Set Hodels
H is a set
"H =
$$\varphi$$
" formalized (Tacki reaving
in 2FC
Vov can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Now can say: " $\exists \varphi \forall H$, $\beta H = \varphi$..."
Question: $H = prop. class. When we say $ZFC \vdash "H \models ZFC$."
What do we mean?
This mean: for every φ from ZC , $ZFC \vdash "\varphi^H$.
Generation: " $H = \varphi$..."
Generation: " $H = \varphi$..."
 $for every \varphi$ from ZC , $ZFC \vdash "\varphi^H$.$

number
$$n$$
 (φ is φ_n) we could unite " $M \models \varphi$ " in
ZFC, then ZFC \vdash ($M \models \varphi_n$) $\leftrightarrow \varphi$
 $\int Tirth predicate is undefinable!$

Reflection: Down. L-Sk:
$$M \not\models \Sigma$$
, $a \not\in M$, you can
find $N \not\in M$ s.t. $a \not\in N$,
 $|N| = \max(|a|, N_o), and$
 $N \not\models \Sigma$.
"Skolen Hull"
 $N := H_{\mu}(a)$

In ZFC, you fix to do the some:

Instead: For any finitely many axious
$$ZFC^* \in ZFC$$
,
a any set:
Refl 1: $\exists M \notin ZFC^*$ with $a \notin M$
 $|M| = max(|a|, N_0)$
(but not tousitive)
Refl 2: $\exists M \notin ZFC^*$ with $a \notin M$
 M is transitive
(but M not small in stra
 $R \notin M = V_A$

Refl 3: (Refl + Mostowski Collapse)
If a was transitive, then
BME 2FC* with
$$\alpha \in M$$

M transitive
[M] = mex-(Ial, Xo)

NB: True: For any fin. fragm. ZFC* of ZFC, ZFC+ "Jset MEZFC*" Not True: ZFC+ "Yfn. fragm ZFC* EZFC, JMEZFC*" (=> ZFC+ Con(ZFC))

Def: if X is a set then
$$Y \in X$$
 is called "definable" it
there is $q(z,)$ such that $Y := \{z \in X \mid X \neq q(z, q, ..q_n)\}$

Def if X is a set, then
$$D(x) := \{ Y \in X \mid Y \text{ definable} \}$$

$$\frac{Observations:}{L_{0} = V_{0} = \phi}$$

$$L_{n} = V_{n} \quad \text{for } n \in \omega$$

$$L\omega = V_{\omega}$$

$$L\omega = V_{\omega}$$

$$L\omega_{+1} = ? \quad \text{vs.} \quad V_{\omega+1} = ?$$

$$|V_{\omega+1}| = |P(v_{\omega})| = 2^{N_{0}}$$

$$|L\omega_{+1}| = |L_{\omega}| = \omega$$

$$|V_{\omega+1}| = |P(v_{\omega})| = 2^{N_{0}}$$

$$|L\omega_{+1}| = |L_{\omega}| = |\omega|$$

Properties:
$$L_{x}$$
 are all transitive; $\alpha < \beta \Rightarrow L_{\alpha} < L_{\beta}$... etc.
Theorem: $L \not\models ZF$
Proof: Mosthy stanightforword; for $L \not\models$ Comprehensin you would be
use Reflection.
Even without ensuming AC, you can define L and prove:
Theorem (2F): $IL \not\models AC$
Proof: $AC \iff \forall x$ can be wellerdered.
The facts, $L \not\models$ "Global Choice" = "there is a class
velation well-ordering
the whole surveyse"
Define recursively a woo. $\leq x$ of each last Lx .
• Suppose $(L_{\alpha, \leq x})$ is woo.
• For $L_{\alpha < 1}$: take $x, y \in L_{\alpha < 1}$:
• $F < x, y \in L_{\alpha}$, then
 $x < any : <=> x < ay$: $(uou sch cover)$
• If $x < L_{\alpha}$ and $y < L_{\alpha < 1} L_{\alpha}$: $x < ay$ (now sch cover)

$$x = \{z \mid L_{\alpha} \neq (q(z_1, q_1 \dots q_n))\}$$

$$y = \{z \mid L_{\alpha} \neq (q(z_1, q_1 \dots q_n))\}$$

$$flue \quad levst \quad \psi \quad aud \quad z_{\alpha}^{lev} - levst$$

$$b_1 \dots b_k \in L_{\alpha} \quad defining \quad J.$$

Let's move on to CH :
Theorem: "La - definition" is absolute for transitive
$$M \models ZFC^*$$

Proof: "being definable", $D(x)$ and ordinals one all absolute.
(chook.)
This means: really " $\alpha \longmapsto L\alpha$ " is absolute.

Theorem: "Is is the minimal transitive model of ZFC"
Proof: If M & ZFC, M proper close, M transitive
Then Ord E M. So
$$L_{x} \in M$$
 $\forall x$.
So $L_{x} \in M$ $\forall x$.
So $L_{x} \in M$ $\forall x$.
So $L \in M$
Dof: Axiom of Construction lity: " $\forall x \exists x (x \in L_{x})$ "
Typically: " $V = I$."
Nute: $I \neq (V = t)$
Proof: $\forall x \in L \exists x (x \in L_{x})$
 $=$ $\forall x \in L \exists x (x \in L_{x})$
 $=$ $(\forall x \exists x (x \in L_{x})^{L}$
 $=$ $(\forall x \exists x (x \in L_{x})^{L}$
 $=$ $L \neq (V = t)$
Theorem: If M trans. prop does $M \neq ZFC + "V = L$ "
Then $M = L$.
Proof: $L \in M$ always.
If $M \neq (v = t)$

$$f M F (V=L)$$

$$M F (\forall x \exists x \in Lx)$$

$$= \forall x \in M \exists x \in M (x \in Lx)^{H}$$

Same works for any
$$X \in K = 7$$
 $X \in LK^{+}$
... $|P(v)| \leq |L_{K^{+}}| = K^{+}$
 2^{K}

So: LE GCH