Unbeatable Strategies

Yurii Khomskii

Part II

(1) Lebesgue measure
(2) Related properties (no proofs)
(3) Flip Sets
(9) Wadge reducibility

Recall what we did

AD := "All infinite games $G(A)$ are determined".

Recall what we did

$\mathrm{AD}:=$ "All infinite games $G(A)$ are determined".

Definition

Let $\boldsymbol{\Gamma} \subseteq \mathbb{N}^{\mathbb{N}}$ be a (usually topological) class of sets. $\operatorname{Det}(\boldsymbol{\Gamma})$ abbreviates the statement "for all $A \in \Gamma$, the infinite game $G(A)$ is determined".

Recall what we did

AD := "All infinite games $G(A)$ are determined".

Definition

Let $\boldsymbol{\Gamma} \subseteq \mathbb{N}^{\mathbb{N}}$ be a (usually topological) class of sets. $\operatorname{Det}(\boldsymbol{\Gamma})$ abbreviates the statement "for all $A \in \Gamma$, the infinite game $G(A)$ is determined".

We have seen:

- $\operatorname{Det(Open)~and~} \operatorname{Det}($ Closed) (Gale-Stewart, 1953).
- $\operatorname{Det}\left(F_{\sigma}\right)$ and $\operatorname{Det}\left(G_{\delta}\right)($ Wolfe, 1955$)$.
- $\operatorname{Det}\left(F_{\sigma \delta}\right)$ and $\operatorname{Det}\left(G_{\delta \sigma}\right)$ (Morton Davis, 1964).
- Det(Borel) (Tony Martin, 1975).
- Assuming "large cardinals", Det(projective) (Martin-Steel, 1989).
- $\mathrm{AD}=\operatorname{Det}\left(\mathcal{P}\left(\mathbb{N}^{\mathbb{N}}\right)\right)$; it is inconsistent with AC .

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G^{\prime} and prove that if $G^{\prime}(A)$ is determined then A satisfies P.

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G^{\prime} and prove that if $G^{\prime}(A)$ is determined then A satisfies P.

We will formulate such results as follows:

Theorem

AD \Longrightarrow every set A satisfies P.

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G^{\prime} and prove that if $G^{\prime}(A)$ is determined then A satisfies P.

We will formulate such results as follows:

Theorem

AD \Longrightarrow every set A satisfies P.
However, for each such result, there is a corresponding local version:

Theorem

If $\boldsymbol{\Gamma}$ is a class satisfying certain closure properties, then $\operatorname{Det}(\boldsymbol{\Gamma}) \Longrightarrow$ all sets $A \in \Gamma$ satisfy P.

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G^{\prime} and prove that if $G^{\prime}(A)$ is determined then A satisfies P.

We will formulate such results as follows:

Theorem

AD \Longrightarrow every set A satisfies P.
However, for each such result, there is a corresponding local version:

Theorem

If $\boldsymbol{\Gamma}$ is a class satisfying certain closure properties, then $\operatorname{Det}(\boldsymbol{\Gamma}) \Longrightarrow$ all sets $A \in \Gamma$ satisfy P.

For the second result, we need to check that the coding we use is sufficiently simple (we will skip this).

1. Lebesgue measure

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)
$A D \Longrightarrow$ every set is measurable.

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)
$\mathrm{AD} \Longrightarrow$ every set is measurable.

The local version
Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images, finite unions, intersections and complements, and contains the F_{σ} sets. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ all sets in $\boldsymbol{\Gamma}$ are measurable.

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)

$A D \Longrightarrow$ every set is measurable.

The local version
Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images, finite unions, intersections and complements, and contains the F_{σ} sets. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ all sets in $\boldsymbol{\Gamma}$ are measurable.

The original proof is due to Mycielski-Świerczkowski (1964) but we present a proof of Harrington.

Setting up the game

Note that it is sufficient to prove the result for all $A \subseteq[0,1]$.

Setting up the game

Note that it is sufficient to prove the result for all $A \subseteq[0,1]$. Notation: $2^{\mathbb{N}}:=\{f: \mathbb{N} \longrightarrow\{0,1\}\}$ (infinite binary sequences).

Setting up the game

Note that it is sufficient to prove the result for all $A \subseteq[0,1]$.
Notation: $2^{\mathbb{N}}:=\{f: \mathbb{N} \longrightarrow\{0,1\}\}$ (infinite binary sequences).

- Fix an enumeration $\left\{I_{n} \mid n \in \mathbb{N}\right\}$ of all possible finite unions of open intervals in $[0,1]$ with rational endpoints (there are only countably many).
- For $x \in 2^{\mathbb{N}}$, let $a: 2^{\mathbb{N}} \longrightarrow[0,1]$ be the function given by

$$
a(x):=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n+1}}
$$

Setting up the game

Note that it is sufficient to prove the result for all $A \subseteq[0,1]$.
Notation: $2^{\mathbb{N}}:=\{f: \mathbb{N} \longrightarrow\{0,1\}\}$ (infinite binary sequences).

- Fix an enumeration $\left\{I_{n} \mid n \in \mathbb{N}\right\}$ of all possible finite unions of open intervals in $[0,1]$ with rational endpoints (there are only countably many).
- For $x \in 2^{\mathbb{N}}$, let $a: 2^{\mathbb{N}} \longrightarrow[0,1]$ be the function given by

$$
a(x):=\sum_{n=0}^{\infty} \frac{x_{n}}{2^{n+1}}
$$

Easy to see that $a: 2^{\mathbb{N}} \rightarrow[0,1]$ is continuous and $\operatorname{ran}(a)=[0,1]$ (think of x as the binary expansion of $a(x)$).

The Covering Game

Given $A \subseteq[0,1]$ and $\epsilon>0$, we define a game $G_{\mu}(A, \epsilon)$.

The Covering Game

Given $A \subseteq[0,1]$ and $\epsilon>0$, we define a game $G_{\mu}(A, \epsilon)$.
Definition $\left(G_{\mu}(A, \epsilon)\right)$

I :	x_{0}		x_{1}		x_{2}		\ldots
II :		y_{0}		y_{1}		y_{2}	

- $x_{i} \in\{0,1\}$ and $y_{i} \in \mathbb{N}$.
- At every move n, Player II must make sure that

$$
\mu\left(l_{y_{n}}\right)<\frac{\epsilon}{2^{2(n+1)}}
$$

- Player I wins iff $a(x) \in A \backslash \bigcup_{n=0}^{\infty} I_{y_{n}}$.

The Covering Game

Given $A \subseteq[0,1]$ and $\epsilon>0$, we define a game $G_{\mu}(A, \epsilon)$.
Definition $\left(G_{\mu}(A, \epsilon)\right)$

I :	x_{0}		x_{1}		x_{2}		\ldots
II :		y_{0}		y_{1}		y_{2}	

- $x_{i} \in\{0,1\}$ and $y_{i} \in \mathbb{N}$.
- At every move n, Player II must make sure that

$$
\mu\left(l_{y_{n}}\right)<\frac{\epsilon}{2^{2(n+1)}}
$$

- Player I wins iff $a(x) \in A \backslash \bigcup_{n=0}^{\infty} I_{y_{n}}$.

Intuition: I attempts to play a real number in A, while II attempts to "cover" that real number with the I_{n} 's (of an increasingly smaller measure.)

The main result

Theorem

Let $A \subseteq \mathbb{N}^{\mathbb{N}}$ and ϵ be given.
(1) If I has w.s. in $G_{\mu}(A, \epsilon)$ then there is a measurable $Z \subseteq A$ with $\mu(Z)>0$.
(2) If II has w.s. in $G_{\mu}(A, \epsilon)$ then there is an open O such that $A \subseteq O$ and $\mu(O)<\epsilon$.

Proof

Proof.

1. Let σ be winning for I. Define

- $f(z)(n):=z(2 n)$ and
- $g(z)(n):=z(2 n+1)$.

Proof

Proof.

1. Let σ be winning for I. Define

- $f(z)(n):=z(2 n)$ and
- $g(z)(n):=z(2 n+1)$.

It is clear that both f and g are continuous (from $\mathbb{N}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$), and also the mapping $y \mapsto \sigma * y$ is continuous. Hence $y \mapsto a(f(\sigma * y))$ is continuous. Let $Z:=\left\{a(f(\sigma * y)) \mid y \in \mathbb{N}^{\mathbb{N}}\right\}$. This is an analytic set (continuous image of a closed set), hence measurable. As σ was winning, $Z \subseteq A$.

Proof

Proof.

1. Let σ be winning for I. Define

- $f(z)(n):=z(2 n)$ and
- $g(z)(n):=z(2 n+1)$.

It is clear that both f and g are continuous (from $\mathbb{N}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$), and also the mapping $y \mapsto \sigma * y$ is continuous. Hence $y \mapsto a(f(\sigma * y))$ is continuous. Let $Z:=\left\{a(f(\sigma * y)) \mid y \in \mathbb{N}^{\mathbb{N}}\right\}$. This is an analytic set (continuous image of a closed set), hence measurable. As σ was winning, $Z \subseteq A$.

But if $\mu(Z)=0$ then Z can be covered by $\left\{I_{y_{n}} \mid n \in \mathbb{N}\right\}$ satisfying $\forall n\left(\mu\left(l_{y_{n}}\right)<\frac{\epsilon}{2^{2(n+1)}}\right)$. Then if II plays $y=\left\langle y_{0}, y_{1}, \ldots\right\rangle$

$$
a(f(\sigma * y)) \in Z \subseteq \bigcup_{n=0}^{\infty} I_{y_{n}},
$$

contradicting that σ is winning for I.

Proof (continued)

2. Now suppose τ is winning for II. For every $s \in\{0,1\}^{*}$ of length n, define

$$
I_{s}:=I_{(s * \rho)(2 n-1)}
$$

(I_{s} is the $I_{y_{n-1}}$ where y_{n-1} is the last move of the game in which I played s and II used τ). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that $a(x)=a$, there must be some n such that $a \in I_{x \mid n}$. In other words, $a \in \bigcup\left\{I_{s} \mid s \triangleleft x\right\}$ where x is such that $a(x)=a$.

Proof (continued)

2. Now suppose τ is winning for II. For every $s \in\{0,1\}^{*}$ of length n, define

$$
I_{s}:=I_{(s * \rho)(2 n-1)}
$$

(I_{s} is the $I_{y_{n-1}}$ where y_{n-1} is the last move of the game in which I played s and II used τ). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that $a(x)=a$, there must be some n such that $a \in I_{x \mid n}$. In other words, $a \in \bigcup\left\{I_{s} \mid s \triangleleft x\right\}$ where x is such that $a(x)=a$.

In particular

$$
A \subseteq \bigcup_{s \in 2^{\mathbb{N}}} I_{s}=\bigcup_{n=1}^{\infty} \bigcup_{s \in\{0,1\}^{n}} I_{s}
$$

Proof (continued)

2. Now suppose τ is winning for II. For every $s \in\{0,1\}^{*}$ of length n, define

$$
I_{s}:=I_{(s * \rho)(2 n-1)}
$$

(I_{s} is the $I_{y_{n-1}}$ where y_{n-1} is the last move of the game in which I played s and II used τ). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that $a(x)=a$, there must be some n such that $a \in I_{x \mid n}$. In other words, $a \in \bigcup\left\{I_{s} \mid s \triangleleft x\right\}$ where x is such that $a(x)=a$.

In particular

$$
A \subseteq \bigcup_{s \in 2^{\mathbb{N}}} I_{s}=\bigcup_{n=1}^{\infty} \bigcup_{s \in\{0,1\}^{n}} I_{s}
$$

Since τ was winning, for every s of length $n \geq 1, \mu\left(I_{s}\right)<\epsilon / 2^{2 n}$.

Proof (continued)

2. Now suppose τ is winning for II. For every $s \in\{0,1\}^{*}$ of length n, define

$$
I_{s}:=I_{(s * \rho)(2 n-1)}
$$

(I_{s} is the $I_{y_{n-1}}$ where y_{n-1} is the last move of the game in which I played s and II used τ). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that $a(x)=a$, there must be some n such that $a \in I_{x \mid n}$. In other words, $a \in \bigcup\left\{I_{s} \mid s \triangleleft x\right\}$ where x is such that $a(x)=a$.
In particular

$$
A \subseteq \bigcup_{s \in 2^{\mathbb{N}}} I_{s}=\bigcup_{n=1}^{\infty} \bigcup_{s \in\{0,1\}^{n}} I_{s}
$$

Since τ was winning, for every s of length $n \geq 1, \mu\left(I_{s}\right)<\epsilon / 2^{2 n}$.

$$
\mu\left(\bigcup_{s \in\{0,1\}^{n}} I_{s}\right)<\frac{\epsilon}{2^{2 n}} \cdot 2^{n}=\frac{\epsilon}{2^{n}}
$$

Proof (continued)

$$
\mu\left(\bigcup_{s \in\{0,1\}^{n}} I_{s}\right)<\frac{\epsilon}{2^{2 n}} \cdot 2^{n}=\frac{\epsilon}{2^{n}} .
$$

Proof (continued)

$$
\begin{gathered}
\mu\left(\bigcup_{s \in\{0,1\}^{n}} I_{s}\right)<\frac{\epsilon}{2^{2 n}} \cdot 2^{n}=\frac{\epsilon}{2^{n}} . \\
\mu\left(\bigcup_{s \in 2^{\mathbb{N}}} I_{s}\right)=\mu\left(\bigcup_{n=1}^{\infty} \bigcup_{s \in\{0,1\}^{n}} I_{s}\right)<\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}=\epsilon .
\end{gathered}
$$

Proof (continued)

$$
\begin{gathered}
\mu\left(\bigcup_{s \in\{0,1\}^{n}} I_{s}\right)<\frac{\epsilon}{2^{2 n}} \cdot 2^{n}=\frac{\epsilon}{2^{n}} . \\
\mu\left(\bigcup_{s \in 2^{\mathbb{N}}} I_{s}\right)=\mu\left(\bigcup_{n=1}^{\infty} \bigcup_{s \in\{0,1\}^{n}} I_{s}\right)<\sum_{n=1}^{\infty} \frac{\epsilon}{2^{n}}=\epsilon .
\end{gathered}
$$

So, indeed, A is contained in an open set of measure $<\epsilon$.

Corollary

Corollary

Let $X \subseteq[0,1]$ be any set and assume AD. Then X is measurable.

Corollary

Corollary

Let $X \subseteq[0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^{*}(X)=\delta$.

Corollary

Corollary

Let $X \subseteq[0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^{*}(X)=\delta$. Let B be a G_{δ} set such that $X \subseteq B$ and $\mu(B)=\delta$.

Corollary

Corollary

Let $X \subseteq[0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^{*}(X)=\delta$. Let B be a G_{δ} set such that $X \subseteq B$ and $\mu(B)=\delta$. Now consider the games $G_{\mu}(B \backslash X, \epsilon)$, for all ϵ. If, for at least one $\epsilon>0$, I has a w.s., then there is a measurable set $Z \subseteq B \backslash X$ of positive measure, contradicting $\mu^{*}(X)=\delta$.

Corollary

Corollary

Let $X \subseteq[0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^{*}(X)=\delta$. Let B be a G_{δ} set such that $X \subseteq B$ and $\mu(B)=\delta$. Now consider the games $G_{\mu}(B \backslash X, \epsilon)$, for all ϵ. If, for at least one $\epsilon>0$, I has a w.s., then there is a measurable set $Z \subseteq B \backslash X$ of positive measure, contradicting $\mu^{*}(X)=\delta$.

Hence, by determinacy, II must have a w.s. in $G_{\mu}(B \backslash X, \epsilon)$ for every $\epsilon>$ 0 . Hence $B \backslash X \subseteq O$ for $\mu(O)<\epsilon$, for every $\epsilon>0$, therefore $B \backslash X$ has measure 0 . So X is measurable. \square

2. Related properties

Baire Property

Definition

A set A in a topological space has the Baire Property if for some Borel set $B, A=B$ modulo a meager set.

Baire Property

Definition

A set A in a topological space has the Baire Property if for some Borel set $B, A=B$ modulo a meager set.

```
Theorem (Banach-Mazur)
AD \(\Longrightarrow\) all sets have the Baire Property.
```

The local version
Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ all sets in $\boldsymbol{\Gamma}$ have the Baire Property.

Banach-Mazur game

Definition (Banach-Mazur game)

I:	s_{0}		s_{1}		\ldots	
II:		t_{0}		t_{1}		\cdots

- $s_{i}, t_{i} \in \mathbb{N}^{*} \backslash\{\langle \rangle\}$.
- Let $z:=s_{0} \frown t_{0} \frown s_{1} \frown t_{1} \frown \ldots$; Player I wins iff $z \in A$.

Banach-Mazur game

Definition (Banach-Mazur game)

I:	s_{0}		s_{1}		\ldots	
II:		t_{0}		t_{1}		\cdots

- $s_{i}, t_{i} \in \mathbb{N}^{*} \backslash\{\langle \rangle\}$.
- Let $z:=s_{0} \frown t_{0} \frown s_{1} \frown t_{1} \frown \ldots$; Player I wins iff $z \in A$.

This works on the space $\mathbb{N}^{\mathbb{N}}$; actually there is a version of the Banach-Mazur game on any Polish space: the players choose basic open sets U_{i} and V_{i} such that $U_{0} \supseteq V_{0} \supseteq U_{1} \supseteq V_{1} \supseteq \ldots$ with decreasing diameter. Then $\bigcap_{i=0}^{\infty} U_{i}=\bigcap_{i=0}^{\infty} V_{i}=\{z\}$ and I wins iff $z \in A$.

Perfect Set Property

Definition
 A set $A \subseteq \mathbb{R}$, or $A \subseteq \mathbb{N}^{\mathbb{N}}$, satisfies the Perfect Set Property if it is either countable or contains a perfect set (a homeomorphic image of the full binary tree $2^{\mathbb{N}}$).

Perfect Set Property

Definition

A set $A \subseteq \mathbb{R}$, or $A \subseteq \mathbb{N}^{\mathbb{N}}$, satisfies the Perfect Set Property if it is either countable or contains a perfect set (a homeomorphic image of the full binary tree $2^{\mathbb{N}}$).

Note: the Perfect Set Property arose from Cantor's original attempts to prove the Continuum Hypothesis. If all subsets of \mathbb{R} satisfied this property, then all subsets of \mathbb{R} would be either countable or have cardinality $2^{\aleph_{0}}$ (since $\left|2^{\mathbb{N}}\right|=2^{\aleph_{0}}$). But using AC one can construct counterexamples.

Perfect Set Property and AD

Theorem (Morton Davis)
AD \Longrightarrow all sets have the Perfect Set Property.

The local version
Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images and intersections with closed sets. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ all sets in $\boldsymbol{\Gamma}$ have the Perfect Set Property.

The *-game

Definition (*-game)

I:	s_{0}		s_{1}		s_{2}	
II:		n_{1}		n_{2}		\ldots

- $s_{i} \in \mathbb{N}^{*} \backslash\{\langle \rangle\}$.
- $n_{i} \in \mathbb{N}$.
- I must make sure that, for each $i \geq 1, s_{i}(0) \neq n_{i}$ (otherwise he loses)
- Let $z:=s_{0} \frown s_{1} \frown s_{2} \frown \ldots$; Player I wins iff $z \in A$.

The $*$-game

Definition (*-game)

I:	s_{0}		s_{1}		s_{2}	
II:		n_{1}		n_{2}		\cdots

- $s_{i} \in \mathbb{N}^{*} \backslash\{\langle \rangle\}$.
- $n_{i} \in \mathbb{N}$.
- I must make sure that, for each $i \geq 1, s_{i}(0) \neq n_{i}$ (otherwise he loses)
- Let $z:=s_{0} \frown s_{1} \frown s_{2} \frown \ldots$; Player I wins iff $z \in A$.

Again, this works on $\mathbb{N}^{\mathbb{N}}$, but there are versions that work on $\mathbb{R}, \mathbb{R}^{n}$ etc.

3. Flip Sets

Flip Sets

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a flip set if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$
x \in X \Longleftrightarrow y \notin X
$$

Flip Sets

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a flip set if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$
x \in X \Longleftrightarrow y \notin X
$$

Computer Scientists also call this "infinitary XOR gates".

Flip Sets

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a flip set if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$
x \in X \Longleftrightarrow y \notin X
$$

Computer Scientists also call this "infinitary XOR gates".
Clearly:

- If x and y differ on an even number of digits then $x \in X \Longleftrightarrow y \in X$.
- If they differ on an odd number then $x \in X \Longleftrightarrow y \notin X$.
- If they differ on an infinite number of digits, we do not know what happens.

Flip Sets

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a flip set if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$
x \in X \Longleftrightarrow y \notin X
$$

Computer Scientists also call this "infinitary XOR gates".
Clearly:

- If x and y differ on an even number of digits then $x \in X \Longleftrightarrow y \in X$.
- If they differ on an odd number then $x \in X \Longleftrightarrow y \notin X$.
- If they differ on an infinite number of digits, we do not know what happens.

Question: do flip sets exist?

Flip sets and AC

Lemma

Assuming AC, flip sets exist.

Flip sets and AC

Lemma

Assuming AC, flip sets exist.

Proof.

Let \sim be the equivalent relation on $2^{\mathbb{N}}$ such that $x \sim y$ iff $\{n \mid x(n) \neq y(n)\}$ is finite. For each equivalence class $[x]_{\sim}$, let $s_{[x]_{\sim}}$ be some fixed element from that class. Now define X by

$$
x \in X \Longleftrightarrow\left|\left\{n \mid x(n) \neq s_{[x]_{\sim}}(n)\right\}\right| \text { is even. }
$$

This is a flip set: if x, y differ by exactly one digit, then $s_{[x] \sim}=s_{[y] \sim}$. But then, by definition, exactly one of x, y is in X.

Flip sets and $A D$

Theorem

AD \Longrightarrow flip sets don't exist.

The local version
Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ there are no flip sets in Γ.

The game

The game is the Banach-Mazur game on $2^{\mathbb{N}}$, we will denote it by $G^{* *}(X)$.
Definition $\left(G^{* *}(X)\right)$

I:	s_{0}		s_{1}		\ldots	
II:		t_{0}		t_{1}		\cdots

- $s_{i}, t_{i} \in\{0,1\}^{*} \backslash\{\langle \rangle\}$.
- Let $z:=s_{0} \frown t_{0} \frown s_{1} \frown t_{1} \frown \ldots$; Player I wins iff $z \in X$.

Strategy stealing

We will not present a direct proof, but rather, a sequence of Lemmas which, assuming flip sets exist, lead to absurdity.

Strategy stealing

We will not present a direct proof, but rather, a sequence of Lemmas which, assuming flip sets exist, lead to absurdity.

Lemma 1

(1) If I has a w.s. in $G^{* *}(X)$ then I has a w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.
(2) If II has a w.s. in $G^{* *}(X)$ then II has a w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Strategy stealing

We will not present a direct proof, but rather, a sequence of Lemmas which, assuming flip sets exist, lead to absurdity.

Lemma 1

(1) If I has a w.s. in $G^{* *}(X)$ then I has a w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.
(2) If II has a w.s. in $G^{* *}(X)$ then II has a w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Assume σ is a w.s. for I in $G^{* *}(X)$, then define σ^{\prime} :

- The first move $\sigma^{\prime}(\langle \rangle)$ is a sequence of the same length as $\sigma(\rangle)$ but differs from it at exactly one digit.
- Next, play according to σ, as if the first move was $\sigma(\rangle)$.

Clearly, for any sequence y of II's moves, $\sigma * y$ and $\sigma^{\prime} * y$ differ by exactly one digit.
Since $\sigma * y \in X$ and X is a flip set, $\sigma^{\prime} * y \notin X$, hence σ^{\prime} is winning for I in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$. The proof of 2 is analogous.

Strategy stealing (continued)

Lemma 2
If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Strategy stealing (continued)

Lemma 2
If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad \frac{\mathrm{I}:}{\mathrm{II}: \|}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad \begin{array}{l|||l}
\text { I: } & s \\
\hline \text { II: } &
\end{array}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad \begin{array}{r||r}
\text { I: } & s \\
\hline \text { II: } & \\
t
\end{array}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{array}{rr||r}
G^{* *}\left(2^{\mathbb{N}} \backslash X\right): & \text { I: } & s \\
\hline G^{* *}(X): & & t \\
& \text { II: } & \\
\hline \text { II: } &
\end{array}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad \begin{array}{r||r}
\text { I: } & s \\
\hline \text { II: } & \\
t
\end{array} \\
& G^{* *}(X): \quad \begin{array}{rl||r}
\text { I: } & s^{\frown} t \\
\hline \text { II: } &
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad \begin{array}{r||r}
\text { I: } & s \\
\hline \text { II: } & t
\end{array} \\
& G^{* *}(X): \begin{array}{r||rr}
\text { I: } & s^{\frown} t \\
\hline \text { II: } & & s_{0}
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \\
& G^{* *}(X): \\
& \begin{array}{r||rr}
\text { I: } & s^{\frown} t & \\
\hline \text { II: } & & s_{0}
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad \begin{array}{r||rrrr}
\text { I: } & s & & s_{0} & \\
\hline \text { II: } & & t & t_{0}
\end{array} \\
& G^{* *}(X): \begin{array}{r||rr}
\text { I: } & s^{\frown} t & \\
\hline \text { II: } & & s_{0}
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \\
& G^{* *}(X): \begin{array}{r||rlr}
\text { I: } & s^{\sim} t & & t_{0} \\
\hline \text { II: } & & s_{0}
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \\
& \begin{array}{rl||rrrr}
G^{* *}(X): & \text { I: } & s^{\frown} t & & t_{0} \\
\hline & \text { II: } & & s_{0} & s_{1}
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \begin{array}{r||rrrr}
\text { I: } & s & & s_{0} & \\
\hline & s_{1} \\
\hline \text { II: } & & t & & t_{0}
\end{array} \\
& \begin{array}{rl||rrrr}
G^{* *}(X): & \text { I: } & s^{\frown} t & & t_{0} \\
\hline & \text { II: } & & s_{0} & s_{1}
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{aligned}
& G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \begin{array}{r||rrrrr}
\text { I: } & s & & s_{0} & & s_{1} \\
\hline \text { II: } & & t & & t_{0}
\end{array} \\
& \begin{array}{rr||rrrrr}
* * \\
G^{* *} & (X): & \text { I: } & s^{\frown} t & & t_{0} & \\
\hline & \text { II: } & & s_{0} & & s_{1} &
\end{array}
\end{aligned}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{array}{rr||rrrrl}
G^{* *}\left(2^{\mathbb{N}} \backslash X\right): & \text { I: } & s & s_{0} & & s_{1} & \\
\cline { 3 - 7 } \text { II: } & & t & & t_{0} & & \ldots \\
G^{* *}(X): & \text { I: } & s^{\frown} t & & t_{0} & & \ldots \\
\cline { 3 - 7 } & \text { II: } & & & s_{0} & & s_{1} \\
\end{array}
$$

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{* *}(X)$ then I has a w.s. in the game $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let τ be winning for II in $G^{* *}(X)$. Player I will steal the strategy from II, as follows:

$$
\begin{array}{rr||rrrrl}
G^{* *}\left(2^{\mathbb{N}} \backslash X\right): & \text { I: } & s & s_{0} & & s_{1} & \\
\cline { 3 - 7 } \text { II: } & & t & & t_{0} & & \ldots \\
G^{* *}(X): & \text { I: } & s^{\frown} t & & t_{0} & & \ldots \\
\cline { 3 - 7 } & \text { II: } & & & s_{0} & & s_{1} \\
\end{array}
$$

Let $x=s \frown t \frown s_{0} \frown t_{0} \frown \ldots$; then $x \notin X$ since τ was winning in the auxiliary game $G^{* *}(X)$. Hence the strategy we just described is winning for I in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$	I:	
II:		

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} |
| :--- | :--- |
| $\mathrm{II}:$ | |

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right):$	I:	s_{0}
	II:	
$G^{* *}(X): \quad \mathrm{I}:$		
$G \quad(X)$	II:	

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$	I:	s_{0}
II:		

$$
G^{* *}(X): \quad \begin{array}{rl||l}
\text { I: } & s \\
\hline \text { II: } &
\end{array}
$$

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} |
| :--- | :--- |
| $\mathrm{II}:$ | |

$$
G^{* *}(X): \quad \frac{\mathrm{I}:| | s}{} \quad \mathrm{II}: \|
$$

- Case 1. $\left|s_{0}\right|<|s|$.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} |
| ---: | :--- | :--- | :--- |
| II: | t_{0} |

$$
G^{* *}(X): \quad \frac{\mathrm{I}:| | s}{} \quad \mathrm{II}: \|
$$

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | s_{1} |
| ---: | ---: | ---: |
| II: | t_{0} | |

$$
G^{* *}(X): \quad \frac{\mathrm{I}:| | s}{} \quad \mathrm{II}: \|
$$

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | s_{1} |
| ---: | ---: | ---: |
| II: | t_{0} | |

$$
\begin{array}{lr||l}
G^{* *}(X): & \text { I: } & s \\
\hline \text { II: } & & s_{1}
\end{array}
$$

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | s_{1} |
| ---: | ---: | ---: |
| II: | t_{0} | |

$G^{* *}$			
$(X):$	I:	s	t_{1}
	II:		s_{1}

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | |
| ---: | ---: | ---: | ---: | ---: |
| | II: | | t_{0} | t_{1} |

$G^{* *}$			
$(X):$	I:	s	t_{1}
	II:		s_{1}

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | |
| ---: | ---: | ---: | ---: | ---: |
| | II: | | t_{0} | |

$G^{* *}$			
$(X):$	I:	s	t_{1}
	II:		s_{1}

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | |
| ---: | ---: | ---: | ---: | ---: |
| | II: | | t_{0} | |

$G^{* *}$					
$(X):$	I:	s		t_{1}	
	II:		s_{1}	s_{2}	

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | |
| ---: | ---: | ---: | ---: | ---: |
| | II: | | t_{0} | |

$G^{* *}$						
$(X):$	I:	s		t_{1}		\ldots
	II:		s_{1}		s_{2}	

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | | s_{2} |
| ---: | ---: | ---: | ---: | ---: | ---: |
| | II: | | t_{0} | | t_{1} |
| | | | | | |

	I:	s		t_{1}		.
$G^{*}(X)$	II:		S_{1}		S_{2}	

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}$	$\left(2^{\mathbb{N}} \backslash X\right):$	I:	s_{0}		s_{1}		s_{2}
	II:		t_{0}		t_{1}		\cdots

	I:	s		t_{1}		.
$G^{*}(X)$	II:		S_{1}		S_{2}	

- Case 1. $\left|s_{0}\right|<|s|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=|s|$ and $s_{0} \frown t_{0}$ differs from s by an even number of digits.

Let $x:=s_{0} \frown t_{0} \frown s_{1} \frown t_{1} \frown \ldots$ and $y:=s \frown s_{1} \frown t_{1} \frown \ldots$. Then x and y differ by an even number of digits. Since $y \in X$, also $x \in X$, so the strategy is winning for II.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} |
| :--- | :--- |
| $\mathrm{II}:$ | |

$$
G^{* *}(X): \quad \frac{\mathrm{I}:| | s}{} \quad \mathrm{II}: \|
$$

- Case 2. $\left|s_{0}\right| \geq|s|$.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$	I:	s_{0}
$\mathrm{II}:$		

$$
G^{* *}(X): \quad \begin{array}{l|||l}
\text { I: } & s \\
\hline \text { II: } & \\
\hline
\end{array}
$$

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $\left|s^{\sim} t\right|>\left|s_{0}\right|$.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$	I:	s_{0}
$\mathrm{II}:$		

$G^{* *}(X): \quad$| | | | |
| ---: | :--- | ---: | :--- |
| | I: | s | t^{\prime} |
| II: | t | | |

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $\left|s^{\sim} t\right|>\left|s_{0}\right|$.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | |
| ---: | ---: | :---: |
| II: | | t_{0} |

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | s_{1} |
| ---: | ---: | :--- |
| | II: | |
| t_{0} | | |

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | s_{1} |
| ---: | ---: | :--- |
| | II: | |
| t_{0} | | |

$G^{* *}(X): \quad$| I: | s | t^{\prime} | |
| ---: | :--- | :--- | :--- |
| II: | | t | s_{1} |

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | s_{1} |
| ---: | ---: | :--- |
| | II: | t_{0} |

$G^{* *}(X): \quad$| I: | s | | t^{\prime} | | t_{1} |
| ---: | ---: | :--- | :--- | :--- | :--- |
| II: | | t | s_{1} | | |

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | |
| ---: | :--- | ---: | :--- | :--- |
| | II: | | t_{0} | t_{1} |

$G^{* *}(X): \quad$| I: | s | | t^{\prime} | | t_{1} |
| ---: | :--- | ---: | :--- | :--- | :--- |
| | II: | | t | s_{1} | |

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$	I:	s_{0}		s_{1}	s_{2}
	II:		t_{0}	t_{1}	

$G^{* *}(X): \quad$| I: | s | | t^{\prime} | | t_{1} |
| ---: | ---: | :--- | :--- | :--- | :--- |
| II: | | t | s_{1} | | |

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$	I:	s_{0}		s_{1}	s_{2}
	II:		t_{0}	t_{1}	

$G^{* *}$	$(X):$	$\mathrm{I}:$	s		t^{\prime}	

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$	I:	s_{0}		s_{1}	s_{2}
	II:		t_{0}	t_{1}	

$G^{* *}$	$(X):$	I:	s		t^{\prime}		t_{1}	
II:		t		s_{1}		s_{2}		

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $\left|s^{\frown} t\right|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | | s_{2} | |
| ---: | :--- | ---: | :--- | ---: | :--- | :--- |
| | II: | | t_{0} | t_{1} | | \cdots |

$* *$							
$G^{* *}$	$(X):$	$\mathrm{I}:$	s		t^{\prime}		t_{1}
$\mathrm{II}:$		t		s_{1}		s_{2}	

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $\left|s^{\frown} t\right|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{* *}(X)$ then II has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$.

Proof.

Let σ be winning for I in $G^{* *}(X)$. Player II will do the following:

$G^{* *}\left(2^{\mathbb{N}} \backslash X\right): \quad$| I: | s_{0} | | s_{1} | | s_{2} | |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| | II: | | t_{0} | t_{1} | | \ldots |

$G^{* *}(X):$	$\mathrm{I}:$	s		t^{\prime}		t_{1}	
	II:		t	s_{1}		s_{2}	

- Case 2. $\left|s_{0}\right| \geq|s|$. Play any t such that $|s \frown t|>\left|s_{0}\right|$. Play t_{0} such that $\left|s_{0} \frown t_{0}\right|=\left|s^{\frown} t^{\frown} t^{\prime}\right|$ and $s_{0} \frown t_{0}$ and $s^{\frown} t^{\frown} t^{\prime}$ differ on an even number of digits.

Let $x:=s_{0} \frown t_{0} \frown s_{1} \frown t_{1} \frown \ldots$ and $y:=s \frown t \frown t^{\prime} \frown s_{1} \frown t_{1} \frown \ldots$. Then x and y differ by an even number of digits. Since $y \in X$, also $x \in X$, so the strategy is winning for II.

Corollary

Combining Lemmas 1, 2 and 3 :

Corollary

$\mathrm{AD} \Rightarrow$ flip sets don't exist.

Corollary

Combining Lemmas 1, 2 and 3 :

Corollary

$\mathrm{AD} \Rightarrow$ flip sets don't exist.

Proof.

Suppose X is a flip set. By determinacy I or II has a w.s.

- I has w.s. in $G^{* *}(X)$
$\Longrightarrow I$ has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$
$\Longrightarrow I I$ has w.s. in $G^{* *}(X)$.
- II has w.s. in $G^{* *}(X)$
$\Longrightarrow I I$ has w.s. in $G^{* *}\left(2^{\mathbb{N}} \backslash X\right)$
$\Longrightarrow I$ has w.s. in $G^{* *}(X)$.
Both situations are clearly absurd.

4. Wadge reducibility

Continuous functions on the Baire space

Recall that on the Baire space, $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is continuous at $x \in \mathbb{N}^{\mathbb{N}}$ iff

$$
\forall s \triangleleft f(x) \quad \exists t \triangleleft x \quad \forall y(t \triangleleft y \rightarrow s \triangleleft f(y))
$$

In words: every initial segment of $f(x)$ depends only on an initial segment of x.

Continuous functions on the Baire space

Recall that on the Baire space, $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is continuous at $x \in \mathbb{N}^{\mathbb{N}}$ iff

$$
\forall s \triangleleft f(x) \quad \exists t \triangleleft x \quad \forall y(t \triangleleft y \rightarrow s \triangleleft f(y))
$$

In words: every initial segment of $f(x)$ depends only on an initial segment of x.

William Wadge (1983) studied continuous functions as a notion of reducibility on the Baire space.

Continuous functions on the Baire space

Recall that on the Baire space, $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is continuous at $x \in \mathbb{N}^{\mathbb{N}}$ iff

$$
\forall s \triangleleft f(x) \quad \exists t \triangleleft x \quad \forall y(t \triangleleft y \rightarrow s \triangleleft f(y))
$$

In words: every initial segment of $f(x)$ depends only on an initial segment of x.

William Wadge (1983) studied continuous functions as a notion of reducibility on the Baire space.

Definition

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$. A is Wadge reducible to B, notation $A \leq_{w} B$, iff there is a continuous function $f: \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{N}^{\mathbb{N}}$ such that for all x :

$$
x \in A \Longleftrightarrow f(x) \in B
$$

For convenience: $\bar{A}:=\mathbb{N}^{\mathbb{N}} \backslash A$.

For convenience: $\bar{A}:=\mathbb{N}^{\mathbb{N}} \backslash A$.

Properties of $\leq w$

- $A \leq w B$ iff $\bar{A} \leq w \bar{B}$.
- \leq_{w} is a pre-wellorder (transitive and reflexive but not anti-symmetric).
- We can define $A \equiv_{w} B$ iff $A \leq_{w} B$ and $B \leq_{w} A$ and consider $\mathbb{N}^{\mathbb{N}} / \equiv w$ (the equivalence classes $[A]_{W}$ are called Wadge degrees).

For convenience: $\bar{A}:=\mathbb{N}^{\mathbb{N}} \backslash A$.
Properties of $\leq w$

- $A \leq w \quad B$ iff $\bar{A} \leq w \bar{B}$.
- \leq_{w} is a pre-wellorder (transitive and reflexive but not anti-symmetric).
- We can define $A \equiv{ }_{w} B$ iff $A \leq_{w} B$ and $B \leq_{w} A$ and consider $\mathbb{N}^{\mathbb{N}} / \equiv w$ (the equivalence classes $[A]_{W}$ are called Wadge degrees).

Wadge reducibility plays a role in topology/analysis but also in computer science.

For convenience: $\bar{A}:=\mathbb{N}^{\mathbb{N}} \backslash A$.
Properties of $\leq w$

- $A \leq w B$ iff $\bar{A} \leq w \bar{B}$.
- \leq_{w} is a pre-wellorder (transitive and reflexive but not anti-symmetric).
- We can define $A \equiv{ }_{w} B$ iff $A \leq_{w} B$ and $B \leq_{w} A$ and consider $\mathbb{N}^{\mathbb{N}} / \equiv W$ (the equivalence classes $[A]_{W}$ are called Wadge degrees).

Wadge reducibility plays a role in topology/analysis but also in computer science.

Remark: The results in this section don't directly apply to \mathbb{R} or \mathbb{R}^{n} (but they do apply to $\mathbb{R} \backslash \mathbb{Q}$, other product spaces etc.)

Wadge reducibility and $A D$

Without determinacy, not much can be said about Wadge reducibility. However, under AD we get a very rich structure theory.

Wadge reducibility and AD

Without determinacy, not much can be said about Wadge reducibility. However, under AD we get a very rich structure theory.

Theorem

$\mathrm{AD} \Longrightarrow$ for all $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, either $A \leq w B$ or $B \leq w \bar{A}$.

The local version
Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images, finite unions, intersections and complements, and contains closed sets. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ for all $A, B \in \Gamma$, either $A \leq_{w} B$ or $B \leq_{w} \bar{A}$.

Wadge reducibility and AD

Without determinacy, not much can be said about Wadge reducibility. However, under AD we get a very rich structure theory.

Theorem

$\mathrm{AD} \Longrightarrow$ for all $A, B \subseteq \mathbb{N}^{\mathbb{N}}$, either $A \leq w B$ or $B \leq w \bar{A}$.

The local version
Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images, finite unions, intersections and complements, and contains closed sets. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ for all $A, B \in \boldsymbol{\Gamma}$, either $A \leq_{w} B$ or $B \leq_{w} \bar{A}$.

Non-trivial corollary

For Borel subsets $A, B \subseteq \mathbb{N}^{\mathbb{N}}$ either $A \leq w B$ or $B \leq w \bar{A}$.

The Wadge game

Definition (Wadge game)

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$. The game $G^{W}(A, B)$ is played as follows:

I:	x_{0}		x_{1}		\ldots	
II:		y_{0}		y_{1}		\ldots

- $x_{i}, y_{i} \in \mathbb{N}$
- Let $x=\left\langle x_{0}, x_{1}, \ldots\right\rangle$ and $y=\left\langle y_{0}, y_{1}, \ldots\right\rangle$; Player II wins iff $x \in A \Longleftrightarrow y \in B$

Main result about Wadge games

Lemma

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$.
(1) If II has a w.s. in $G^{W}(A, B)$ then $A \leq w B$.
(2) If I has a w.s. in $G^{W}(A, B)$ then $B \leq w \bar{A}$.

Main result about Wadge games

Lemma

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$.
(1) If II has a w.s. in $G^{W}(A, B)$ then $A \leq w B$.
(2) If I has a w.s. in $G^{W}(A, B)$ then $B \leq w \bar{A}$.

Proof.

As before, fix $f(z)(n):=z(2 n)$ and $g(z)(n):=z(2 n+1)$. If τ is a winning strategy for II, then for every x played by I

$$
x \in A \Longleftrightarrow g(x * \tau) \in B
$$

But since g and $x \mapsto x * \tau$ are both continuous, $A \leq w B$ follows.
Analogously, if σ is winning strategy for I then for every y we have $f(\sigma * y) \in A \Longleftrightarrow y \notin B$, so we have $\bar{B} \leq w A$, or equivalently $B \leq w \bar{A}$.

Structure of the Wadge order

Define $A<w B$ iff $A \leq w B$ and $B \not \leq w A$.

Structure of the Wadge order

Define $A<w B$ iff $A \leq w B$ and $B \not \leq w A$.

Lemma

Assuming AD, if $A<w$ B then I wins both $G^{W}(B, A)$ and $G^{W}(B, \bar{A})$.

Structure of the Wadge order

Define $A<w \quad B$ iff $A \leq w B$ and $B \not \leq w A$.

Lemma

Assuming AD, if $A<W$ B then I wins both $G^{W}(B, A)$ and $G^{W}(B, \bar{A})$.

Proof.

If II would win $G^{W}(B, A)$ we would have $B \leq A$ contrary to assumption.

Structure of the Wadge order

Define $A<w \quad B$ iff $A \leq w B$ and $B \not \leq w A$.

Lemma

Assuming AD, if $A<W$ B then I wins both $G^{W}(B, A)$ and $G^{W}(B, \bar{A})$.

Proof.

If II would win $G^{W}(B, A)$ we would have $B \leq A$ contrary to assumption. If II would $\operatorname{win} G^{W}(B, \bar{A})$ we would have

$$
B \leq w \bar{A}
$$

Structure of the Wadge order

Define $A<w \quad B$ iff $A \leq w B$ and $B \not \leq w A$.

Lemma

Assuming AD, if $A<W$ B then I wins both $G^{W}(B, A)$ and $G^{W}(B, \bar{A})$.

Proof.

If II would win $G^{W}(B, A)$ we would have $B \leq A$ contrary to assumption. If II would win $G^{W}(B, \bar{A})$ we would have

$$
B \leq w \bar{A} \leq w \bar{B}
$$

Structure of the Wadge order

Define $A<w \quad B$ iff $A \leq w B$ and $B \not \leq w A$.

Lemma

Assuming AD, if $A<W$ B then I wins both $G^{W}(B, A)$ and $G^{W}(B, \bar{A})$.

Proof.

If II would win $G^{W}(B, A)$ we would have $B \leq A$ contrary to assumption. If II would win $G^{W}(B, \bar{A})$ we would have

$$
B \leq w \bar{A} \leq w \bar{B} \leq{ }_{w} A
$$

Structure of the Wadge order

Define $A<{ }_{w} B$ iff $A \leq w B$ and $B \not \leq w A$.

Lemma

Assuming AD, if $A<W$ B then I wins both $G^{W}(B, A)$ and $G^{W}(B, \bar{A})$.

Proof.

If II would win $G^{W}(B, A)$ we would have $B \leq A$ contrary to assumption. If II would win $G^{W}(B, \bar{A})$ we would have

$$
B \leq w \bar{A} \leq w \bar{B} \leq{ }_{w} A
$$

again, contrary to assumption.

Martin-Monk theorem

Theorem (Martin-Monk)
Assuming AD, the relation $<w$ is well-founded.
(i.e., there are no infinite descending chains).

The local version

Assume $\boldsymbol{\Gamma}$ is closed under continuous pre-images, finite unions, intersections and complements, and contains closed sets. Then $\operatorname{Det}(\boldsymbol{\Gamma}) \Rightarrow$ the relation $<w$ restricted to sets in $\boldsymbol{\Gamma}$ is well-founded.

Proof

Proof: Assume $<w$ is ill-founded, and let

$$
\cdots<w A_{3}<w A_{2}<w A_{1}<w A_{0}
$$

be an infinite descending chain of subsets of $\mathbb{N}^{\mathbb{N}}$. For every n, by the previous lemma, I has winning strategies in both $G^{W}\left(A_{n}, A_{n+1}\right)$ and $G^{W}\left(A_{n}, \overline{A_{n+1}}\right)$. Call these strategies σ_{n}^{0} and σ_{n}^{1}, respectively.

Proof

Proof: Assume $<w$ is ill-founded, and let

$$
\cdots<w A_{3}<w A_{2}<w A_{1}<w A_{0}
$$

be an infinite descending chain of subsets of $\mathbb{N}^{\mathbb{N}}$. For every n, by the previous lemma, I has winning strategies in both $G^{W}\left(A_{n}, A_{n+1}\right)$ and $G^{W}\left(A_{n}, \overline{A_{n+1}}\right)$. Call these strategies σ_{n}^{0} and σ_{n}^{1}, respectively.

Abbreviation:

$$
\begin{aligned}
& G_{n}^{0}:=G^{W}\left(A_{n}, A_{n+1}\right) \\
& G_{n}^{1}:=G^{W}\left(A_{n}, \overline{A_{n+1}}\right)
\end{aligned}
$$

Proof (continued)

To any $x \in 2^{\mathbb{N}}$, we can associate an infinite sequence of Wadge games

$$
\left\langle G_{0}^{x(0)}, G_{1}^{x(1)}, G_{2}^{x(2)}, \ldots\right\rangle
$$

played according to l's winning strategies

$$
\left\langle\sigma_{0}^{x(0)}, \sigma_{1}^{x(1)}, \sigma_{2}^{x(2)}, \ldots\right\rangle .
$$

Proof (continued)

To any $x \in 2^{\mathbb{N}}$, we can associate an infinite sequence of Wadge games

$$
\left\langle G_{0}^{x(0)}, G_{1}^{x(1)}, G_{2}^{x(2)}, \ldots\right\rangle
$$

played according to l's winning strategies

$$
\left\langle\sigma_{0}^{x(0)}, \sigma_{1}^{x(1)}, \sigma_{2}^{x(2)}, \ldots\right\rangle .
$$

Fix one particular $x \in 2^{\mathbb{N}}$. Player II will play an infinitary simul against all $G_{n}^{\times(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{x(n)}$.

Player II

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\times(n)}$.

$$
\begin{array}{cc}
G_{0}^{x(0)} & \text { I: } \\
& \text { II: } \\
& \\
G_{1}^{x(1)} & \text { I: }
\end{array}
$$

II:
$G_{2}^{\times(2)}$ I:
II:
$G_{3}^{\times(3)}$ I:
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\times(n)}$.

等 $G_{0}^{\times(0)} \mathrm{I}:$
II:
$G_{1}^{x(1)} \quad \mathrm{I}:$
II:
$G_{2}^{x(2)}$ I:
II:
$G_{3}^{\times(3)}$ I:
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\times(n)}$.

G $G_{0}^{x(0)}$ I: $a_{0}^{x}(0)$
II:
$G_{1}^{\chi(1)} \quad \mathrm{I}:$
II:
$G_{2}^{\times(2)}$ I:
II:
$G_{3}^{\times(3)}$ I:
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\times(n)}$.

$$
G_{0}^{\times(0)} \quad \text { I: } a_{0}^{\times}(0)
$$

II:
$G_{1}^{\times(1)} \mathrm{I}:$
II:
$G_{2}^{\times(2)}$ I:
II:
$G_{3}^{\times(3)}$ I:
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\times(n)}$.

$$
G_{0}^{\times(0)} \quad \text { I: } a_{0}^{\times}(0)
$$

II:
$G_{1}^{x(1)} \quad$ I: $a_{1}^{\chi}(0)$
II:
$G_{2}^{\times(2)}$ I:
II:
$G_{3}^{\times(3)} \mathrm{I}:$
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\times(n)}$.

G $G_{0}^{x(0)}$ I: $a_{0}^{x}(0)$
II:
$G_{1}^{x(1)} \quad$ I: $a_{1}^{\chi}(0)$
II:
$G_{2}^{x(2)}$ I:
II:
$G_{3}^{\times(3)}$ I:
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\times(n)}$.

G $G_{0}^{x(0)}$ I: $a_{0}^{x}(0)$
$G_{1}^{x(1)}$ I: $a_{1}^{a_{1}^{x}(0)}$
II:
$G_{2}^{\times(2)}$ I:
II:
$G_{3}^{\times(3)}$ I:
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

$$
\begin{array}{ll}
G_{0}^{x(0)} & \text { I: } a_{0}^{x}(0) \\
& \text { II: } \\
G_{1}^{x(1)} & \text { I: } a_{1}^{a_{1}^{x}(0)} \\
& \text { II: } \\
G_{1}^{x(2)} & \text { I: } \\
\text { II: } \\
G_{3}^{x(3)} & \text { I: } \\
\text { II: }
\end{array}
$$

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$$
\begin{aligned}
G_{0}^{\times(0)} & \text { I: } \frac{a_{0}^{x}(0)}{a_{1}^{x}(0)} \\
& \text { II: } \\
G_{1}^{\times(1)} & \text { I: }: a_{1}^{x}(0)
\end{aligned}
$$

II:
然
$G_{2}^{\times(2)}$ I:
II:
$G_{3}^{\times(3)}$ I:
II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$$
\begin{array}{lll}
G_{0}^{\times(0)} & \text { I: } \frac{a_{0}^{x}(0)}{a_{0}^{x}(1)} \\
& \text { II: } \\
G_{1}^{x(1)} & \text { I: }: a_{1}^{x}(0)
\end{array}
$$

II:

$$
G_{2}^{\times(2)} \quad \text { I: } a_{2}^{x}(0)
$$

II:

$$
G_{3}^{\times(3)} \mathrm{I}:
$$

II:

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

	$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$
π_{π}^{π}		II: $\quad a_{1}^{x}(0)$	$a_{1}^{x}(1)$	
	$G_{1}^{\times(1)}$		$a_{1}^{x}(1)$	
		II: $\quad a_{2}^{x}(0)$		
	$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	
		II: $\quad a_{3}^{x}(0)$		
	$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{x}(0)^{/ / /}$		
		II:		

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

	$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\chi}(1)$	$a_{0}^{\chi}(2)$
π_{π}^{3}		II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	
	$G_{1}^{\times(1)}$	$\mathrm{I}: a_{1}^{x}(0)^{/ / /}$	$a_{1}^{x}(1)$	
		II: $\quad a_{2}^{x}(0)$	$a_{2}^{\times}(1)$	
	$G_{2}^{\times(2)}$	$\text { I: } a_{2}^{\times}(0)^{/ / /}$	$a_{2}^{x}(1)$	
		II: $\quad a_{3}^{x}(0)$		
	$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{x}(0)^{/ / /}$		
		II:		

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

	$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\chi}(1)$	$a_{0}^{\chi}(2)$
π_{π}^{3}		II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	
	$G_{1}^{\times(1)}$	$\mathrm{I}: a_{1}^{x}(0)^{/ / /}$	$a_{1}^{x}(1)$	$\mathrm{a}_{1}^{\times}(2)$
		II: $\quad a_{2}^{x}(0)$	$a_{2}^{\times}(1)$	
	$G_{2}^{\times(2)}$	$\text { I: } a_{2}^{\times}(0)^{/ / /}$	$a_{2}^{x}(1)$	
		II: $\quad a_{3}^{x}(0)$		
	$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{x}(0)^{/ / /}$		
		II:		

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{x(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\chi}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{x}(1)$		
$G_{2}^{\times(2)}$				
	II: $a_{3}^{x}(0)$			
$G_{3}^{\times(3)}$				
	II: \quad.			

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\chi}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{x}(1)$		
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$		
	II: $a_{3}^{x}(0)$			
$G_{3}^{\times(3)}$		\ldots		
	II:			

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\chi}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{x}(1)$		
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$		
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$		
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\ldots		
	II:			

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\chi}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{\times}(1)$		
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$		
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\ldots		
	II: \quad.			

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\times}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{x}(1)$. ${ }^{\text {a }}$	
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$		
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\ldots		
	II: \quad.			

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\chi}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	\ldots
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{x}(1)$. ${ }^{\text {a }}$	
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$		
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\ldots		
	II: \quad.			

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\chi}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	\ldots
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{x}(1)$. ${ }^{\text {a }}$	
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$		
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\cdots		
	II: \quad.	\cdots		

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\times}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	\ldots
	II: $a_{2}^{x}(0)$	$a_{2}^{x}(1)$. ${ }^{\text {a }}$	
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$		
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\ldots	\ldots	
	II: \quad.	\cdots		

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\times}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	\ldots
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{\times}(1)$. ${ }^{\text {a }}$	
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$	\ldots	
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\ldots	\ldots	
	II: \quad.	\cdots		

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\times}(0)$	$a_{0}^{\times}(1)$	$a_{0}^{\times}(2)$	$a_{0}^{\times}(3)$
	II: $\quad a_{1}^{x}(0)$	$a_{1}^{\times}(1)$	$a_{1}^{\times}(2)$	
$G_{1}^{\times(1)}$		$a_{1}^{\times}(1)$	$a_{1}^{x}(2)$	\ldots
	II: $\quad a_{2}^{x}(0)$	$a_{2}^{\times}(1)$. ${ }^{\text {a }}$	
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	
	II: $a_{3}^{x}(0)$. ${ }^{\text {. }}$	\ldots	
$G_{3}^{\times(3)}$	$\text { I: } a_{3}^{\times}(0)^{/ / /}$	\ldots	\ldots	
	II: \quad.	\cdots		

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{\times(0)}$	I: $a_{0}^{\chi}(0)$	$a_{0}^{\chi}(1)$	$a_{0}^{\chi}(2)$	$a_{0}^{\chi}(3)$	$\cdots \longrightarrow a_{0}^{x}$
	II: $\quad a_{1}^{\times}(0)$	$a_{1}^{\chi}(1)$	$a_{1}^{\times}(2)$		$\cdots \longrightarrow a_{1}^{x}$
$G_{1}^{\times(1)}$	$\text { I: } a_{1}^{\times}(0)^{/ / /}$	$a_{1}^{x}(1)$	$a_{1}^{x}(2)$	\ldots	$\begin{aligned} & \cdots \longrightarrow a_{1}^{x} \\ & \cdots \longrightarrow a_{2}^{x} \end{aligned}$
	II: $a_{2}^{x}(0)$	$a_{2}^{\times}(1)$	\cdots		
$G_{2}^{\times(2)}$		$a_{2}^{x}(1)$	\ldots	\ldots	$\cdots \longrightarrow a_{2}^{x}$
	II: $a_{3}^{x}(0)$	\ldots	\cdots		$\cdots \longrightarrow a_{3}^{x}$
	$/ /$				
$G_{3}^{\times(3)}$	I: $a_{3}^{x}(0)$	\ldots	\ldots		$\cdots \longrightarrow a_{3}^{x}$

Infinitary Simul

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_{n}^{\times(n)}$ in every $G_{n}^{\chi(n)}$.

$G_{0}^{x(0)}$	I: $a_{0}^{x}(0)$	$a_{0}^{x}(1)$	$a_{0}^{x}(2)$	$a_{0}^{\times}(3)$	$\cdots \longrightarrow a_{0}^{x}$
	II: $a_{1}^{x}(0)$	$a_{1}^{x}(1)$	$a_{1}^{x}(2)$		$\cdots \longrightarrow a_{1}^{x}$
$G_{1}^{\times(1)}$	$\text { I: } a_{1}^{x}(0)$. .	$\cdots \longrightarrow a_{1}^{x}$
	II: $a_{2}^{x}(0)$	$a_{2}^{x}(1)$	\cdots		$\cdots \longrightarrow a_{2}^{x}$
$G_{2}^{\times(2)}$			\ldots	\ldots	$\cdots \longrightarrow a_{2}^{x}$
	II: $a_{3}^{x}(0)$	\cdots	. .		$\cdots \longrightarrow a_{3}^{x}$
$G_{3}^{\times(3)}$. .	\cdots		
	II: \quad.	.			

The result

For a fixed x, we have produced a sequence $\left\langle a_{n}^{x} \mid n \in \mathbb{N}\right\rangle$ of elements of $\mathbb{N}^{\mathbb{N}}$ with the following property:

The result

For a fixed x, we have produced a sequence $\left\langle a_{n}^{x} \mid n \in \mathbb{N}\right\rangle$ of elements of $\mathbb{N}^{\mathbb{N}}$ with the following property:

- For $n \geq 1, a_{n}^{x}$ is the sequence of I's moves in $G_{n}^{x(n)}$, and also the sequence of II's moves in $G_{n-1}^{x(n-1)}$.

The result

For a fixed x, we have produced a sequence $\left\langle a_{n}^{x} \mid n \in \mathbb{N}\right\rangle$ of elements of $\mathbb{N}^{\mathbb{N}}$ with the following property:

- For $n \geq 1, a_{n}^{x}$ is the sequence of I's moves in $G_{n}^{x(n)}$, and also the sequence of II's moves in $G_{n-1}^{\times(n-1)}$.
- Since I wins each game $G_{n}^{x(n)}$, the definition implies

$$
\begin{aligned}
& x(n)=0 \Longrightarrow\left(a_{n}^{x} \in A_{n} \leftrightarrow a_{n+1}^{x} \notin A_{n+1}\right) \\
& x(n)=1 \Longrightarrow\left(a_{n}^{x} \in A_{n} \leftrightarrow a_{n+1}^{x} \in A_{n+1}\right)
\end{aligned}
$$

(Recall that $G_{n}^{0}=G^{W}\left(A_{n}, A_{n+1}\right)$ and $\left.G_{n}^{1}=G^{W}\left(A_{n}, \overline{A_{n+1}}\right)\right)$.

Comparing different x

To each $x \in 2^{\mathbb{N}}$ corresponds a unique "simul game". Now let's compare different x :

Comparing different x

To each $x \in 2^{\mathbb{N}}$ corresponds a unique "simul game". Now let's compare different x :

```
Claim 1
If }\forallm\geqn(x(m)=y(m))\mathrm{ then }\forallm\geqn(\mp@subsup{a}{m}{x}=\mp@subsup{a}{m}{y})
```


Comparing different x

To each $x \in 2^{\mathbb{N}}$ corresponds a unique "simul game". Now let's compare different x :

Claim 1

If $\forall m \geq n(x(m)=y(m))$ then $\forall m \geq n\left(a_{m}^{x}=a_{m}^{y}\right)$.

Proof.

Note that the values of a_{m}^{x} and a_{m}^{y} depend only on games $G_{m^{\prime}}^{\times\left(m^{\prime}\right)}$ and $G_{m^{\prime}}^{y\left(m^{\prime}\right)}$ for $m^{\prime} \geq m$.

Comparing different x (continued)

Claim 2

Let n be such that $x(n) \neq y(n)$ but $\forall m>n(x(m)=y(m))$. Then $a_{n}^{x} \in A_{n} \leftrightarrow a_{n}^{y} \notin A_{n}$.

Comparing different x (continued)

Claim 2

Let n be such that $x(n) \neq y(n)$ but $\forall m>n(x(m)=y(m))$. Then $a_{n}^{x} \in A_{n} \leftrightarrow a_{n}^{y} \notin A_{n}$.

Proof.

Since $x(n) \neq y(n)$ we have two cases:
(1) $x(n)=1$ and $y(n)=0$. Then

$$
\begin{aligned}
& a_{n}^{x} \in A_{n} \leftrightarrow a_{n+1}^{x} \in A_{n+1} \\
& a_{n}^{y} \in A_{n} \leftrightarrow a_{n+1}^{y} \notin A_{n+1}
\end{aligned}
$$

By Claim $1 a_{n}^{x} \in A_{n} \leftrightarrow a_{n+1}^{x} \in A_{n+1} \leftrightarrow a_{n+1}^{y} \in A_{n+1} \leftrightarrow a_{n}^{y} \notin A_{n}$.
(2) $x(n)=0$ and $y(n)=1$. Then

$$
\begin{aligned}
& a_{n}^{x} \in A_{n} \leftrightarrow a_{n+1}^{x} \notin A_{n+1} \\
& a_{n}^{y} \in A_{n} \leftrightarrow a_{n+1}^{y} \in A_{n+1}
\end{aligned}
$$

By Claim $1 a_{n}^{x} \in A_{n} \leftrightarrow a_{n+1}^{x} \notin A_{n+1} \leftrightarrow a_{n+1}^{y} \notin A_{n+1} \leftrightarrow a_{n}^{y} \notin A_{n}$.

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

Proof.

By Claim $2 a_{n}^{x} \in A_{n} \leftrightarrow a_{n}^{y} \notin A_{n}$. Since $x(n-1)=y(n-1)$ we have two cases:
(1) $x(n-1)=y(n-1)=0$. Then

$$
\begin{aligned}
& a_{n-1}^{x} \in A_{n-1} \leftrightarrow a_{n}^{x} \notin A_{n} \\
& a_{n-1}^{y} \in A_{n-1} \leftrightarrow a_{n}^{y} \notin A_{n} .
\end{aligned}
$$

and therefore $a_{n-1}^{x} \in A_{n-1} \leftrightarrow a_{n-1}^{y} \notin A_{n-1}$.
(2) $x(n-1)=y(n-1)=1$. Similar.

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

Proof.

By Claim $2 a_{n}^{x} \in A_{n} \leftrightarrow a_{n}^{y} \notin A_{n}$. Since $x(n-1)=y(n-1)$ we have two cases:
(1) $x(n-1)=y(n-1)=0$. Then

$$
\begin{aligned}
& a_{n-1}^{x} \in A_{n-1} \leftrightarrow a_{n}^{x} \notin A_{n} \\
& a_{n-1}^{y} \in A_{n-1} \leftrightarrow a_{n}^{y} \notin A_{n} .
\end{aligned}
$$

and therefore $a_{n-1}^{x} \in A_{n-1} \leftrightarrow a_{n-1}^{y} \notin A_{n-1}$.
(2) $x(n-1)=y(n-1)=1$. Similar.

Now go to the $(n-2)$-th level. Since again $x(n-2)=y(n-2)$ we get, by a similar argument as before, $a_{n-2}^{x} \in A_{n-2} \leftrightarrow a_{n-2}^{y} \notin A_{n-2}$.

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

Proof.

By Claim $2 a_{n}^{x} \in A_{n} \leftrightarrow a_{n}^{y} \notin A_{n}$. Since $x(n-1)=y(n-1)$ we have two cases:
(1) $x(n-1)=y(n-1)=0$. Then

$$
\begin{aligned}
& a_{n-1}^{x} \in A_{n-1} \leftrightarrow a_{n}^{x} \notin A_{n} \\
& a_{n-1}^{y} \in A_{n-1} \leftrightarrow a_{n}^{y} \notin A_{n} .
\end{aligned}
$$

and therefore $a_{n-1}^{x} \in A_{n-1} \leftrightarrow a_{n-1}^{y} \notin A_{n-1}$.
(2) $x(n-1)=y(n-1)=1$. Similar.

Now go to the $(n-2)$-th level. Since again $x(n-2)=y(n-2)$ we get, by a similar argument as before, $a_{n-2}^{x} \in A_{n-2} \leftrightarrow a_{n-2}^{y} \notin A_{n-2}$.

We go on like this until we reach level 0 , and there we get $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n}$?	$a_{n}^{y} \in A_{n}$?
0	0		
1	1		
0	0		
0	0		
1	1		
1	0		
1	1		
0	0		
\ldots	\ldots	\ldots	\ldots

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n}$?	$a_{n}^{y} \in A_{n}$?
0	0		
1	1		
0	0		
0	0		
1	1		
1	0		
1	1	yes	yes
0	0	yes	yes
\ldots	\ldots

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n} ?$	$a_{n}^{y} \in A_{n} ?$
0	0		
1	1		
0	0		
0	0		
1	1		
1	$\mathbf{0}$	yes	no
	$\mathbf{1}$	$\mathbf{0}$	
1	1	yes	yes
0	0	yes	yes
\ldots	\ldots	\ldots	\ldots

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n}$?	$a_{n}^{y} \in A_{n}$?
0	0		
1	1		
0	0		
0	0		
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes
\ldots	\ldots	\ldots	...

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n}$?	$a_{n}^{y} \in A_{n}$?
0	0		
1	1		
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes
\ldots	\ldots	.	\ldots

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n}$?	$a_{n}^{y} \in A_{n}$?
0	0		
1	1	yes	no
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes
\ldots	\ldots	\ldots	\ldots

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n}$?	$a_{n}^{y} \in A_{n}$?
0	0	no	yes
1	1	yes	no
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes
\ldots	\ldots	...	\ldots

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

x	y	$a_{n}^{x} \in A_{n}$?	$a_{n}^{y} \in A_{n}$?
0	0	no	yes
1	1	yes	no
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes
...	\ldots	\ldots	\ldots

$$
\text { Let } X:=\left\{x \in 2^{\mathbb{N}} \mid a_{0}^{x} \in A_{0}\right\} .
$$

Comparing different x (continued)

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_{0}^{x} \in A_{0} \leftrightarrow a_{0}^{y} \notin A_{0}$.

$$
\text { Let } X:=\left\{x \in 2^{\mathbb{N}} \mid a_{0}^{x} \in A_{0}\right\} .
$$

By Claim 3, X is a flip set. By AD, this is impossible! \square

Ernst Zermelo (1871-1953)

Dénes König (1884-1944)

László Kalmár (1905-1976)

William W. Wadge (U Victoria)

Thank you!

Yurii Khomskii
yurii@deds.nl

