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Topic

We look for connections between cycle spaces and cut spaces of
graphs.

What is known besides the fact that the cycle space of a planar
graph is the cut space of its dual?

And in particular:

Question

Are there connections between the cycle space and the cut space
of the same graph?
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Cut and cycle spaces

Definition

A cut is the edge set between A and B for a bipartition
{A,B} of the vertex set. The cut space of a graph is the set
of all finite sums (over GF(2)) of finite cuts.

The cycle space of a graph is the set of all finite sums (over
GF(2)) of edge sets of finite cycles.
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Why does it give an answer to our question?
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Reformulating Dunwoody’s theorem

Theorem (Dunwoody 1985)

Finitely presented groups are accessible.

A finitely presented group G has a locally finite Cayley graph Γ
whose cycle space is generated by {g(C ) | C ∈ C, g ∈ G} for some
finite set C of cycle space elements, that is, its cycle space is a
finitely generated G -module.
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Main theorem

Definition

A graph is quasi-transitive if its automorphism group has only
finitely many orbits on the vertices.

Theorem (H 2014)

Let G be a quasi-transitive graph. If its cycle space is a finitely
generated Aut(G )-module, then so is its cut space.
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Let G be a 2-edge-connected graph. If its cycle space is a finitely
generated Aut(G )-module, then so is its cut space.

Remark

We cannot ask for an ‘if and only if’:
Bieri and Strebel (1980) gave an example of a finitely generated
accessible group that is not finitely presented.
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Going to infinity

Definition

Two rays, i.e. one-way infinite paths, in a graph G are equivalent if
for any finite vertex set S ⊆ V (G ) both rays lie eventually in the
same component of G − S . Its equivalence classes are the ends of
the graph.

one end two ends infinitely many ends



Reformulating Dunwoody’s thm (once more)

Definition

A locally finite quasi-transitive graph is accessible if there exists an
n ∈ N such that any two ends can be separated by at most n edges.

Theorem (Thomassen & Woess 1993)

A finitely generated group is accessible if and only if one (and
hence every) of its locally finite Cayley graphs is accessible.

Theorem (Dunwoody 1985)

Every locally finite Cayley graph G whose cycle space is a finitely
generated Aut(G )-module is accessible.
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A conjecture

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.

Theorem (H 2014)

Every locally finite quasi-transitive graph whose cycle space is
generated by cycles of bounded length is accessible.



A conjecture and an answer

Conjecture (Diestel 2010)

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.

Theorem (H 2014)

Every locally finite quasi-transitive graph whose cycle space is
generated by cycles of bounded length is accessible.
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Applications III

Definition

A connected graph G is called
hyperbolic if there exists some δ ≥ 0
such that for any three vertices x , y , z
of G and for any three shortest paths,
one between every two of the vertices,
each of those paths lies in the
δ-neighbourhood of the union of the
other two.

≤δ

yx

z

Conjecture (Dunwoody 2011)

Every locally finite transitive hyperbolic graph is accessible.

Theorem (H 2014)

Every locally finite quasi-transitive hyperbolic graph is accessible.
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Main theorem

Theorem (H 2014)

Let G be a quasi-transitive graph. If its cycle space is a finitely
generated Aut(G )-module, then so is its cut space.



Brief sketch of the proof

Let C be a (possibly infinite) set of finitely many cycles with their
Aut(G )-images that generate the cycle space.

Theorem (Dicks & Dunwoody 1989)

Every graph G has a nested Aut(G )-invariant set E of minimal
cuts generating its cut space.

E is basically the same as E ′ := {(A,B) | E (A,B) ∈ E}.
We equip E ′ with an ordering:

(A,B) ≤ (A′,B ′) :⇔ A ⊆ A′,B ⊇ B ′.

Every (A,B) ∈ E ′ induces bipartitions on every C ∈ C and those
that induce the same non-trivial one form a finite chain.
If E ′ has many orbits, one of them contains never a minimal or
maximal element of such a chain.
It can be shown that this is impossible.
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Generalisation to Matroids

Question

Let M be a connected finitary binary matroid such that finitely
many circuits with their images generate every circuit.
Does there exist some finite set of finite cocircuits that generate
together with their images every finite cocircuit?

Answer: No!

Problem

Generalise the main theorem in a suitable way to matroids.
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