If
$$x \in M$$
 and φ absolute, $\exists ! y \varphi(x, y)$
 $(x \mapsto y)$

Mot absolute:
$$P(x)$$
. {f: x→y} R
 w^{ω} , 2^{ω} $P(w)$ etc.
Cardinalities/ (ardinals.
E.g: $\alpha \in Ord$, $\alpha \in M$
 $M \models (\alpha = \omega_1)$
 $M \models \alpha$ is the least multiple ordinal.
Notation: ω_1^{M} := the ordinal α such that
(α is the least multiple ord)^M

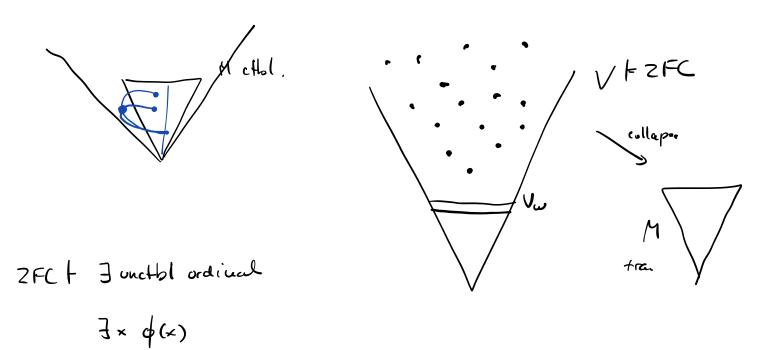
 $P(x)^{M} = P(x) \cap M$

Keep in Hind: (later)
•
$$P \in M$$

• $Deuse$ sets $D \in P$ that are in M
 $D \in M$
• $G = generic$ object: $G \subseteq P$, $(G \subseteq M)$
but $G \notin M$.
In Some proofs: $D := Sp \in P$ | $p \parallel f \oplus S$ (comprehence)
So $D \in M$ because $\parallel f^*$ is
 $definable in M$.

$$\frac{\int d^{n}}{dt} = \frac{\int d^{n}}{dt} = \frac{\int$$

|



$$\begin{array}{c} \circ & 1 & 2 & \dots \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

$$P(x) = y$$

$$\forall z \ (z \in y \iff z \in x \) \equiv \ \varphi(x, y)$$

$$\forall y = limit \text{ ordinal then } P(x) \text{ is absolute for } Vy$$

$$\forall x \in V_y : \text{ if } y \text{ satisfies } \varphi(x, y) \text{ then } y \in Vy$$

$$w = V_y = \varphi(x, y)$$

To prove suppose
$$x \in V_{\delta}$$
. Let $y \in x$. We must
show that $y \in V_{\delta}$. If this is the case for
all $y \in x$ then $P(x) \leq V_{\delta}$.
Miso $P(x)^{V_{\delta}} = P(x) \cap V_{\delta}$ (bec " \leq " is D_{δ}
 $= z absolute$.

"q(x) absolute for M"
 $V_{x} \models (x = x)$
 $V_{x} \models (x = x)$
 $V_{x} \models (x = x)$

" $P(x)$ is absolute for M"
means: $P(x) \in M$ (and absolute)
" $avery \ y \in x$ is $y \in M$ "

Wed 31:
$$13 - 13 (later)$$

The 1: $13 - 17 (16:00?)$
The 1: $13 - 17 (16:00?)$
 $13:30 - 17:30$
 $16:00 - 19:30 (t)$
 $16:00 - 19:30 (t)$
 $16:00 - 19:30 (t)$
 $16:00 - 19:30 (t)$
 $16:00 - 19:30 (t)$