Reflection Theorem

Qian Chen

January 31, 2024

Qian Chen

Reflection Theorem

Forcing and Independence Proofs 2024 1 / 10

(日)

Löwenheim-Skolem Theorem

Theorem (Löwenheim-Skolem Theorem, in ZFC – Foundation)

Let $\mathfrak{M} = (M, I)$ be an \mathcal{L} -model and $N_0 \subseteq M$. Then there exists a set $N \subseteq M$ such that $N_0 \subseteq N$, $|N| \leq \max(|N_0|, |\mathcal{L}|)$ and $\mathfrak{M} \upharpoonright N \preceq \mathfrak{M}$.

Lemma (Tarski-Vaught Criterion)

Let \mathfrak{M} and \mathfrak{N} be models such that $\mathfrak{N} \subseteq \mathfrak{M}$. Then the following are equivalent:

- $\mathfrak{N} \preceq \mathfrak{M}$.
- For all $\exists y \varphi(\vec{x}, y) \in \mathcal{L}$ and $\vec{a} \in N$, $\mathfrak{M} \models \exists y \varphi[\vec{a}]$ implies $\mathfrak{M} \models \varphi[\vec{a}, b]$ for some $b \in N$.

イロト 不得下 イヨト イヨト

From set models to proper class models...

As it is already known, we cannot apply LST-theorem directly to V. More precisely, we cannot generalize LST-theorem like this:

"Let N_0 be a set. Then there exists a set $N \supseteq N_0$ such that $N \preceq V$."

It is meaningless to say $N \leq V$, since we are not allowed to quantify over formulas. However, for any list $\varphi_0, \dots, \varphi_{n-1}$ of finitely many formulas, we can write down a sentence like:

$$\exists M(\bigwedge_{i< n} M \preceq_{\varphi_i} V),$$

where $M \preceq_{\varphi_i} V$ means

$$(M, \in) \models \varphi_i[a_0, \cdots, a_{n-1}]$$
 if and only if $(V, \in) \models \varphi_i[a_0, \cdots, a_{n-1}]$

for every $a_0, \cdots, a_{n-1} \in M$.

Theorem (Reflection Principle)

(i) Let $\varphi(x_1, \dots, x_n)$ be a formula. For each set M_0 , there is a set M such that $M_0 \subseteq M$ and

$$\varphi^{\mathcal{M}}(x_1,\cdots,x_n)\leftrightarrow \varphi(x_1,\cdots,x_n).$$

for every $x_1, \dots, x_n \in M$. (We say that M reflects φ .) (ii) Moreover, there is a transitive set $M \supseteq M_0$ that reflects φ ; moreover, there is a limit ordinal α such that $M_0 \subseteq V_{\alpha}$ and V_{α} reflects φ . (iii) Assuming the Axiom of Choice, there is a set M such that $M_0 \subseteq M$, M reflects φ and $|M| \leq \max(|M_0|, \aleph_0)$. In particular, there is a countable M that reflects φ . Before proving the reflection principle, we prove a 'class version' of Tarski-Vaught criterion:

Lemma

Let $\Phi = \{\varphi_i : i < n\}$ be a subformula-closed set of formulas. Let A, B be classes with $\emptyset \neq A \subseteq B$. Then the following are equivalent: (1) $\bigwedge_{i < n} A \preceq_{\varphi_i} B$. (2) For all existential formulas $\varphi_i = \exists y \varphi_j(\vec{x}, y) \in \Phi, \forall \vec{a} \in A(\varphi_i^B(\vec{a}) \rightarrow \exists b \in A\varphi_j^B(\vec{a}, b))$. It suffices to show the following lemma:

Lemma

Let $\Phi = \{\varphi_i : i < n\}$ be a finite set of formulas. For each set M_0 , there exists a (transitive) set M such that $M_0 \subseteq M$ and,

(*†*) for all $\vec{x} \in M$ and $\varphi \in \Phi$, $\exists y \varphi(\vec{x}, y)$ implies $\exists y \in M \varphi(\vec{x}, y)$.

Assuming AC, there exists a set N such that (†) holds for N and $|N| \leq \max(|M_0|, \aleph_0)$.

イロト 不得下 イヨト イヨト

Reflection Principle

Now it is easy to see the following theorem holds:

Theorem (Reflection Principle)

(i) Let $\varphi(x_1, \dots, x_n)$ be a formula. For each set M_0 , there is a set M such that $M_0 \subseteq M$ and

$$\varphi^{M}(x_{1},\cdots,x_{n})\leftrightarrow\varphi(x_{1},\cdots,x_{n}).$$

for every $x_1, \dots, x_n \in M$. (We say that M reflects φ .) (ii) Moreover, there is a transitive set $M \supseteq M_0$ that reflects φ ; moreover, there is a limit ordinal α such that $M_0 \subseteq V_{\alpha}$ and V_{α} reflects φ . (iii) Assuming the Axiom of Choice, there is a set M such that $M_0 \subseteq M$, M reflects φ and

 $|M| \leq \max(|M_0|, \aleph_0)$. In particular, there is a countable M that reflects φ .

Theorem (Reflection Theorem)

Let $\Phi = \{\varphi_i : i < n\}$ be a finite set of formulas. Assume that B is a non-empty class and $\langle A(\alpha) : \alpha \in \text{Ord} \rangle$ is a transfinite sequence such that: (i) $\alpha < \beta$ implies $A(\alpha) \subseteq A(\beta)$, (ii) if α is limit, then $A(\alpha) = \bigcup_{\beta < \alpha} A(\beta)$, and (iii) $B = \bigcup_{\alpha \in \text{Ord}} A(\alpha)$. Then $\forall \alpha \exists \beta > \alpha(A(\beta) \neq \emptyset \land \bigwedge_{i < n} A(\beta) \preceq_{\varphi_i} B \land \beta$ is limit).

Some Corollaries

Corollary

Let Λ be a finite set of axioms of ZF. Then

(1)
$$\mathsf{ZF} \vdash \exists \alpha \in \mathsf{Ord}(V_{\alpha} \models \Lambda \cup (\mathsf{ZF} - \mathsf{Replacement})),$$

(2)
$$\mathsf{ZFC} \vdash \exists \alpha \in \mathsf{Ord}(V_{\alpha} \models \Lambda \cup (\mathsf{ZFC} - \mathsf{Replacement}))$$
, and

(3)
$$\mathsf{ZFC} \vdash \exists M(M \models \Lambda \cup (\mathsf{ZF} - \mathsf{Replacement}) \land |M| = \aleph_0 \land M \text{ is transitive}).$$

Theorem

If $\Gamma \supseteq ZF$ is consistent, then Γ is not finitely axiomatizable.

э

< ロ > < 同 > < 回 > < 回 >

Thanks!

Qian Chen

 $\begin{array}{c} \bullet \square \models \bullet \bullet \blacksquare \models \bullet \bullet \blacksquare \models \bullet \bullet \blacksquare \bullet \bullet \blacksquare \bullet \circ \bigcirc \bigcirc \bigcirc \bigcirc \end{array}$ Forcing and Independence Proofs 2024 10/10