .

II: y0 y1 . . .

xi , yi ∈ N
Let x = 〈x0, x1, . . . 〉 and y = 〈y0, y1, . . . 〉; Player II wins iff

x ∈ A ⇐⇒ y ∈ B
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Part II Wadge reducibility

Main result about Wadge games

Lemma

Let A,B ⊆ NN.

1 If II has a w.s. in GW (A,B) then A ≤W B.

2 If I has a w.s. in GW (A,B) then B ≤W A.

Proof.

As before, fix f (z)(n) := z(2n) and g(z)(n) := z(2n + 1). If τ is a winning strategy for
II, then for every x played by I

x ∈ A ⇐⇒ g(x ∗ τ) ∈ B.

But since g and x 7→ x ∗ τ are both continuous, A ≤W B follows.

Analogously, if σ is winning strategy for I then for every y we have

f (σ ∗ y) ∈ A ⇐⇒ y /∈ B, so we have B ≤W A, or equivalently B ≤W A.
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Part II Wadge reducibility

Structure of the Wadge order

Define A <W B iff A ≤W B and B 6≤W A.

Lemma

Assuming AD,if A <W B then I wins both GW (B,A) and GW (B,A).

Proof.

If II would win GW (B,A) we would have B ≤ A contrary to assumption.

If II would win GW (B,A) we would have

B ≤W A ≤W B ≤W A

again, contrary to assumption.
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Part II Wadge reducibility

Martin-Monk theorem

Theorem (Martin-Monk)

Assuming AD, the relation <W is well-founded.
(i.e., there are no infinite descending chains).

The local version

Assume Γ is closed under continuous pre-images, finite unions,
intersections and complements, and contains closed sets. Then Det(Γ) ⇒
the relation <W restricted to sets in Γ is well-founded.
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Part II Wadge reducibility

Simulateneous Exhibition (Simul)
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Part II Wadge reducibility

Proof

Proof: Assume <W is ill-founded, and let

· · · <W A3 <W A2 <W A1 <W A0

be an infinite descending chain of subsets of NN. For every n, by the
previous lemma, I has winning strategies in both GW (An,An+1) and
GW (An,An+1). Call these strategies σ0

n and σ1
n, respectively.

Abbreviation:
G 0
n := GW (An,An+1)

G 1
n := GW (An,An+1)
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Part II Wadge reducibility

Proof (continued)

To any x ∈ 2N, we can associate an infinite sequence of Wadge games〈
G

x(0)
0 ,G

x(1)
1 ,G

x(2)
2 , . . .

〉
played according to I’s winning strategies〈

σ
x(0)
0 , σ

x(1)
1 , σ

x(2)
2 , . . .

〉
.

Fix one particular x ∈ 2N. Player II will play an infinitary simul against all

G
x(n)
n .
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Part II Wadge reducibility

Infinitary Simul

Let x ∈ 2N be fixed. I has winning strategy σx(n)
n in every G

x(n)
n .

Player II
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Part II Wadge reducibility

Infinitary Simul

Let x ∈ 2N be fixed. I has winning strategy σx(n)
n in every G

x(n)
n .

G
x(0)
0 I:

ax0(0) ax0(1) ax0(2) ax0(3) · ·· −→ ax0

II:

ax1(0) ax1(1) ax1(2) · ·· −→ ax1

G
x(1)
1 I:

ax1(0) ax1(1) ax1(2) . . . · ·· −→ ax1

II:

ax2(0) ax2(1) . . . · ·· −→ ax2

G
x(2)
2 I:

ax2(0) ax2(1) . . . . . . · ·· −→ ax2

II:

ax3(0) . . . . . . · ·· −→ ax3

G
x(3)
3 I:

ax3(0) . . . . . . · ·· −→ ax3

II:

. . . . . . · ·· −→ ax4
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. . . . . . · ·· −→ ax2

II: ax3(0) . . . . . . · ·· −→ ax3

G
x(3)
3 I: ax3(0)

=E����
����

. . . . . . · ·· −→ ax3

II: . . . . . . · ·· −→ ax4
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Part II Wadge reducibility

The result

For a fixed x , we have produced a sequence 〈axn | n ∈ N〉 of elements of
NN with the following property:

For n ≥ 1, axn is the sequence of I’s moves in G
x(n)
n , and also the

sequence of II’s moves in G
x(n−1)
n−1 .

Since I wins each game G
x(n)
n , the definition implies

x(n) = 0 =⇒ (axn ∈ An ↔ axn+1 /∈ An+1)
x(n) = 1 =⇒ (axn ∈ An ↔ axn+1 ∈ An+1)

(Recall that G0
n = GW (An,An+1) and G1

n = GW (An,An+1)).
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Part II Wadge reducibility

Comparing different x

To each x ∈ 2N corresponds a unique “simul game”. Now let’s compare
different x :

Claim 1

If ∀m ≥ n (x(m) = y(m)) then ∀m ≥ n (axm = aym).

Proof.

Note that the values of axm and aym depend only on games G
x(m′)
m′ and

G
y(m′)
m′ for m′ ≥ m.
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Part II Wadge reducibility

Comparing different x (continued)

Claim 2

Let n be such that x(n) 6= y(n) but ∀m > n (x(m) = y(m)). Then
axn ∈ An ↔ ayn /∈ An.

Proof.

Since x(n) 6= y(n) we have two cases:

1 x(n) = 1 and y(n) = 0. Then

ax
n ∈ An ↔ ax

n+1 ∈ An+1

ay
n ∈ An ↔ ay

n+1 /∈ An+1
.

By Claim 1 ax
n ∈ An ↔ ax

n+1 ∈ An+1 ↔ ay
n+1 ∈ An+1 ↔ ay

n /∈ An.

2 x(n) = 0 and y(n) = 1. Then

ax
n ∈ An ↔ ax

n+1 /∈ An+1

ay
n ∈ An ↔ ay

n+1 ∈ An+1
.

By Claim 1 ax
n ∈ An ↔ ax

n+1 /∈ An+1 ↔ ay
n+1 /∈ An+1 ↔ ay

n /∈ An.
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Part II Wadge reducibility

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with x(n) 6= y(n). Then
ax0 ∈ A0 ↔ ay0 /∈ A0.

Proof.

By Claim 2 ax
n ∈ An ↔ ay

n /∈ An. Since x(n − 1) = y(n − 1) we have two cases:

1 x(n − 1) = y(n − 1) = 0. Then

ax
n−1 ∈ An−1 ↔ ax

n /∈ An

ay
n−1 ∈ An−1 ↔ ay

n /∈ An.

and therefore ax
n−1 ∈ An−1 ↔ ay

n−1 /∈ An−1.

2 x(n − 1) = y(n − 1) = 1. Similar.

Now go to the (n − 2)-th level. Since again x(n − 2) = y(n − 2) we get, by a similar
argument as before, ax

n−2 ∈ An−2 ↔ ay
n−2 /∈ An−2.

We go on like this until we reach level 0, and there we get ax
0 ∈ A0 ↔ ay

0 /∈ A0.
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Part II Wadge reducibility

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with x(n) 6= y(n). Then
ax0 ∈ A0 ↔ ay0 /∈ A0.

→

x y axn ∈ An? ayn ∈ An?

0 0

no yes

1 1

yes no

0 0

yes no

0 0

no yes

1 1

yes no

1 0

yes no

1 1

yes yes

0 0

yes yes

. . . . . . . . . . . .

Let X := {x ∈ 2N | ax0 ∈ A0}.

By Claim 3, X is a flip set. By
AD, this is impossible!
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Part II Wadge reducibility

Ernst Zermelo (1871-1953)
Dénes König (1884–1944) László Kalmár (1905–1976)

Yurii Khomskii (KGRC, Vienna) Unbeatable Strategies 13–14 June 2013 55 / 59



Part II Wadge reducibility

David Gale (1921–2008)
Frank Stewart (Brown U)
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Part II Wadge reducibility

William W. Wadge (U Victoria)
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Part II Wadge reducibility

Donald A. Martin (UCLA) John Steel (UC Berkeley) Hugh Woodin (UC Berkeley)
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Part II Wadge reducibility

Thank you!

Yurii Khomskii

yurii@deds.nl
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