Lineare Darstellungen von Symmetrischen Gruppen

150 232 (Holtkamp) 2st., Mi 12.00-14.00, NA 2/24

Beispiel 1. Freies Monoid über Alphabet X

Beispiel 2. $S_1, S_2, S_3, ...$

Satz 1. (Bijektion zw. Partitionen von n und Konjugationsklassen von S_n)

Satz 2. $(k_{\lambda} = ...)$

Beispiel 3. Triviale Darstellung, Sgn-Darstellung, Standard-Darstellung von S_n

Beispiel 4. Linksreguläre Darstellung ...

Beispiel 5. $\mathbb{C}[1+2+...+n]$

Beispiel 6. $\mathbb{C}[\underline{3}] = \mathbb{C}[1+2+3] \oplus \mathbb{C}[2-1,3-1]$ als S_3 -Modul.

Satz 3. (Maschke)

Beispiel 7. $\mathbb{C}[\mathcal{H}], \mathcal{H} := \{H, (1,2)H, (1,3)H\}, H = S(\{2,3\}) \leq S_3$

Lemma 1. (Schur)

Beispiel 8. M^{λ}

Satz 4. $\mathbb{C}[S_n\{t^{\lambda}\}]$ isomorph zur Restklassendarstellung von S_n bzgl. S_{λ} .

Beispiel 9. Fixpunkte zählen...

Satz 5. (Charakter-Gleichungen erster Art [die Zeilen]).

Beispiel 10. Charaktertafel von S_3

Satz 6. Multiplizitäten in $\mathbb{C}[G]$.

Satz 7. (Charakter-Gleichungen der zweiten Art: die Spalten)

Satz 8. $d_G^{(i)} \otimes d_H^{(j)}$ eine vollständige Liste aller irreduziblen $G \times H$ -Moduln.

Beispiel 11. Was ist $d_G = 1 \uparrow^G$, z.B. $1 \uparrow^G ((1,2))$?

Satz 9. (Induzierte Darstellung)

Satz 10. (Reziprozitätsgesetz von Frobenius)

Satz 11. (Geissinger-Bialgebra)

Beispiel 12. S^{λ}

Satz 12. (Untermodul-Theorem von James)

Satz 13. vollständige Liste der irreduziblen S_n -Moduln (über \mathbb{C})

Satz 14. (Robinson-Schensted)

Satz 15. (*Knuth*)

Satz 16. (i) Für jeden Rahmen $R = R(\lambda \setminus \tilde{\lambda}), |R| = n, \text{ ist } SYT^R \text{ eine Verei-}$ nigung von koplaktischen Klassen in S_n .

(ii) Für $\lambda \vdash n$ ist SYT^{λ} eine koplaktische Klasse in S_n .

Beweis (ii):

Wir zeigen mit Induktion über n, dass für alle $\pi, \rho \in S_n$ gilt:

$$\pi, \rho \in SYT^{\lambda} \Rightarrow \pi \sim_K \rho.$$

Sei $R = R(\lambda)$, $\alpha = \pi \circ \iota_R^{-1}$, $\beta = \rho \circ \iota_R^{-1}$. Sei λ^- die Partition von n-1 mit $R' = R(\lambda^-) = R \setminus \alpha^{-1}(n)$ [$\alpha^{-1}(n)$ ist eine äußere Ecke von R'], $\pi' = \alpha \circ \iota_{R'} \in SYT^{R'}$. [Das Wort π' entsteht aus π durch Entfernen des Buchstabens n.]

Fall 1: $\alpha^{-1}(n) = \beta^{-1}(n)$

Dann ist, mit $\rho' := \beta \circ \iota_{R'}$, $\pi' \sim_K \rho'$ nach Induktion und somit auch $\pi \sim_K \rho$.

Andernfalls, sei u maximal mit $u \leq_{\mathbb{Z} \times \mathbb{Z}} \alpha^{-1}(n)$, $u \leq_{\mathbb{Z} \times \mathbb{Z}} \beta^{-1}(n)$. Es ist dann $H := \{w \in R : u \leq_{\mathbb{Z} \times \mathbb{Z}} w\} \setminus \{\alpha^{-1}(n), \beta^{-1}(n)\}$ nichtleerer Rahmen.

Es gibt dann irgendein maximales Element x in H bzgl. $\leq_{\mathbb{Z}\times\mathbb{Z}}$, und es ist

 $\alpha^{-1}(n) \to x \to \beta^{-1}(n) \text{ oder } \beta^{-1}(n) \to x \to \alpha^{-1}(n).$ Für $R'' := R \setminus \{\alpha^{-1}(n), \beta^{-1}(n)\}$ gilt: $R'' = R(\lambda^{--}), \lambda^{--} \vdash n-2$, und x ist maximal in R'' bzgl. $\leq_{\mathbb{Z}_{\times}\mathbb{Z}}$.

Man konstruiert ein Element $\sigma \in SYT^{R''}$ mit Eintrag n-2 in Zelle x. Hieraus erhält man ein Element $\nu = \gamma \iota_R \in SYT^R$ mit $\gamma^{-1}(n) = \alpha^{-1}(n)$ und $\gamma^{-1}(n-1) = \beta^{-1}(n)$. Nach Fall 1 ist $\pi \sim_K \nu$, da $\gamma^{-1}(n) = \alpha^{-1}(n)$.

Nun tritt im Wort ν der Eintrag (n-2) der Stelle x zwischen n-1 und nauf, und deshalb ist $\nu \smile_K (n-1,n)\nu$.

Noch z.z.: $(n-1,n)\nu \sim_K \rho$. Das folgt aber wieder aus Fall 1,

da
$$((n-1,n)\gamma)^{-1}(n) = \gamma^{-1}(n-1) = \beta^{-1}(n)$$
.

8 Hopfalgebren von Permutationen

Definition.

Sei k Körper, z.B. \mathbb{Q} , \mathbb{R} oder \mathbb{C} .

Ein k-Vektorraum A zusammen mit k-linearen Abbildungen $\Delta: A \to A \otimes A$ und $\varepsilon: A \to k$ heißt Koalgebra, wenn

(i) Δ koassoziativ ist, d.h. für alle $a \in A$ ist $(\Delta \otimes id)\Delta(a) = (id \otimes \Delta)\Delta(a)$ [Diagramm:...]

und (ii) ε Koeins ist, d.h. $\sum_{i} \varepsilon(a_i)b_i = a = \sum_{i} \varepsilon(b_i)a_i$ für $\Delta(a) = \sum_{i} a_i \otimes b_i$.

Koalgebra-Homomorphismen sind k-lineare Abbildungen $\varphi: A \to A'$ mit $\Delta' \circ \varphi = (\varphi \otimes \varphi) \circ \Delta$ und $\varepsilon' \circ \varphi = \varepsilon$.

Bsp: Sei S Menge, kS der Vektorraum mit Basis S. Man definiere Δ durch (k-linear fortgesetzt):

 $s\mapsto s\otimes s$ für alle $s\in S$

und ε durch $\varepsilon(s) = 1$ für alle $s \in S$.

Dann ist $(kS, \Delta, \varepsilon)$ Koalgebra.

Es gilt:

Der Dualraum $A^* := Hom_k(A, k)$, hier $(kS)^* := Hom_k(kS, k) \cong Abb(S, k)$, ist assoziative Algebra.

Hier: $(f_1 \cdot f_2)(s) = f_1(s) \cdot f_2(s)$.

Hierbei ist die Multipliaktion · gegeben durch $\mu: A^* \otimes A^* \to A^*$ induziert durch $\Delta^*: (A \otimes A)^* \to A^*, f_1 \otimes f_2 \mapsto (s \stackrel{\Delta}{\mapsto} s \otimes s \mapsto f_1(s)f_2(s))$

[Man beachte:

 $f_1 \otimes f_2 \in A^* \otimes A^* \subseteq (A \otimes A)^* \text{ worin } (x_1 \otimes x_2 \mapsto f_1(x_1)f_2(x_2));$

im endlichdimensionalen Fall gilt = statt \subseteq : dann induziert jede (assoziative) Algebrastruktur auch eine Koalgebrastruktur auf dem Dualraum!

Sind allgemeiner (statt A^* und A) eine Algebra (A, μ) und eine Koalgebra (C, Δ) gegeben, und existiert eine Bilinearform $\langle , \rangle : A \times C \to K$ mit

$$\langle \mu(\alpha \otimes \beta), \gamma \rangle = \langle \alpha \otimes \beta, \Delta(\gamma) \rangle_{\otimes}$$

so heißen A und C dual bzgl. \langle , \rangle (vgl. Satz 11).

Definition.

Ein k-Vektorraum A zusammen mit einer Algebrastruktur (A, μ) mit Eins und einer Koalgebrastruktur (A, Δ) mit Koeins ε heißt **Bialgebra**, wenn

die k-linearen Abbildungen Δ und ε sind Algebrahomomorphismen

[oder äquivalent: die Multiplkation $\cdot = \mu$ und die Eins $1_k \mapsto 1_A$ definieren Koalgebrahomomorphismen].

Existiert zusätzlich noch eine k-lineare Abbildung $\sigma: A \to A$ mit

 $\sum_{i} \sigma(a_i) \cdot b_i = \varepsilon(a) 1_A = \sum_{i} a_i \cdot \sigma(b_i)$, (wo $\Delta(a) = \sum_{i} a_i \otimes b_i$), so spricht man von einer Hopfalgebra (mit Antipode σ).

Beispiel 13. (Halbgruppenbialgebra)

Ist S Halbgruppe mit Eins e, so ist kS die Halbgruppenalgebra mit Multiplikation $\sum a_x x \sum b_y y = \sum (\sum_{xy=z} a_x b_y) z$ und oben definierter Komultiplikation. Sie ist Bialgebra.

Falls S = G Gruppe, so ist die Gruppenalgebra kS = k[G] von G eine Hopfalgebra, mit Antipode $\sigma(x) = x^{-1}$ für $x \in G$.

Speziell ist $k[(\mathbb{Z},+)] = k[X,X^{-1}].$

Definition.

Dual zu Idealen in Algebren definiert man Koideale in Koalgebren und Bi-Ideale in Bialgebren, z.B.:

Ein Ideal N der Algebra A heißt Bi-Ideal der Bialgebra A wenn gilt:

$$\Delta(N) \subset N \otimes A + A \otimes N \ und \ \varepsilon(N) = 0$$

Ist A Hopfalgebra und gilt zusätzlich $\sigma(N) \subset N$, so heißt N Hopf-Ideal von A.

Die Restklassenalgebra nach einem Bi-Ideal bzw. einem Hopf-Ideal ist eine Bi- bzw. Hopfalgebra.

Übg:

Sei A eine nicht kommutative (bzgl. ·) Hopfalgebra. Sei $N := [A, A] := \{ab - ba : a, b \in A\}$ das Ideal aller Kommutatoren. Es ist N Hopf-Ideal und A/N kommutative Hopfalgebra.

Definition.

Sei $\mathcal{P} := \bigoplus_{n \in \mathbb{N}_0} kS_n$. Ist R Gestalt mit |R| = n, so definiert man

$$Z^R := \sum_{\pi \in SYT^R} \pi \in kS_n \subset \mathcal{P}.$$

Wir definieren eine k-lineare Verknüpfung \star auf \mathcal{P} mit $(kS_l)\star(kS_m)\subseteq kS_{l+m}$ so:

 $f\ddot{u}r \ \sigma \in S_l, \tau \in S_m, \ n := l + m \ sei$

$$\sigma \star \tau = \sum_{\pi \in S_n: \begin{cases} f\ddot{u}r \ i, j \in \underline{l}: & \pi(i) < \pi(j) \ falls \ \sigma(i) < \sigma(j) \\ f\ddot{u}r \ i, j \in \underline{n} \setminus \underline{l}: & \pi(i) < \pi(j) \ falls \ \tau(i-l) < \tau(j-l) \end{cases}}$$

Zu jeder l-elementigen Teilmenge $T \subseteq \underline{n}$ gehört genau ein Summand $\pi = \pi_T$ (mit $\pi_T(\underline{l}) = T$).

Bsp: Sei $l = 3, m = 2, \sigma = 231, \tau = 21$:

[für $T = \{1, 2, 3\}$ ist $\pi_T = 231xx = 23154$, für $T = \{1, 2, 4\}$ ist $\pi_T = 241xx = 24153$, für $T = \{1, 2, 5\}$ ist $\pi_T = 251xx = 25143$, usw. \Rightarrow]

$$\sigma \star \tau = 23154 + 24153 + 25143 +34152 + 35142 + 45132 + 34251 + 35241 + 45231 + 45321$$

Bezeichnet $\sigma \# \tau$ die Permutation auf $S_{l.m} \cong S_l \times S_m$, die auf S_l mit σ und auf S_m mit τ übereinstimmt, so ist

$$\sigma \star \tau = \sum_{\nu \in S_n \text{ auf } \underline{l} \text{ und } \underline{n} \setminus \underline{l} \text{ monoton steigend}} \nu(\sigma \# \tau)$$

Im Bsp: $\sigma \# \tau = 23154$ und

 $\nu \in \{\mathrm{id}, 124\,35, 12534, 13425, 13524, 14523, 23415, 23514, 24513, 34512\}.$

Übung:

$$\emptyset \star \sigma = \sigma = \sigma \star \emptyset$$

 $21 \star 231 = (id + 13245 + 14235 + 15234 + 23145 + 24135 + 25134 + 34125 + 35124 + 45123)21453$

 $\neq 231 \star 21$

aber
$$(21 \star 231) \star 21 = 21 \star (231 \star 21)$$
.

Es gilt:

Seien F und R nichtleere Rahmen, und seien, bzgl. \rightarrow , x die größte Zelle in F und z die kleinste in R. Ist dann der Rahmen U (die sogenannte semidirekte Vereinigung von F und R) definiert durch

$$U := F \cup R', R' := R - z + x + (-1, +1)$$
 [d.h. verschoben auf Start $x + (-1, +1)$]

(Falls F oder R leer sind, sei $U = F \cup R$.)

Dann ist
$$Z^F \star Z^R = Z^U$$
.

Bsp:
$$F = \binom{..x}{...}, R = \binom{...}{z...}, ...$$

 $1...m \star 1...n = Z^{(m)} \star Z^{(n)} = Z^U$ für $U = \binom{yyyy}{xxx}$.

Definition.

Wir definieren eine k-lineare Abbildung $\Delta : \mathcal{P} \to \mathcal{P} \otimes \mathcal{P}$ wie folgt: für $\pi \in S_n$ sei $\Delta(\pi) = \sum_{l=0}^n \pi_1^{(l)} \otimes \pi_2^{(l)} \in S_l \otimes S_{n-l}$,

$$f\ddot{u}r \ \pi \in S_n \ sei \ \Delta(\pi) = \sum_{l=0}^n \pi_1^{(l)} \otimes \pi_2^{(l)} \in S_l \otimes S_{n-l}$$

wobei $\pi_1^{(l)}$ das Wort ist, das aus π durch Streichen der Buchstaben aus $\underline{n} \setminus \underline{l}$ entsteht,

 $\widetilde{\pi}_{2}^{(l)}$ das Wort [in Buchstaben (l+1)...n], das aus π durch Streichen der Buch-

staben aus \underline{l} entsteht, und $\pi_2^{(l)} = st(\widetilde{\pi}_2^{(l)}) \in S_{n-l}$ die zugehörige Permutation nach stellenweiser Subtraktion von l.

Bsp: Für $\pi = 21 \in S_2$ ist $\Delta(\pi) = \emptyset \otimes 21 + 1 \otimes 1 + 21 \otimes \emptyset$.

Für $\pi = 34152 \in S_5$ ist $\Delta(\pi) =$

 $\emptyset \otimes 34152 + 1 \otimes 2341 + 12 \otimes 123 + 312 \otimes 12 + 3412 \otimes 1 + 34152 \otimes \emptyset$.

Es gilt:

Für jeden Rahmen R, heißt $I \subseteq R$ Ideal von $(R, \leq_{\mathbb{Z} \times \mathbb{Z}})$, wenn

für alle
$$x, y \in R: y \in I, x \leq_{\mathbb{Z}_{\times}\mathbb{Z}_{\bullet}} y \Rightarrow x \in I$$

Dann ist
$$\Delta(Z^R) = \sum_{I \text{ Ideal}} Z^I \otimes Z^{R \setminus I}$$
.

Satz 17. (Hopfalgebra von Malvenuto-Reutenauer)

Es ist $(\mathcal{P}, \star, \Delta)$ Bialgebra [sogar Hopf-Algebra] mit Eins \emptyset (und Koeins $\varepsilon: \mathcal{P} \to k, \ \sigma \mapsto 0 \ \text{für alle } \sigma \in S_n, n > 0$).

Weiterhin gilt: \mathcal{P} ist selbstdual bzgl.

$$(\ ,\)_{\mathcal{P}}: \mathcal{P} \times \mathcal{P} \to k, \quad (\sigma, \tau)_{\mathcal{P}}:= \begin{cases} 1 &: \sigma = \tau^{-1} \\ 0 &: sonst \end{cases}$$

Zum Bew: Lange Rechnung, oder nachsehen in [C.Malvenuto - C.Reutenauer: Duality between Quasi-Symmetric Functions and the Solomon Descent Algebra, J. Algebra 1995].

Beispiel 14. (Koplaktische und Rahmen-Bialgebra)

Sei Q_n der k-Vektorraum, der erzeugt wird von allen

$$A^+ := \sum_{\pi \in A} \pi$$
, A koplaktische Klasse in S_n

und sei $Q := \bigoplus_{n \in \mathbb{N}_0} Q_n$.

Sei \mathcal{F}_n der k-Vektorraum, der erzeugt wird von allen

$$Z^R := \sum_{\pi \in SYT^R} \pi, \ R = R(\lambda \backslash \tilde{\lambda}) \ Rahmen \ mit \ |R| = n$$

und sei $\mathcal{F} := \bigoplus_{n \in \mathbb{N}_0} \mathcal{F}_n$.

Nach Satz 16 ist $\mathcal{F}_n \subseteq \mathcal{Q}_n \subseteq kS_n$.

Man zeigt, dass $\mathcal{F} \subset \mathcal{Q} \subset \mathcal{P}$ als (Unter-)Bialgebren gilt:

Um nachzurechnen, dass $\star|_{\mathcal{Q}}$ und $\Delta|_{\mathcal{Q}}$ nur Bilder in \mathcal{Q} bzw. $\mathcal{Q} \otimes \mathcal{Q}$ annehmen, betrachtet man $\mathcal{Q}^{\perp} = \bigoplus_{n \in \mathbb{N}_0} \mathcal{Q}_n^{\perp}$ bzgl. $(,)_{\mathcal{P}}$.

 $Da \mathcal{P} = \mathcal{Q} \oplus \mathcal{Q}^{\perp}$, kann man nun nachrechnen, dass \mathcal{Q}^{\perp} Bi-Ideal von \mathcal{P} ist. \mathcal{Q}^{\perp} wird k-linear erzeugt von den Differenzen $\beta - \tilde{\beta}$ von plaktisch äquivalenten $\beta, \tilde{\beta} \in S_l, l > 0$.

Es ist z.B. $\alpha \star (\beta - \tilde{\beta}) = \sum_{\nu} (\nu(\alpha \# \beta) - \nu(\alpha \# \tilde{\beta})) \in \mathcal{Q}^{\perp}$ für jedes $\alpha \in \mathcal{P}$, da $\alpha \# \beta_{K} \smile \alpha \# \tilde{\beta}$.

 $\begin{array}{l} \text{Im Fall, dass } \beta(j) = \tilde{\beta}(j) \text{ für } j \not\in \{i,i+1\}, \ x := \tilde{\beta}(i) < z := \tilde{\beta}(i+1), \\ \text{erhält man } z.B. \ \Delta(\beta - \tilde{\beta}) = \sum_{k=0}^{x-1} \beta_1^{(k)} \otimes (\beta_2^{(k)} - \tilde{\beta}_2^{(k)}) + \sum_{k=z}^{l} (\beta_1^{(k)} - \tilde{\beta}_1^{(k)}) \otimes \beta_2^{(k)} \in \mathcal{P} \otimes \mathcal{Q}^{\perp} + \mathcal{Q}^{\perp} \otimes \mathcal{P}. \end{array}$

Während dim $\mathcal{P}_n = n! = \sum_{\lambda \vdash n} (f_{\lambda})^2$ [$f_{\lambda} = Anzahl \ der \ Standard-Young-Tableaux \ von \ Gestalt \ \lambda$], ist

$$\dim \mathcal{Q}_n = \sum_{\lambda \vdash n} f_{\lambda} = Anzahl \ der \ Involutionen \ \pi \ (\pi^2 = \mathrm{id}) \ in \ S_n.$$

Für jede Partition λ besteht der eindeutig bestimmte Teppich [Klasse bzgl. \sim], der SYT^{λ} enthält, aus f_{λ} koplaktischen (bzw. plaktischen) Klassen mit jeweils f_{λ} Elementen, von denen genau eins Involution ist $P(\pi) = Q(\pi)$ genau einmal].

Definition. Für $n \in \mathbb{N}$ sei

$$\omega_n := \sum_{k=0}^{n-1} (-1)^k Z^{(n-k) \cdot 1^k} \ [\in \mathcal{F}_n \subseteq \mathcal{Q}_n \subseteq kS_n]$$

 $F\ddot{u}r \nu = \nu_1....\nu_l \ Zerlegung \ von \ n \ sei$

$$\omega_{\nu} := \omega_{\nu_1} \star \omega_{\nu_2} \star \dots \star \omega_{\nu_l} \ [\in \mathcal{F}_n \subseteq \mathcal{Q}_n \subseteq kS_n].$$

Übung:

Es ist
$$\omega_1 = 1, \omega_2 = Z^{(2)} - Z^{1^2} = 12 - 21 [\sim [1, 2], \omega_3 \sim [[1, 2], 3] \text{ usw. }] \text{ und}$$

$$\omega_{1.2} = \omega_1 \star \omega_2 = 1 \star (12 - 21) = 123 + 213 + 312 - 132 - 231 - 321,$$

 $\omega_{2.1} = \omega_2 \star \omega_1 = (12 - 21) \star 1 = 123 + 231 + 132 - 213 - 321 - 312.$

$$\Delta(\omega_2) = \Delta(12) - \Delta(21) = (12 - 21) \otimes \emptyset + \emptyset \otimes (12 - 21)$$
 [der Term $1 \otimes 1$ hebt sich heraus].

Anmerkung: Es gilt für alle $n \in \mathbb{N}$, dass $\Delta(\omega_n) = \omega_n \otimes 1_{\mathcal{P}} + 1_{\mathcal{P}} \otimes \omega_n$ ist (d.h. dass ω_n primitives Element der Hopfalgebra \mathcal{P} ist).

Satz 18. (Jöllenbeck-Epimorphismus)

Sei $(C = \bigoplus_{n \in \mathbb{N}_0} Cl(S_n), \bullet, \downarrow)$ die Geissinger-Bialgebra [Satz 11].

Ist $\alpha \in \mathcal{P}_n$, so ordne, für jedes n und jede Konjugationsklasse K_λ von S_n , $c(\alpha) \in \mathcal{C}$ der Klasse K_λ den Wert $(\alpha, \omega_\lambda)_{\mathcal{P}}$ zu. Die hierdurch definierte k-lineare Abbildung $c: \mathcal{P} \to \mathcal{C}$ hat folgende Eigenschaften:

- (i) Die Abbildung c ist ein Algebra-Epimorphismus $(\mathcal{P}, \star) \to (\mathcal{C}, \bullet)$ mit $c(\mathcal{P}_n) = \mathcal{C}_n$ (für alle n).
- (ii) Die Beschränkung $c|_{\mathcal{Q}}$ ist (grad.) isometrischer Bialgebra-Epimorphismus: $c(\mathcal{Q}_n) = \mathcal{C}_n$, $(\alpha, \beta)_{\mathcal{P}} = \langle c(\alpha), c(\beta) \rangle_{\mathcal{C}}$, und c ist verträglich mit \star, Δ und \bullet, \downarrow .
- (iii) Ist \mathcal{B} Unterbialgebra von \mathcal{P} mit $\omega_n \in \mathcal{B}$ (alle n), und ist $\tilde{c}: \mathcal{B} \to \mathcal{C}$ ein (graduierter) isometrischer Bialgebra-Homomorphismus, so ist \tilde{c} surjektiv und es gilt $\tilde{c}(\alpha)(K_{\lambda}) = \varepsilon \cdot c(\alpha)(K_{\lambda})$ für ein $\epsilon \in \{\pm 1\}$, d.h. \tilde{c} bzw. c ist bis auf Vorzeichen eindeutig bestimmt.

Zum Beweis:

Die Geissinger-Bialgebra ist als Algebra die (kommutative) Polynomalgebra in den Klassenfunktionen $ch_n, n \in \mathbb{N}$, wobei $ch_{\lambda_1.....\lambda_k} = ch_{\lambda_1} \bullet ... \bullet ch_{\lambda_k}$. Wir hatten gezeigt, dass die Komultiplikation \downarrow jedes ch_n auf $ch_n \otimes 1 + 1 \otimes ch_n$ abbildet, und dass

$$\langle ch_m, ch_n \rangle_{\mathcal{C}} = ch_m(K_{(n)}) = \begin{cases} z_{(n)} = n^1 \cdot 1! = n & : n = m \\ 0 & \text{sonst} \end{cases}$$

Man kann zeigen, dass
$$(\omega_m, \omega_n)_{\mathcal{P}} = \begin{cases} n & : n = m \\ 0 & \text{sonst} \end{cases}$$
.

Weiterhin:
$$(\omega_{\mu}, \omega_{\nu})_{\mathcal{P}} = \begin{cases} z_{\mu} & : \mu \text{ Umordnung von } \nu \\ 0 & \text{sonst} \end{cases}$$
.

Dann konstruiert man
$$c$$
 so, dass $c(\omega_n) = ch_n$,
und $c(\omega_{\nu}) = c(\omega_{\nu_1} \star \omega_{\nu_2} \star ... \star \omega_{\nu_l}) = ch_{\nu_1} \bullet ... \bullet ch_{\nu_l} = ch_{\nu}$.

Dabei gilt auf dem von den ω_{μ} aufgespannten Vektorraum, $\langle c(-), ch_{\lambda} \rangle_{\mathcal{C}} = (-, \omega_{\lambda})_{\mathcal{P}}.$

Klar: c ist surjektiv (auf jeder Unterbialgebra \mathcal{B} von \mathcal{P} mit $\omega_n \in \mathcal{B}$).

Während der Algebra-Epimorphismus $c:(\mathcal{P},\star)\to(\mathcal{C},\bullet)$ weder Isometrie ist noch die Komultiplikation erhält, kann man zeigen, dass $c|_{\mathcal{Q}}$ auch diese Eigenschaften hat.