Unbeatable Strategies Yurii Khomskii **HIM** programme "Stochastic Dynamics in Economics and Finance" Kurt Gödel Research Center University of Vienna 13-14 June 2013

Yurii Khomskii (KGRC, Vienna)

Unbeatable Strategies

13-14 June 2013 1 / 59

- Lebesgue measure
- Related properties (no proofs)
- Ip Sets
- Wadge reducibility

< 17 ▶

3

Sac

Recall what we did

AD := "All infinite games G(A) are determined".

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Recall what we did

AD := "All infinite games G(A) are determined".

Definition

Let $\Gamma \subseteq \mathbb{N}^{\mathbb{N}}$ be a (usually topological) class of sets. Det (Γ) abbreviates the statement "for all $A \in \Gamma$, the infinite game G(A) is determined".

Recall what we did

AD := "All infinite games G(A) are determined".

Definition

Let $\Gamma \subseteq \mathbb{N}^{\mathbb{N}}$ be a (usually topological) class of sets. Det (Γ) abbreviates the statement "for all $A \in \Gamma$, the infinite game G(A) is determined".

We have seen:

- Det(Open) and Det(Closed) (Gale-Stewart, 1953).
- $Det(F_{\sigma})$ and $Det(G_{\delta})$ (Wolfe, 1955).
- $\text{Det}(F_{\sigma\delta})$ and $\text{Det}(G_{\delta\sigma})$ (Morton Davis, 1964).
- Det(Borel) (Tony Martin, 1975).
- Assuming "large cardinals", Det(projective) (Martin-Steel, 1989).
- $AD = Det(\mathcal{P}(\mathbb{N}^{\mathbb{N}}))$; it is inconsistent with AC.

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G' and prove that **if** G'(A) is determined **then** A satisfies P.

SQA

イロト イポト イヨト イヨト 三日

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G' and prove that **if** G'(A) is determined **then** A satisfies P.

We will formulate such results as follows:

Theorem

 $AD \implies every set A satisfies P.$

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G' and prove that **if** G'(A) is determined **then** A satisfies P.

We will formulate such results as follows:

Theorem $AD \implies every set A satisfies P.$

However, for each such result, there is a corresponding **local** version:

Theorem

If Γ is a class satisfying certain closure properties, then $\mathsf{Det}(\Gamma) \Longrightarrow \mathsf{all}$ sets $A \in \Gamma$ satisfy P.

What we will do today

The results we prove today have the following pattern: if P is some property of sets (subsets of $\mathbb{N}^{\mathbb{N}}$ or \mathbb{R}), construct a game G' and prove that **if** G'(A) is determined **then** A satisfies P.

We will formulate such results as follows:

TheoremAD \implies every set A satisfies P.

However, for each such result, there is a corresponding **local** version:

Theorem

If Γ is a class satisfying certain closure properties, then $\mathsf{Det}(\Gamma) \Longrightarrow \mathsf{all}$ sets $A \in \Gamma$ satisfy P.

For the second result, we need to check that the **coding** we use is sufficiently simple (we will skip this).

Yurii Khomskii (KGRC, Vienna)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

1. Lebesgue measure

臣

590

イロト イポト イヨト イヨト

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)

 $AD \implies every set is measurable.$

- 4 同 🕨 - 4 日 🕨 - 4 日

3

SQC

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)

 $AD \implies every set is measurable.$

The local version

Assume Γ is closed under continuous pre-images, finite unions, intersections and complements, and contains the F_{σ} sets. Then $Det(\Gamma) \Rightarrow$ all sets in Γ are measurable.

Lebesgue measure

Theorem (Mycielski-Świerczkowski, 1964)

 $AD \implies every set is measurable.$

The local version

Assume Γ is closed under continuous pre-images, finite unions, intersections and complements, and contains the F_{σ} sets. Then $Det(\Gamma) \Rightarrow$ all sets in Γ are measurable.

The original proof is due to Mycielski-Świerczkowski (1964) but we present a proof of Harrington.

Note that it is sufficient to prove the result for all $A \subseteq [0, 1]$.

200

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Note that it is sufficient to prove the result for all $A \subseteq [0, 1]$.

Notation: $2^{\mathbb{N}} := \{f : \mathbb{N} \longrightarrow \{0,1\}\}$ (infinite binary sequences).

Note that it is sufficient to prove the result for all $A \subseteq [0, 1]$.

Notation: $2^{\mathbb{N}} := \{f : \mathbb{N} \longrightarrow \{0, 1\}\}$ (infinite binary sequences).

- Fix an enumeration {*I_n* | *n* ∈ ℕ} of all possible finite unions of open intervals in [0, 1] with rational endpoints (there are only countably many).
- For $x\in 2^{\mathbb{N}}$, let $a:2^{\mathbb{N}}\longrightarrow [0,1]$ be the function given by

$$a(x) := \sum_{n=0}^{\infty} \frac{x_n}{2^{n+1}}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Note that it is sufficient to prove the result for all $A \subseteq [0, 1]$.

Notation: $2^{\mathbb{N}} := \{f : \mathbb{N} \longrightarrow \{0, 1\}\}$ (infinite binary sequences).

- Fix an enumeration {*I_n* | *n* ∈ ℕ} of all possible finite unions of open intervals in [0, 1] with rational endpoints (there are only countably many).
- For $x \in 2^{\mathbb{N}}$, let $a: 2^{\mathbb{N}} \longrightarrow [0,1]$ be the function given by

$$a(x) := \sum_{n=0}^{\infty} \frac{x_n}{2^{n+1}}$$

Easy to see that $a : 2^{\mathbb{N}} \to [0, 1]$ is continuous and ran(a) = [0, 1] (think of x as the binary expansion of a(x)).

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

The Covering Game

Given $A \subseteq [0,1]$ and $\epsilon > 0$, we define a game $G_{\mu}(A, \epsilon)$.

JOC P

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The Covering Game

Given $A \subseteq [0,1]$ and $\epsilon > 0$, we define a game $G_{\mu}(A,\epsilon)$.

Definition $(G_{\mu}(A,\epsilon))$

I:

$$x_0$$
 x_1
 x_2
 ...

 II:
 y_0
 y_1
 y_2

•
$$x_i \in \{0,1\}$$
 and $y_i \in \mathbb{N}$.

• At every move *n*, Player II must make sure that $\mu(I_{y_n}) < \frac{\epsilon}{2^{2(n+1)}}$

$$\mu(y_n) < \frac{1}{2^{2(n+1)}}$$

• Player I wins iff $a(x) \in A \setminus \bigcup_{n=0}^{\infty} I_{y_n}$.

The Covering Game

Given $A \subseteq [0,1]$ and $\epsilon > 0$, we define a game $G_{\mu}(A,\epsilon)$.

Definition $(G_{\mu}(A, \epsilon))$ $\begin{array}{c|c}
I : & x_0 & x_1 & x_2 & \dots \\
\hline II : & y_0 & y_1 & y_2 \\
\bullet & x_i \in \{0, 1\} \text{ and } y_i \in \mathbb{N}. \\
\bullet & \text{At every move } n, \text{ Player II must make sure that} \\
\mu(I_{y_n}) < \frac{\epsilon}{2^{2(n+1)}}
\end{array}$

• Player I wins iff $a(x) \in A \setminus \bigcup_{n=0}^{\infty} I_{y_n}$.

Intuition: I attempts to play a real number in A, while II attempts to "cover" that real number with the I_n 's (of an increasingly smaller measure.)

Yurii Khomskii (KGRC, Vienna)

The main result

Theorem

Let $A \subseteq \mathbb{N}^{\mathbb{N}}$ and ϵ be given.

- If I has w.s. in $G_{\mu}(A, \epsilon)$ then there is a measurable $Z \subseteq A$ with $\mu(Z) > 0$.
- If II has w.s. in G_µ(A, ε) then there is an open O such that A ⊆ O and µ(O) < ε.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof

Proof.

- 1. Let σ be winning for I. Define
 - f(z)(n) := z(2n) and
 - g(z)(n) := z(2n+1).

Sac

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Proof

Proof.

1. Let σ be winning for I. Define

- f(z)(n) := z(2n) and
- g(z)(n) := z(2n+1).

It is clear that both f and g are continuous (from $\mathbb{N}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$), and also the mapping $y \mapsto \sigma * y$ is continuous. Hence $y \mapsto a(f(\sigma * y))$ is continuous. Let $Z := \{a(f(\sigma * y)) \mid y \in \mathbb{N}^{\mathbb{N}}\}$. This is an **analytic** set (continuous image of a closed set), hence measurable. As σ was winning, $Z \subseteq A$.

Proof

Proof.

1. Let σ be winning for I. Define

•
$$f(z)(n) := z(2n)$$
 and

•
$$g(z)(n) := z(2n+1).$$

It is clear that both f and g are continuous (from $\mathbb{N}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$), and also the mapping $y \mapsto \sigma * y$ is continuous. Hence $y \mapsto a(f(\sigma * y))$ is continuous. Let $Z := \{a(f(\sigma * y)) \mid y \in \mathbb{N}^{\mathbb{N}}\}$. This is an **analytic** set (continuous image of a closed set), hence measurable. As σ was winning, $Z \subseteq A$.

But if $\mu(Z) = 0$ then Z can be covered by $\{I_{y_n} \mid n \in \mathbb{N}\}$ satisfying $\forall n \ (\mu(I_{y_n}) < \frac{\epsilon}{2^{2(n+1)}})$. Then if II plays $y = \langle y_0, y_1, \dots \rangle$ $a(f(\sigma * y)) \in Z \subseteq \bigcup_{n=0}^{\infty} I_{y_n},$

contradicting that σ is winning for I.

2. Now suppose τ is winning for II. For every $s \in \{0,1\}^*$ of length *n*, define

$$I_s := I_{(s*\rho)(2n-1)}$$

 $(I_s \text{ is the } I_{y_{n-1}} \text{ where } y_{n-1} \text{ is the last move of the game in which I played } s and II used <math>\tau$). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that a(x) = a, there must be some n such that $a \in I_{x \upharpoonright n}$. In other words, $a \in \bigcup \{I_s \mid s \lhd x\}$ where x is such that a(x) = a.

2. Now suppose τ is winning for II. For every $s \in \{0,1\}^*$ of length *n*, define

$$I_s := I_{(s*\rho)(2n-1)}$$

 $(I_s \text{ is the } I_{y_{n-1}} \text{ where } y_{n-1} \text{ is the last move of the game in which I played } s and II used <math>\tau$). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that a(x) = a, there must be some n such that $a \in I_{x \upharpoonright n}$. In other words, $a \in \bigcup \{I_s \mid s \lhd x\}$ where x is such that a(x) = a.

In particular

$$A\subseteq \bigcup_{s\in 2^{\mathbb{N}}} I_s = \bigcup_{n=1}^{\infty} \bigcup_{s\in\{0,1\}^n} I_s.$$

2. Now suppose τ is winning for II. For every $s \in \{0,1\}^*$ of length *n*, define

$$I_s := I_{(s*\rho)(2n-1)}$$

 $(I_s \text{ is the } I_{y_{n-1}} \text{ where } y_{n-1} \text{ is the last move of the game in which I played } s and II used <math>\tau$). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that a(x) = a, there must be some n such that $a \in I_{x \upharpoonright n}$. In other words, $a \in \bigcup \{I_s \mid s \lhd x\}$ where x is such that a(x) = a.

In particular

$$A\subseteq \bigcup_{s\in 2^{\mathbb{N}}} I_s = \bigcup_{n=1}^{\infty} \bigcup_{s\in \{0,1\}^n} I_s.$$

Since τ was winning, for every s of length $n \ge 1$, $\mu(I_s) < \epsilon/2^{2n}$.

2. Now suppose τ is winning for II. For every $s \in \{0,1\}^*$ of length *n*, define

$$I_s := I_{(s*\rho)(2n-1)}$$

 $(I_s \text{ is the } I_{y_{n-1}} \text{ where } y_{n-1} \text{ is the last move of the game in which I played } s and II used <math>\tau$). As τ is winning for II, for every $a \in A$ and every $x \in 2^{\mathbb{N}}$ such that a(x) = a, there must be some n such that $a \in I_{x \upharpoonright n}$. In other words, $a \in \bigcup \{I_s \mid s \lhd x\}$ where x is such that a(x) = a.

In particular

$$A\subseteq \bigcup_{s\in 2^{\mathbb{N}}} I_s = \bigcup_{n=1}^{\infty} \bigcup_{s\in \{0,1\}^n} I_s.$$

Since τ was winning, for every s of length $n \ge 1$, $\mu(I_s) < \epsilon/2^{2n}$.

$$\mu(\bigcup_{s\in\{0,1\}^n}I_s)<\frac{\epsilon}{2^{2n}}\cdot 2^n=\frac{\epsilon}{2^n}.$$

Yurii Khomskii (KGRC, Vienna)

$$\mu(\bigcup_{s\in\{0,1\}^n}I_s)<\frac{\epsilon}{2^{2n}}\cdot 2^n=\frac{\epsilon}{2^n}.$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

$$\mu(\bigcup_{s\in\{0,1\}^n} I_s) < \frac{\epsilon}{2^{2n}} \cdot 2^n = \frac{\epsilon}{2^n}.$$
$$\mu(\bigcup_{s\in2^{\mathbb{N}}} I_s) = \mu(\bigcup_{n=1}^{\infty} \bigcup_{s\in\{0,1\}^n} I_s) < \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon.$$

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 句 ◆ ○

$$\mu(\bigcup_{s\in\{0,1\}^n} I_s) < \frac{\epsilon}{2^{2n}} \cdot 2^n = \frac{\epsilon}{2^n}.$$
$$\mu(\bigcup_{s\in2^{\mathbb{N}}} I_s) = \mu(\bigcup_{n=1}^{\infty} \bigcup_{s\in\{0,1\}^n} I_s) < \sum_{n=1}^{\infty} \frac{\epsilon}{2^n} = \epsilon.$$

So, indeed, A is contained in an open set of measure $< \epsilon$.

500

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Corollary

Let $X \subseteq [0,1]$ be any set and assume AD. Then X is measurable.

3

590

イロト イポト イヨト イヨト

Corollary

Let $X \subseteq [0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^*(X) = \delta$.

3

SQC

イロト イポト イヨト イヨト

Corollary

Let $X \subseteq [0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^*(X) = \delta$. Let B be a G_{δ} set such that $X \subseteq B$ and $\mu(B) = \delta$.

< ロ > < 同 > < 回 > <

3

SQA

Corollary

Let $X \subseteq [0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^*(X) = \delta$. Let *B* be a G_{δ} set such that $X \subseteq B$ and $\mu(B) = \delta$. Now consider the games $G_{\mu}(B \setminus X, \epsilon)$, for all ϵ . If, for at least one $\epsilon > 0$, I has a w.s., then there is a measurable set $Z \subseteq B \setminus X$ of positive measure, contradicting $\mu^*(X) = \delta$.

イロト イポト イヨト イヨト 二日

Corollary

Let $X \subseteq [0,1]$ be any set and assume AD. Then X is measurable.

Proof. Let $\mu^*(X) = \delta$. Let B be a G_{δ} set such that $X \subseteq B$ and $\mu(B) = \delta$. Now consider the games $G_{\mu}(B \setminus X, \epsilon)$, for all ϵ . If, for at least one $\epsilon > 0$, I has a w.s., then there is a measurable set $Z \subseteq B \setminus X$ of positive measure, contradicting $\mu^*(X) = \delta$.

Hence, by determinacy, II must have a w.s. in $G_{\mu}(B \setminus X, \epsilon)$ for every $\epsilon >$ 0. Hence $B \setminus X \subseteq O$ for $\mu(O) < \epsilon$, for every $\epsilon > 0$, therefore $B \setminus X$ has measure 0. So X is measurable.

SQA

イロト 不得 とくほ とくほ とうしょう

2. Related properties

Э

590

Baire Property

Definition

A set A in a topological space has the **Baire Property** if for some Borel set B, A = B modulo a meager set.

- 4 □ + 4 □

Baire Property

Definition

A set A in a topological space has the **Baire Property** if for some Borel set B, A = B modulo a meager set.

Theorem (Banach-Mazur)

AD \implies all sets have the Baire Property.

The local version

Assume Γ is closed under continuous pre-images. Then $\mathsf{Det}(\Gamma) \Rightarrow$ all sets in Γ have the Baire Property.

- 4 同 1 - 4 回 1 - 4 回 1

Banach-Mazur game

Definition (Banach-Mazur game)

I:
$$s_0$$
 s_1 ...II: t_0 t_1 ...

•
$$s_i, t_i \in \mathbb{N}^* \setminus \{\langle \rangle\}$$
.
• Let $z := s_0^{-} t_0^{-} s_1^{-} t_1^{-} \dots$; Player I wins iff $z \in A$.

< 日 > < 同 > < 三 > < 三 >

3

SQC

Banach-Mazur game

Definition (Banach-Mazur game)

I:
$$s_0$$
 s_1 ...II: t_0 t_1 ...

•
$$s_i, t_i \in \mathbb{N}^* \setminus \{\langle \rangle\}.$$

• Let $z := s_0 \cap t_0 \cap s_1 \cap t_1 \cap \ldots$; Player I wins iff $z \in A$.

This works on the space $\mathbb{N}^{\mathbb{N}}$; actually there is a version of the Banach-Mazur game on any Polish space: the players choose basic open sets U_i and V_i such that $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \ldots$ with decreasing diameter. Then $\bigcap_{i=0}^{\infty} U_i = \bigcap_{i=0}^{\infty} V_i = \{z\}$ and I wins iff $z \in A$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Perfect Set Property

Definition

A set $A \subseteq \mathbb{R}$, or $A \subseteq \mathbb{N}^{\mathbb{N}}$, satisfies the **Perfect Set Property** if it is either countable or contains a **perfect set** (a homeomorphic image of the full binary tree $2^{\mathbb{N}}$).

Perfect Set Property

Definition

A set $A \subseteq \mathbb{R}$, or $A \subseteq \mathbb{N}^{\mathbb{N}}$, satisfies the **Perfect Set Property** if it is either countable or contains a **perfect set** (a homeomorphic image of the full binary tree $2^{\mathbb{N}}$).

Note: the Perfect Set Property arose from Cantor's original attempts to prove the Continuum Hypothesis. If all subsets of \mathbb{R} satisfied this property, then all subsets of \mathbb{R} would be either countable or have cardinality 2^{\aleph_0} (since $|2^{\mathbb{N}}| = 2^{\aleph_0}$). But using AC one can construct counterexamples.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Perfect Set Property and AD

Theorem (Morton Davis)

AD \implies all sets have the Perfect Set Property.

The local version

Assume Γ is closed under continuous pre-images and intersections with closed sets. Then $Det(\Gamma) \Rightarrow$ all sets in Γ have the Perfect Set Property.

The *-game

Definition (*-game)

I:	<i>s</i> ₀		s_1		<i>s</i> ₂	
II:		n_1		<i>n</i> ₂		

•
$$s_i \in \mathbb{N}^* \setminus \{\langle \rangle \}.$$

- $n_i \in \mathbb{N}$.
- I must make sure that, for each $i \ge 1$, $s_i(0) \ne n_i$ (otherwise he loses)
- Let $z := s_0 \cap s_1 \cap s_2 \cap \ldots$; Player I wins iff $z \in A$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The *-game

Definition (*-game)

I:	<i>s</i> ₀		s_1		<i>s</i> ₂	
II:		n_1		<i>n</i> ₂		

•
$$s_i \in \mathbb{N}^* \setminus \{\langle \rangle \}.$$

- $n_i \in \mathbb{N}$.
- I must make sure that, for each $i \ge 1$, $s_i(0) \ne n_i$ (otherwise he loses)
- Let $z := s_0 \frown s_1 \frown s_2 \frown \dots$; Player I wins iff $z \in A$.

Again, this works on $\mathbb{N}^{\mathbb{N}}$, but there are versions that work on \mathbb{R} , \mathbb{R}^{n} etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

3. Flip Sets

1

900

<ロト <部ト <きト <きト

Part II Flip Sets

E

900

< □ > < □ > < □ > < □ > < □ > < □ >

Part II Flip Sets

Yurii Khomskii (KGRC, Vienna)

4

< • • • **•** •

E

990

< □ > < □ > < □ > < □ > < □ > < □ >

Part II Flip Sets

Yurii Khomskii (KGRC, Vienna)

≣ ▶ 13-14 June 2013 24 / 59

4

< • • • **•** •

E

990

< □ > < □ > < □ > < □ > < □ > < □ >

Part II Flip Sets

Yurii Khomskii (KGRC, Vienna)

≣ ▶ 13-14 June 2013 26 / 59

4

< • • • **•** •

E

990

< □ > < □ > < □ > < □ > < □ >

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a **flip set** if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$x \in X \iff y \notin X$$

3

< /₽ > < ∃ >

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a **flip set** if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$x \in X \iff y \notin X$$

Computer Scientists also call this "infinitary XOR gates".

3

| 4 同 🕨 🖌 4 目 🤅

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a **flip set** if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$x \in X \iff y \notin X$$

Computer Scientists also call this "infinitary XOR gates".

Clearly:

- If x and y differ on an **even** number of digits then $x \in X \iff y \in X$.
- If they differ on an **odd** number then $x \in X \iff y \notin X$.
- If they differ on an **infinite** number of digits, we do not know what happens.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definition

A set $X \subseteq 2^{\mathbb{N}}$ is called a **flip set** if for all $x, y \in 2^{\mathbb{N}}$ which differ on exactly one digit:

$$x \in X \iff y \notin X$$

Computer Scientists also call this "infinitary XOR gates".

Clearly:

- If x and y differ on an **even** number of digits then $x \in X \iff y \in X$.
- If they differ on an **odd** number then $x \in X \iff y \notin X$.
- If they differ on an **infinite** number of digits, we do not know what happens.

Question: do flip sets exist?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Flip sets and AC

Lemma

Assuming AC, flip sets exist.

3

990

Flip sets and AC

Lemma

Assuming AC, flip sets exist.

Proof.

Let \sim be the equivalent relation on $2^{\mathbb{N}}$ such that $x \sim y$ iff $\{n \mid x(n) \neq y(n)\}$ is finite. For each equivalence class $[x]_{\sim}$, let $s_{[x]_{\sim}}$ be some fixed element from that class. Now define X by

$$x \in X \iff |\{n \mid x(n) \neq s_{[x]_{\sim}}(n)\}|$$
 is even.

This is a flip set: if x, y differ by exactly one digit, then $s_{[x]_{\sim}} = s_{[y]_{\sim}}$. But then, by definition, exactly one of x, y is in X.

Yurii Khomskii (KGRC, Vienna)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Flip sets and AD

Theorem

 $AD \implies flip sets don't exist.$

The local version

Assume Γ is closed under continuous pre-images. Then $\mathsf{Det}(\Gamma) \Rightarrow$ there are no flip sets in Γ .

Yurii Khomskii (KGRC, Vienna)

3

< 日 > < 同 > < 三 > < 三 >

The game

The game is the Banach-Mazur game on $2^{\mathbb{N}}$, we will denote it by $G^{**}(X)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Strategy stealing

We will not present a direct proof, but rather, a sequence of Lemmas which, assuming flip sets exist, lead to absurdity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

Strategy stealing

We will not present a direct proof, but rather, a sequence of Lemmas which, assuming flip sets exist, lead to absurdity.

Lemma 1

• If I has a w.s. in $G^{**}(X)$ then I has a w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

2 If II has a w.s. in $G^{**}(X)$ then II has a w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

Strategy stealing

We will not present a direct proof, but rather, a sequence of Lemmas which, assuming flip sets exist, lead to absurdity.

Lemma 1

- If I has a w.s. in $G^{**}(X)$ then I has a w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.
- 2 If II has a w.s. in $G^{**}(X)$ then II has a w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Assume σ is a w.s. for I in $G^{**}(X)$, then define σ' :

- The first move σ'(()) is a sequence of the same length as σ(() but differs from it at exactly one digit.
- Next, play according to σ , as if the first move was $\sigma(\langle \rangle)$.

Clearly, for any sequence y of II's moves, $\sigma * y$ and $\sigma' * y$ differ by exactly one digit. Since $\sigma * y \in X$ and X is a flip set, $\sigma' * y \notin X$, hence σ' is winning for I in $G^{**}(2^{\mathbb{N}} \setminus X)$.

The proof of 2 is analogous.

Yurii Khomskii (KGRC, Vienna)

Part II Flip Sets

Strategy stealing (continued)

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X): \quad \frac{\mathbb{I}:}{\mathbb{I}:}$$

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{|| s|}{|| s|}$$

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{|| s}{|| || t}$$

Yurii Khomskii (KGRC, Vienna)

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \quad \begin{array}{c|c} 1: & s & & \\ \hline 11: & & t & \\ G^{**}(X) : & \begin{array}{c|c} 1: & & \\ \hline 11: & & \\ \hline 11: & & \end{array}$$

Yurii Khomskii (KGRC, Vienna)

nac

(日) (同) (三) (三) (三)

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{\begin{array}{c|c} | & s \\ \hline \\ \hline \\ | & | & t \end{array}$$

$$G^{**}(X) := \frac{\begin{array}{c|c} | & s^{\frown} t \\ \hline \\ \hline \\ | & | & \\ \end{array}$$

Yurii Khomskii (KGRC, Vienna)

nac

(日) (同) (三) (三) (三)

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{\begin{array}{c|c} || & s \\ \hline || : & | & t \end{array}}{G^{**}(X) := \begin{array}{c|c} \frac{| : & | & s^{\frown} t \end{array}}{|| : & | & s_0 \end{array}}$$

Yurii Khomskii (KGRC, Vienna)

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{\begin{array}{c|c} || & s & s_0 \\ \hline || : & | & t \end{array}}{G^{**}(X) := \begin{array}{c|c} || & s^{\frown} t \\ \hline || : & | & s_0 \end{array}}$$

Yurii Khomskii (KGRC, Vienna)

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{1: || s || s}{11: || t || t} = t_0$$

$$G^{**}(X) := \frac{1: || s^{\frown} t}{11: || s_0}$$

Yurii Khomskii (KGRC, Vienna)

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := rac{1:}{|1:|} rac{s s_0}{t t t_0}$$

 $G^{**}(X) := rac{1:}{|1:|} rac{s^{-}t t_0}{s_0}$

Yurii Khomskii (KGRC, Vienna)

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := rac{1:}{|1:|} rac{s s_0}{t t t_0}$$
 $G^{**}(X) := rac{1:}{|1:|} rac{s^{-}t t_0}{|1:|} rac{s_0 s_1}{s_0 s_1}$

Yurii Khomskii (KGRC, Vienna)

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := rac{1:}{|1:|} rac{s + s_0 + s_1}{t}$$
 $G^{**}(X) := rac{1:}{|1:|} rac{s^{-}t + t_0}{s_0 + s_1}$

Yurii Khomskii (KGRC, Vienna)

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := rac{|\mathbf{l}:|| \ s \ s_0 \ s_1}{|\mathbf{l}:|| \ t \ t_0}$$

 $G^{**}(X) := rac{|\mathbf{l}:|| \ s^{\frown} t \ t_0 \ \ldots}{|\mathbf{l}:|| \ s_0 \ s_1}$

Yurii Khomskii (KGRC, Vienna)

3

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{1:}{|1|:} \frac{s}{t} \frac{s_0}{t_0} \frac{s_1}{\ldots}$$
$$G^{**}(X) := \frac{1:}{|1|:} \frac{s^{-}t}{s_0} \frac{t_0}{s_1}$$

Yurii Khomskii (KGRC, Vienna)

nac

Lemma 2

If II has a w.s. in $G^{**}(X)$ then I has a w.s. in the game $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let τ be winning for II in $G^{**}(X)$. Player I will steal the strategy from II, as follows:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{1: || s || s || s_{1} || s_{1$$

Let $x = s^{-}t^{-}s_{0}^{-}t_{0}^{-}\dots$; then $x \notin X$ since τ was winning in the auxiliary game $G^{**}(X)$. Hence the strategy we just described is winning for I in $G^{**}(2^{\mathbb{N}} \setminus X)$.

SQA

イロト 不得 トイヨト イヨト 二日

Part II Flip Sets

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のの⊙

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

3

< 日 > < 同 > < 三 > < 三 >

nac

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X): \quad \frac{\mathbb{I}:}{\mathbb{I}:}$$

3

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X): \quad \frac{\mathsf{I}: \quad \mathsf{s}_0}{\mathsf{II}: \quad \mathsf{II}: \quad \mathsf{II$$

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

< □ > < 同 > < 回 > <

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad \frac{1: \quad | \quad s_0}{11: \quad | \quad |}$$
$$G^{**}(X) : \qquad \frac{1: \quad | \quad s}{11: \quad | \quad |}$$

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad \frac{|| \quad || \quad s_0}{||| \cdot ||}$$
$$G^{**}(X) : \qquad \frac{|| \quad || \quad s}{||| \cdot ||}$$

• Case 1. $|s_0| < |s|$.

3

< 日 > < 同 > < 三 > < 三 >

nac

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad \frac{|\mathbf{l}:|| \quad s_0}{|\mathbf{l}:|| \quad t_0}$$
$$G^{**}(X) : \qquad \frac{|\mathbf{l}:|| \quad s}{|\mathbf{l}:||}$$

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

nac

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad \frac{|| || || || || || s_0 - s_1}{|| || || || t_0}$$
$$G^{**}(X) : \qquad \frac{|| || || s}{|| || ||}$$

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad rac{|| s_0 s_1|}{|| || t_0} \ G^{**}(X) : \qquad rac{|| s t_1|}{|| || s_1|}$$

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{|\mathbf{l}:|| s_0 s_1 s_2}{|\mathbf{l}:|| t_0 t_1}$$
$$G^{**}(X) := \frac{|\mathbf{l}:|| s t_1 \dots}{|\mathbf{l}:|| s_1 s_2}$$

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) := \frac{|| s_0 s_1 s_2}{|| || t_0 t_1 \dots}$$
$$G^{**}(X) := \frac{|| s t_1 \dots}{|| || s_1 s_2}$$

• Case 1. $|s_0| < |s|$. Play t_0 such that $|s_0 \frown t_0| = |s|$ and $s_0 \frown t_0$ differs from s by an even number of digits.

Let $x := s_0 \ t_0 \ s_1 \ t_1 \ \dots$ and $y := s \ s_1 \ t_1 \ \dots$. Then x and y differ by an even number of digits. Since $y \in X$, also $x \in X$, so the strategy is winning for II.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad \frac{1: \| s_0}{\| I: \|}$$

$$G^{**}(X) : \qquad \frac{1: \| s}{\| I: \|}$$

$$\bullet \text{ Case } 2, |s_0| > |s|$$

3

< 日 > < 同 > < 三 > < 三 >

nac

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad rac{\mathsf{l}: \quad \mathsf{s}_0}{\mathsf{l}: \quad \mathsf{l}: \quad \mathsf{s}}$$
 $G^{**}(X) : \qquad rac{\mathsf{l}: \quad \mathsf{s}}{\mathsf{l}: \quad \mathsf{l}: \quad \mathsf{t}}$

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$.

Yurii Khomskii (KGRC, Vienna)

nac

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad rac{|\cdot| | s_0}{|\cdot| |} \\ G^{**}(X) : \qquad rac{|\cdot| | s t'}{|\cdot| |}$$

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$.

Yurii Khomskii (KGRC, Vienna)

nac

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \qquad rac{|| s_0}{|| || t_0} \ G^{**}(X) : \qquad rac{|| s t'}{|| || t}$$

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$G^{**}(2^{\mathbb{N}} \setminus X) : \quad rac{||\cdot|| s_0 \quad s_1}{||\cdot|| \quad t_0} \ G^{**}(X) : \quad rac{|\cdot|| s \quad t'}{||\cdot|| \quad t}$$

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

$$egin{array}{rcl} G^{**}(2^{\mathbb{N}}\setminus X) & & rac{|\mathbf{l}:|| & s_0 & s_1 & s_2 & \ \hline |\mathbf{l}:|| & t_0 & t_1 & \ \hline |\mathbf{l}:|| & s & t' & t_1 & \ \hline |\mathbf{l}:|| & t & s_1 & \ \hline \end{array}$$

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Strategy stealing (continued)

Lemma 3

If I has w.s. in $G^{**}(X)$ then II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$.

Proof.

Let σ be winning for I in $G^{**}(X)$. Player II will do the following:

• Case 2. $|s_0| \ge |s|$. Play any t such that $|s^{-}t| > |s_0|$. Play t_0 such that $|s_0^{-}t_0| = |s^{-}t^{-}t'|$ and $s_0^{-}t_0$ and $s^{-}t^{-}t'$ differ on an even number of digits.

Let $x := s_0 f_0 f_1 f_1 \dots$ and $y := s f' f' f_1 \dots$. Then x and y differ by an even number of digits. Since $y \in X$, also $x \in X$, so the strategy is winning for II.

・ロト ・ 同ト ・ ヨト ・ ヨー

Corollary

Combining Lemmas 1, 2 and 3:

Corollary

AD \Rightarrow flip sets don't exist.

3

990

◆ロ > ◆母 > ◆臣 > ◆臣 >

Corollary

```
Combining Lemmas 1, 2 and 3:
```

Corollary

```
AD \Rightarrow flip sets don't exist.
```

Proof.

Suppose X is a flip set. By determinacy I or II has a w.s.

• I has w.s. in
$$G^{**}(X)$$

 \implies I has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$

 \implies II has w.s. in $G^{**}(X)$.

• II has w.s. in
$$G^{**}(X)$$

 \implies II has w.s. in $G^{**}(2^{\mathbb{N}} \setminus X)$

 \implies I has w.s. in $G^{**}(X)$.

Both situations are clearly absurd.

< ∩

4. Wadge reducibility

3

990

イロト イポト イヨト イヨト

Continuous functions on the Baire space

Recall that on the Baire space, $f: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is continuous at $x \in \mathbb{N}^{\mathbb{N}}$ iff

 $\forall s \lhd f(x) \quad \exists t \lhd x \quad \forall y (t \lhd y \rightarrow s \lhd f(y))$

In words: every initial segment of f(x) depends only on an initial segment of x.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ (~)

Continuous functions on the Baire space

Recall that on the Baire space, $f:\mathbb{N}^{\mathbb{N}} o\mathbb{N}^{\mathbb{N}}$ is continuous at $x\in\mathbb{N}^{\mathbb{N}}$ iff

$$\forall s \lhd f(x) \quad \exists t \lhd x \quad \forall y (t \lhd y \rightarrow s \lhd f(y))$$

In words: every initial segment of f(x) depends only on an initial segment of x.

William Wadge (1983) studied continuous functions as a notion of **reducibility** on the Baire space.

Continuous functions on the Baire space

Recall that on the Baire space, $f:\mathbb{N}^{\mathbb{N}}\to\mathbb{N}^{\mathbb{N}}$ is continuous at $x\in\mathbb{N}^{\mathbb{N}}$ iff

$$\forall s \lhd f(x) \quad \exists t \lhd x \quad \forall y (t \lhd y \rightarrow s \lhd f(y))$$

In words: every initial segment of f(x) depends only on an initial segment of x.

William Wadge (1983) studied continuous functions as a notion of **reducibility** on the Baire space.

Definition

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$. A is **Wadge reducible** to B, notation $A \leq_W B$, iff there is a continuous function $f : \mathbb{N}^{\mathbb{N}} \longrightarrow \mathbb{N}^{\mathbb{N}}$ such that for all x:

$$x \in A \iff f(x) \in B$$

Yurii Khomskii (KGRC, Vienna)

nac

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Properties of \leq_W

- $A \leq_W B$ iff $\overline{A} \leq_W \overline{B}$.
- \leq_W is a **pre-wellorder** (transitive and reflexive but not anti-symmetric).
- We can define $A \equiv_W B$ iff $A \leq_W B$ and $B \leq_W A$ and consider $\mathbb{N}^{\mathbb{N}} / \equiv_W$ (the equivalence classes $[A]_W$ are called **Wadge degrees**).

Properties of \leq_W

- $A \leq_W B$ iff $\overline{A} \leq_W \overline{B}$.
- \leq_W is a **pre-wellorder** (transitive and reflexive but not anti-symmetric).
- We can define $A \equiv_W B$ iff $A \leq_W B$ and $B \leq_W A$ and consider $\mathbb{N}^{\mathbb{N}} / \equiv_W$ (the equivalence classes $[A]_W$ are called **Wadge degrees**).

Wadge reducibility plays a role in topology/analysis but also in computer science.

Properties of \leq_W

- $A \leq_W B$ iff $\overline{A} \leq_W \overline{B}$.
- \leq_W is a **pre-wellorder** (transitive and reflexive but not anti-symmetric).
- We can define $A \equiv_W B$ iff $A \leq_W B$ and $B \leq_W A$ and consider $\mathbb{N}^{\mathbb{N}} / \equiv_W$ (the equivalence classes $[A]_W$ are called **Wadge degrees**).

Wadge reducibility plays a role in topology/analysis but also in computer science.

Remark: The results in this section don't directly apply to \mathbb{R} or \mathbb{R}^n (but they do apply to $\mathbb{R} \setminus \mathbb{Q}$, other product spaces etc.)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Wadge reducibility and AD

Without determinacy, not much can be said about Wadge reducibility. However, under AD we get a very rich structure theory.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ (~)

Wadge reducibility and AD

Without determinacy, not much can be said about Wadge reducibility. However, under AD we get a very rich structure theory.

Theorem

$$\mathsf{AD} \implies \mathsf{for} \ \mathsf{all} \ \mathsf{A}, \mathsf{B} \subseteq \mathbb{N}^{\mathbb{N}}, \ \mathsf{either} \ \mathsf{A} \leq_W \mathsf{B} \ \mathsf{or} \ \mathsf{B} \leq_W \overline{\mathsf{A}}.$$

The local version

Assume Γ is closed under continuous pre-images, finite unions, intersections and complements, and contains closed sets. Then $Det(\Gamma) \Rightarrow$ for all $A, B \in \Gamma$, either $A \leq_W B$ or $B \leq_W \overline{A}$.

Wadge reducibility and AD

Without determinacy, not much can be said about Wadge reducibility. However, under AD we get a very rich structure theory.

Theorem

$$\mathsf{AD} \implies \mathsf{for} \ \mathsf{all} \ \mathsf{A}, \mathsf{B} \subseteq \mathbb{N}^{\mathbb{N}}, \ \mathsf{either} \ \mathsf{A} \leq_W \mathsf{B} \ \mathsf{or} \ \mathsf{B} \leq_W \overline{\mathsf{A}}.$$

The local version

Assume Γ is closed under continuous pre-images, finite unions, intersections and complements, and contains closed sets. Then $Det(\Gamma) \Rightarrow$ for all $A, B \in \Gamma$, either $A \leq_W B$ or $B \leq_W \overline{A}$.

Non-trivial corollary

For Borel subsets
$$A, B \subseteq \mathbb{N}^{\mathbb{N}}$$
 either $A \leq_W B$ or $B \leq_W \overline{A}$.

Yurii Khomskii (KGRC, Vienna)

イロト イポト イヨト イヨト

The Wadge game

Definition (Wadge game)

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$. The game $G^{W}(A, B)$ is played as follows:

I:
$$x_0$$
 x_1 ...II: y_0 y_1 ...

•
$$x_i, y_i \in \mathbb{N}$$

• Let $x = \langle x_0, x_1, \dots \rangle$ and $y = \langle y_0, y_1, \dots \rangle$; Player II wins iff
 $x \in A \iff y \in B$

Yurii Khomskii (KGRC, Vienna)

Main result about Wadge games

Lemma

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$.

- If II has a w.s. in $G^W(A, B)$ then $A \leq_W B$.
- **2** If I has a w.s. in $G^W(A, B)$ then $B \leq_W \overline{A}$.

200

イロト イポト イヨト イヨト ニヨ

Main result about Wadge games

Lemma

Let $A, B \subseteq \mathbb{N}^{\mathbb{N}}$.

- If II has a w.s. in $G^W(A, B)$ then $A \leq_W B$.
- 2 If I has a w.s. in $G^W(A, B)$ then $B \leq_W \overline{A}$.

Proof.

As before, fix f(z)(n) := z(2n) and g(z)(n) := z(2n+1). If τ is a winning strategy for II, then for every x played by I

$$x \in A \iff g(x * \tau) \in B.$$

But since g and $x \mapsto x * \tau$ are both continuous, $A \leq_W B$ follows.

Analogously, if σ is winning strategy for I then for every y we have $f(\sigma * y) \in A \iff y \notin B$, so we have $\overline{B} \leq_W A$, or equivalently $B \leq_W \overline{A}$.

SQA

イロト 不得 トイヨト イヨト 二日

Define $A <_W B$ iff $A \leq_W B$ and $B \not\leq_W A$.

Define $A <_W B$ iff $A \leq_W B$ and $B \not\leq_W A$.

Lemma

Assuming AD, if $A <_W B$ then I wins both $G^W(B, A)$ and $G^W(B, \overline{A})$.

200

イロト イポト イヨト イヨト ニヨ

Define $A <_W B$ iff $A \leq_W B$ and $B \not\leq_W A$.

Lemma

Assuming AD, if $A <_W B$ then I wins both $G^W(B, A)$ and $G^W(B, \overline{A})$.

Proof.

If II would win $G^W(B, A)$ we would have $B \leq A$ contrary to assumption.

・ロト ・ 同ト ・ ヨト ・ ヨー

Define $A <_W B$ iff $A \leq_W B$ and $B \not\leq_W A$.

Lemma

Assuming AD, if $A <_W B$ then I wins both $G^W(B, A)$ and $G^W(B, \overline{A})$.

Proof.

If II would win $G^W(B, A)$ we would have $B \le A$ contrary to assumption. If II would win $G^W(B, \overline{A})$ we would have

$$B \leq_W \overline{A}$$

Yurii Khomskii (KGRC, Vienna)

Define $A <_W B$ iff $A \leq_W B$ and $B \not\leq_W A$.

Lemma

Assuming AD, if $A <_W B$ then I wins both $G^W(B, A)$ and $G^W(B, \overline{A})$.

Proof.

If II would win $G^W(B, A)$ we would have $B \le A$ contrary to assumption. If II would win $G^W(B, \overline{A})$ we would have

$$B \leq_W \overline{A} \leq_W \overline{B}$$

Define $A <_W B$ iff $A \leq_W B$ and $B \not\leq_W A$.

Lemma

Assuming AD, if $A <_W B$ then I wins both $G^W(B, A)$ and $G^W(B, \overline{A})$.

Proof.

If II would win $G^W(B, A)$ we would have $B \le A$ contrary to assumption. If II would win $G^W(B, \overline{A})$ we would have

$$B \leq_W \overline{A} \leq_W \overline{B} \leq_W A$$

Define $A <_W B$ iff $A \leq_W B$ and $B \not\leq_W A$.

Lemma

Assuming AD, if $A <_W B$ then I wins both $G^W(B, A)$ and $G^W(B, \overline{A})$.

Proof.

If II would win $G^W(B, A)$ we would have $B \le A$ contrary to assumption. If II would win $G^W(B, \overline{A})$ we would have

$$B \leq_W \overline{A} \leq_W \overline{B} \leq_W A$$

again, contrary to assumption.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Martin-Monk theorem

Theorem (Martin-Monk)

Assuming AD, the relation $<_W$ is well-founded.

(i.e., there are no infinite descending chains).

The local version

Assume Γ is closed under continuous pre-images, finite unions, intersections and complements, and contains closed sets. Then $Det(\Gamma) \Rightarrow$ the relation $<_W$ restricted to sets in Γ is well-founded.

Simulateneous Exhibition (Simul)

Э

990

イロト イポト イヨト イヨ

Proof

Proof: Assume $<_W$ is ill-founded, and let

$$\cdots <_W A_3 <_W A_2 <_W A_1 <_W A_0$$

be an infinite descending chain of subsets of $\mathbb{N}^{\mathbb{N}}$. For every *n*, by the previous lemma, I has winning strategies in both $G^{W}(A_n, A_{n+1})$ and $G^{W}(A_n, \overline{A_{n+1}})$. Call these strategies σ_n^0 and σ_n^1 , respectively.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Proof

Proof: Assume $<_W$ is ill-founded, and let

$$\cdots <_W A_3 <_W A_2 <_W A_1 <_W A_0$$

be an infinite descending chain of subsets of $\mathbb{N}^{\mathbb{N}}$. For every *n*, by the previous lemma, I has winning strategies in both $G^{W}(A_n, A_{n+1})$ and $G^{W}(A_n, \overline{A_{n+1}})$. Call these strategies σ_n^0 and σ_n^1 , respectively.

Abbreviation:

$$G_n^0 := G^W(A_n, A_{n+1})$$

 $G_n^1 := G^W(A_n, \overline{A_{n+1}})$

Proof (continued)

To any $x \in 2^{\mathbb{N}}$, we can associate an infinite sequence of Wadge games

$$\left\langle G_{0}^{x(0)}, G_{1}^{x(1)}, G_{2}^{x(2)}, \dots \right\rangle$$

played according to I's winning strategies

$$\left\langle \sigma_0^{x(0)}, \sigma_1^{x(1)}, \sigma_2^{x(2)}, \dots \right\rangle.$$

Proof (continued)

To any $x \in 2^{\mathbb{N}}$, we can associate an infinite sequence of Wadge games

$$\left\langle G_0^{x(0)}, G_1^{x(1)}, G_2^{x(2)}, \dots \right\rangle$$

played according to I's winning strategies

$$\left\langle \sigma_0^{x(0)}, \sigma_1^{x(1)}, \sigma_2^{x(2)}, \dots \right\rangle.$$

Fix one particular $x \in 2^{\mathbb{N}}$. Player II will play an **infinitary simul** against all $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 日 ● ◆ ○ ○ ○

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ (~)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

200

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

13–14 June 2013 49 / 59

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

13–14 June 2013 49 / 59

500

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

13–14 June 2013 49 / 59

500

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $x \in 2^{\mathbb{N}}$ be fixed. I has winning strategy $\sigma_n^{x(n)}$ in every $G_n^{x(n)}$.

Yurii Khomskii (KGRC, Vienna)

13–14 June 2013 49 / 59

The result

For a fixed x, we have produced a sequence $\langle a_n^x \mid n \in \mathbb{N} \rangle$ of elements of $\mathbb{N}^{\mathbb{N}}$ with the following property:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ()

The result

For a fixed x, we have produced a sequence $\langle a_n^x \mid n \in \mathbb{N} \rangle$ of elements of $\mathbb{N}^{\mathbb{N}}$ with the following property:

For n ≥ 1, a^x_n is the sequence of I's moves in G^{x(n)}_n, and also the sequence of II's moves in G^{x(n-1)}_{n-1}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The result

For a fixed x, we have produced a sequence $\langle a_n^x \mid n \in \mathbb{N} \rangle$ of elements of $\mathbb{N}^{\mathbb{N}}$ with the following property:

- For n ≥ 1, a_n^x is the sequence of I's moves in G_n^{x(n)}, and also the sequence of II's moves in G_{n-1}^{x(n-1)}.
- Since I wins each game $G_n^{\times(n)}$, the definition implies

$$\begin{array}{l} x(n) = 0 \implies (a_n^x \in A_n \ \leftrightarrow \ a_{n+1}^x \notin A_{n+1}) \\ x(n) = 1 \implies (a_n^x \in A_n \ \leftrightarrow \ a_{n+1}^x \in A_{n+1}) \end{array}$$

(Recall that $G_n^0 = G^W(A_n, A_{n+1})$ and $G_n^1 = G^W(A_n, \overline{A_{n+1}})$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Comparing different *x*

To each $x \in 2^{\mathbb{N}}$ corresponds a unique "simul game". Now let's compare different x:

3

500

イロト イポト イヨト イヨト

Comparing different x

To each $x \in 2^{\mathbb{N}}$ corresponds a unique "simul game". Now let's compare different x:

Claim 1

If
$$\forall m \ge n \ (x(m) = y(m))$$
 then $\forall m \ge n \ (a_m^x = a_m^y)$.

Comparing different x

To each $x \in 2^{\mathbb{N}}$ corresponds a unique "simul game". Now let's compare different x:

Claim 1

If
$$\forall m \ge n \ (x(m) = y(m))$$
 then $\forall m \ge n \ (a_m^x = a_m^y)$.

Proof.

Note that the values of a_m^x and a_m^y depend only on games $G_{m'}^{\times(m')}$ and $G_{m'}^{y(m')}$ for $m' \ge m$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Claim 2

Let n be such that $x(n) \neq y(n)$ but $\forall m > n \ (x(m) = y(m))$. Then $a_n^x \in A_n \iff a_n^y \notin A_n$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ()

Claim 2

Let n be such that $x(n) \neq y(n)$ but $\forall m > n (x(m) = y(m))$. Then $a_n^x \in A_n \iff a_n^y \notin A_n$.

Proof.

Since $x(n) \neq y(n)$ we have two cases: (1) x(n) = 1 and y(n) = 0. Then $a_n^x \in A_n \leftrightarrow a_{n+1}^x \in A_{n+1}$ $a_n^y \in A_n \leftrightarrow a_{n+1}^y \notin A_{n+1}$ By Claim 1 $a_n^x \in A_n \iff a_{n+1}^x \in A_{n+1} \iff a_{n+1}^y \in A_{n+1} \iff a_n^y \notin A_n$. **2** x(n) = 0 and y(n) = 1. Then $a_n^x \in A_n \leftrightarrow a_{n+1}^x \notin A_{n+1}$ $a_n^y \in A_n \leftrightarrow a_{n+1}^y \in A_{n+1}$. By Claim 1 $a_n^x \in A_n \iff a_{n+1}^x \notin A_{n+1} \iff a_{n+1}^y \notin A_{n+1} \iff a_n^y \notin A_n$.

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

SQA

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

Proof.

By Claim 2 $a_n^x \in A_n \iff a_n^y \notin A_n$. Since x(n-1) = y(n-1) we have two cases: **1** x(n-1) = y(n-1) = 0. Then

$$a_{n-1}^{\mathsf{x}} \in A_{n-1} \leftrightarrow a_n^{\mathsf{x}} \notin A_n$$

 $a_{n-1}^{\mathsf{y}} \in A_{n-1} \leftrightarrow a_n^{\mathsf{y}} \notin A_n$.

and therefore $a_{n-1}^x \in A_{n-1} \leftrightarrow a_{n-1}^y \notin A_{n-1}$.

2 x(n-1) = y(n-1) = 1. Similar.

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

Proof.

By Claim 2 $a_n^x \in A_n \iff a_n^y \notin A_n$. Since x(n-1) = y(n-1) we have two cases: **1** x(n-1) = y(n-1) = 0. Then

$$\begin{array}{l} a_{n-1}^{x} \in A_{n-1} \ \leftrightarrow \ a_{n}^{x} \notin A_{n} \\ a_{n-1}^{y} \in A_{n-1} \ \leftrightarrow \ a_{n}^{y} \notin A_{n}. \end{array}$$

and therefore $a_{n-1}^x \in A_{n-1} \leftrightarrow a_{n-1}^y \notin A_{n-1}$.

2 x(n-1) = y(n-1) = 1. Similar.

Now go to the (n-2)-th level. Since again x(n-2) = y(n-2) we get, by a similar argument as before, $a_{n-2}^x \in A_{n-2} \leftrightarrow a_{n-2}^y \notin A_{n-2}$.

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

Proof.

By Claim 2 $a_n^x \in A_n \iff a_n^y \notin A_n$. Since x(n-1) = y(n-1) we have two cases: **1** x(n-1) = y(n-1) = 0. Then

$$a_{n-1}^{\times} \in A_{n-1} \leftrightarrow a_n^{\times} \notin A_n$$

 $a_{n-1}^{\vee} \in A_{n-1} \leftrightarrow a_n^{\vee} \notin A_n.$

and therefore $a_{n-1}^x \in A_{n-1} \leftrightarrow a_{n-1}^y \notin A_{n-1}$.

2 x(n-1) = y(n-1) = 1. Similar.

Now go to the (n-2)-th level. Since again x(n-2) = y(n-2) we get, by a similar argument as before, $a_{n-2}^x \in A_{n-2} \leftrightarrow a_{n-2}^y \notin A_{n-2}$.

We go on like this until we reach level 0, and there we get $a_0^x \in A_0 \iff a_0^y \notin A_0$.

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	у	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0		
1	1		
0	0		
0	0		
1	1		
1	0		
1	1		
0	0		

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	y	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0		
1	1		
0	0		
0	0		
1	1		
1	0		
1	1	yes	yes
0	0	yes yes	yes yes

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	y	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0		
1	1		
0	0		
0	0		
1	1		
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	y	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0		
1	1		
0	0		
0	0		
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	у	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0		
1	1		
0	0		
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	у	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0		
1	1		
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	y	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0		
1	1	yes	no
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	y	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0	no	yes
1	1	yes	no
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Claim 3

 \rightarrow

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	у	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0	no	yes
1	1	yes	no
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Let
$$X := \{ x \in 2^{\mathbb{N}} \mid a_0^x \in A_0 \}.$$

Claim 3

Let x and y be such that there is a unique n with $x(n) \neq y(n)$. Then $a_0^x \in A_0 \iff a_0^y \notin A_0$.

x	у	$a_n^x \in A_n$?	$a_n^y \in A_n$?
0	0	no	yes
1	1	yes	no
0	0	yes	no
0	0	no	yes
1	1	yes	no
1	0	yes	no
1	1	yes	yes
0	0	yes	yes

Let
$$X:=\{x\in 2^{\mathbb{N}}\mid a_{0}^{x}\in A_{0}\}.$$

By Claim 3, X is a **flip set**. By AD, this is impossible!

< ロト < 同ト < ヨト < ヨト -

Ernst Zermelo (1871-1953)

Dénes König (1884–1944)

László Kalmár (1905–1976)

< □ > < 同 > <

13–14 June 2013 55 / 59

3

990

David Gale (1921-2008)

Frank Stewart (Brown U)

-

990

William W. Wadge (U Victoria)

E

990

◆ロ > ◆母 > ◆臣 > ◆臣 >

Donald A. Martin (UCLA)

John Steel (UC Berkeley)

Hugh Woodin (UC Berkeley)

< □ > < 同 >

3

990

Thank you!

Yurii Khomskii yurii@deds.nl