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Introduction

Introduction

We want to construct a model for ZFC + —CH.
Proper class models cannot do the trick (as we will show).
Idea: Extend a set model so that CH is false.

Recap:
@® Take a countable transitive model M for ZFC.
@ Take a forcing poset (P, <,1) € M and a P-generic filter G.
@ Extend M to a larger model M[G] for ZFC that contains G.

We need to choose an appropriate P that forces M[G] = —~CH.

Once we have such a P, we obtain Con(ZFC)— Con(ZFC + —CH).
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Caution: But how did we get a set model M7

Two solutions:
® Inaccessible cardinals. Use that V,; = ZFC.

® Finite fragments. If =Con(ZFC 4 —CH) there exists some finite
Q C ZFC such that Q +-CH F L. Then in ZFC, we can prove
the existence of a ctm M|[G] for Q + —CH, starting from a ctm
M for ZFC. Yet again, this proof only uses that M satisfies
some finite fragment ZFC*, and the Reflection Theorem provides
a ctm for ZFC*.
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Proper class models fail

Lemma. Suppose that in ZF, we can construct a transitive proper
Proper class L. .
models fail class model for ZFC + —CH. Then ZF is inconsistent.

Proof. Suppose we have constructed such a transitive proper class M
in ZF. Then in particular, M can be constructed in ZFC 4 (V = L).

The axiom V = L then implies M C L.

However, since M is a proper class and the rank function is absolute

for transitive models, we must have ON C M. Recalling that the
L-hierarchy is absolute for transitive models, we obtain L C M.

Thus M = L, but then M = CH. However, we assumed M = —CH,
so ZFC + (V = L) is inconsistent, which in turn shows that ZF is

inconsistent. O




The forcing poset
Fn(I, J)

The forcing poset Fn(7, J)

For sets I, J we define Fn(I,.J) as the set of all finite partial
functions from I to J. For f,g € Fn(I,J) we write f < giff f D g.
We always have () € Fn(l,J) and we take 1 = .

(Fn(I,J),<,1) is a forcing poset.

Note that f extends g in the forcing poset precisely when f extends g

as a function.

If M is a ctm for ZFC and I, J € M then (Fn(I,J),<,1) € M by

absoluteness.



The Delta System Lemma

Lemma. Let x be an uncountable regular cardinal, and let A be a
family of finite sets with |.A| = k. Then there exists a delta system
B C A of size k with a finite root R, that is we have

The Delta X NY = R for all distinct X,Y € B.

System Lemma

Proof. k is regular and A = J,,c{X € A: |X| = n} has size .
Therefore there must be an n € w such that {X € A: |X| =n} has
size k. Without loss of generality we may assume that each X € A

has size n.
We use induction on n > 0. Note n = 0 does not occur.

For n = 1, the statement is trivial.




The Delta System Lemma

Suppose 1 > 1. Define Ay = {X € A: t € X} for all ¢.

Two cases:
e el @ Suppose |A;| < & for all t. Then for any S with |S| < &, the set
Sistem femms {XeA: XNS #0} =U,cqg At is smaller than &, therefore
X NS =0 forsome X € A.
Thus we can recursively define (X, € A: a € k) such that for
every a € r we have Xo Nz, Xp = 0.
Take B={X,: a € k} and R = 0.
@® Suppose |A;| =  for some t. Using the induction hypothesis on
C={X\{t}: X € A;} we obtain a delta system D C C with
root 7.

Take B={ZU{t}: Ze€C} and R=T Ut} O




The forcing poset Fn(7, J)

Lemma. Fn(/,J) has the ccc iff I = @) or J is countable.

Proof. If I or J is empty then Fn(I,.J) = {} which is ccc.
Otherwise:

= If J is uncountable then fix an z € I. Now the singleton

The Countable
Chain Condition

functions {(z,y)} for y € J form an uncountable antichain.
< If J is countable suppose we have (p,: a € wy) in P.
By the Delta System Lemma there exists an uncountable

B C wy and a finite root R C I such that for any «, 5 € B with
a # B we have dom(p,) Ndom(pg) = R.

Since J is countable, there exist o, 3 € B with o # 3 and
Do | R=pg | R. But then p, [ pg so the sequence is not an

antichain. O




Preservation of

Cardinals

Preservation of Cardinals

Let M be a ctm for ZFC.

Definition. A forcing poset P preserves cardinals iff for all generic G

and o € o(M) we have: (a is a cardinal)™ iff (a is a cardinal)M[¢],
Theorem. If (P is ccc)™ then PP preserves cardinals.

Lemma. A forcing poset P preserves cardinals iff for all generic G
and « € o( M) we have (R,)M = (R, )MIC],

Note: (R,)M = (R,)M[C] does not imply (28«)M = (2Ra)MIC],



Preservation of Cardinals

Lemma. A forcing poset IP preserves cardinals iff for all generic G
and o € o(M) we have (R, )M = (R, )Ml

Proof.
< Because every infinite cardinal can be written as X,.
= By induction on a € o(M).
St Assume (R )M = (R, )MIC] We see (Ryy1)M < (Ryqq)MIC]
because M C M|[G]. However (R, 1)M is also a cardinal in
M][G]. Therefore (Ryy1)™M = (Rqyq)MIEL

Assume « is a limit and for all 8 < a that (Rg)M = (Rg)MIE],
Now (Ra)™ = U (Ra)™ = Ugen(Rp)M1E = (Rg)MIEL 1]




Forcing -CH
We are now ready to give a model for ZFC + —~CH.

@ Let M be a ctm for ZFC and let v € o(M). Write k = (R,)M.

@ Let P denote the forcing poset Fn(k x w,2) and let G be a
P-generic filter over M. Since k X w,2 € M we have
(P,2,0) € M.

@ We obtain a ctm M|G] for ZFC with M C M|[G], G € M[G).

Forcing —CH

We show M[G] = —~CH by constructing an injection from X., to 2¢
within M[G], which gives M[G] |= 2% > X,

That is, we construct an injection from (R, )MIC] to (2¢)MIC] that
lives in M[G].




Forcing -CH

As G is a filter we have that fg := |J G defines a partial function.

For each i € k X w, absoluteness gives
D;,:={qeP:icdom(q)} e M.

Each D; is dense: any partial function can be extended to one with ¢
in its domain. So G intersects every D; and thus fg: k X w — 2.

Forcing ~CH Then fg defines a sequence (h,: « € k) of functions
ha:w — 2,
n— fala,n).

Note fg is in the extended model M[G] since G € M|G], so the
sequence (hy: « € k) is in M[G] as well.
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Forcing -CH

We will show that the h,, are distinct.

For o, B € k with « # 3, define E, g as the set
{g € P: 3n € w[(,n), (B,n) € dom(q) A g(a,n) # q(B,n)]}.
By absoluteness, each E g is in M.

Note that each E, g is dense: for any p € IP there exists an n € w

with (a,n), (8,n) ¢ dom(p), so we can extend p to a ¢ € E, g with

g: dom(p) U{(a,n), (B,n)} — 2.

So there exists a ¢ € E, 3 N G which implies there is an n € w with

ha(n) = fa(a,n) = q(a,n) # q(B,n) = fa(B,n) = hg(n).



Forcing —CH

Forcing -CH

Thus we obtain an injection h € M[G] given by
h: ke — (29)MIE]

a— he.

Recall £ = (R,)M.

Because (2 is countable)™ we have (P is a ccc)M. Therefore P

preserves cardinals, and thus x = (R,)M = (R,)M[C],

So we have our injection from (X.,)MIC] to (2¢)MIC]| showing
M[G] |= 2% >R,

In particular we can take v = 2 in which case

M][G] |= ZFC + —CH.
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