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CONSTRUCTION

Let G be a graph.
Attach to every vertex one copy of G for each type (orbit) of

vertices.
Continue this process for all new vertices.
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ONSTRUCTION

We change the construction a bit:

Start with two graphs G, H.

Pick isomorphic finite connected subgraphs F in G and H.

Attach to every type E of F in G a copy of H where we identify a
type of F in H with E.

Now do the analogous thing for the new copies of H.

Continue this process.



ONSTRUCTION: EXAMPLE G = (G3, H= (4




REE AMALGAMATION

A graph obtained from two graph Gi, G, as in the previous
construction is called a tree amalgamation of G; and G>.



ONSTRUCTION: SCHEMATIC PICTURE



NG TO INFINITY: ENDS

DEFINITION
@ A ray is a one-way infinite path.

@ Two rays in a graph G are equivalent if for any finite vertex
set S C V(G) both rays lie eventually in the same component

of G —S.
@ The equivalence classes of this relation are the ends of the
graph. |
A
- >
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QUESTION

How complicated can connected quasi-transitive locally finite
graphs be?




ASI-TRANSITIVE GRAPHS

QUESTION
How complicated can connected quasi-transitive locally finite
graphs be?

A graph is quasi-transitive if its automorphism group acts on its
vertex set with only finitely many orbits.
A graph is locally finite if every vertex has finite degree.
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LASS OF GRAPHS

o Let Gp be the class of all connected quasi-transitive locally
finite graphs with at most one end.

o Let G; be the class of all graphs obtained by a tree
amalgamation of graphs in UJ-<,- g;.

REMARK
Every graph in G is connected, quasi-transitive and locally finite. J

QUESTION
Is G the class of all connected quasi-transitive locally finite graphs?J
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ESSIBILITY

A quasi-transitive graph is accessible if there is some n € N such
that every two ends can be separated by at most n vertices.

REMARK

Every graph in G is connected and accessible. J

THEOREM (DuNwoOODY 1993)

There is a connected inaccessible transitive locally finite graph. J
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ESSIBILITY

THEOREM (H, LEHNER, MIRAFTAB, RUHMANN)

The class G is the class of all connected accessible quasi-transitive
locally finite graphs.

To prove the theorem, we need to reverse the process of tree
amalgamations:

THEOREM (H, LEHNER, MIRAFTAB, RUHMANN)

If G is a connected quasi-transitive locally finite graph with more
than one end, then it is a non-trivial tree amalgamation of two
connected quasi-transitive locally finite graphs.
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REE-DECOMPOSITIONS

A tree-decomposition of a graph G is a pair (T,V) of a tree T and
aset V={V;|te V(T),V: C V(G)} such that
@ Uiev(r) Ve = V(6);
© for every edge in G there is some V; that contains both its
incident vertices;

@ for every t on a t; — tp path in T we have Vi, N V4, C V4.



E-DECOMPOSITIONS



FORMULATIONS

THEOREM (H, LEHNER, MIRAFTAB, RUHMANN)

The class G is the class of all connected accessible quasi-transitive
locally finite graphs.

THEOREM (H, LEHNER, MIRAFTAB, RUHMANN)

A quasi-transitive locally finite graph G is accessible if it has a
tree-decompositions (T, V) of finitely many Aut(G)-orbits such
that at most one end of G lives in each V4.




ORMULATIONS
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THEOREM (H, LEHNER, MIRAFTAB, RUHMANN)

If G is a connected quasi-transitive locally finite graph with more
than one end, then it is a non-trivial tree amalgamation of two
connected quasi-transitive locally finite graphs.

THEOREM (H, LEHNER, MIRAFTAB, RUHMANN)

If G is a connected quasi-transitive locally finite graph with more
than one end, then it has a non-trivial tree-decomposition (T,V)
such that

@ each V4 induces a connected quasi-transitive locally finite
graph and

e the automorphisms of G induce an action on (T,V) with at
most two orbits on V.

Similar theorems have been proved previously by
e Dunwoody/Dicks and Dunwoody (1985/1989) via edge cuts
e Dunwoody and Kron (2014)



ENSION OF GROUP THEORETIC THEOREMS

Our theorems generalise several group theoretic theorems to
graphs:

@ Stallings’ theorem of splitting multi-ended finitely generated
groups (1971);

© Dunwoody's accessibility theorem of finitely presented groups
(1985);

@ Dicks' and Dunwoody's characterisation of accessible groups
(1989).

THEOREM (H)

A connected quasi-transitive locally finite graphs is accessible if its
cycle space is generated by cycles of bounded length.
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-BLOCKS

A k-block is a maximal set X of at least k vertices such that no
set of less than k vertices separates any x,y € X.



BLOCKS

A k-block is a maximal set X of at least k vertices such that no
set of less than k vertices separates any x,y € X.

REMARK

Note that the inseparability of X is measured not in X but within
the whole graph.




INGUISHING k-BLOCKS

THEOREM (CARMESIN, DIESTEL, HUNDERTMARK, STEIN
2014)

Let k > 0. Every finite graph G has a canonical tree-decomposition
of adhesion at most k that efficiently distinguishes all its k-blocks. )

REMARK

Previously, Dunwoody and Kron (2014) showed that the k-blocks
are arranged in a tree-like way.
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AMPLES (1)

© The components are the 1-blocks.

© The maximal 2-connected subgraphs are the 2-blocks.
@ Every k-connected graph is a k-block.

@ Every k-connected subgraph lies in a k-block.



Add at least k vertices joined to a large grid such that each new
vertex has at least k-neighbours all of which lie on the boundary of
the grid.

The new vertices form a k-block.



XISTENCE OF k-BLOCKS IN GRAPHS

QUESTION
When does a graph have a k-block? J
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THEOREM (MADER 1974)
Graphs with minimum degree at least 2k contain a (k + 1)-block.
V.

REMARK

There are (k-connected) graphs with minimum degree |3k — 1|
that have no (k + 1)-block.

THEOREM (CARMESIN, DIESTEL, H, HUNDERTMARK 2014)

A k-connected graph with minimum degree more than %k -1
contains a (k + 1)-block.

PROBLEM

For k € N find the smallest d such that graphs of minimum degree
at least d contains a (k + 1)-block.

v




A\VERAGE DEGREE

THEOREM (CARMESIN, DIESTEL, H, HUNDERTMARK 2014) J

Graphs with average degree at least 3k contain a (k + 1)-block.




ERAGE DEGREE

THEOREM (CARMESIN, DIESTEL, H, HUNDERTMARK 2014)
Graphs with average degree at least 3k contain a (k + 1)-block.

REMARK

For every € > 0 there are graphs with average degree more than
2k — 1 — ¢ that contain no (k + 1)-block.




RAGE DEGREE

THEOREM (CARMESIN, DIESTEL, H, HUNDERTMARK 2014)
Graphs with average degree at least 3k contain a (k + 1)-block.

REMARK

For every € > 0 there are graphs with average degree more than
2k — 1 — ¢ that contain no (k + 1)-block.

PROBLEM

For k € N find the smallest d such that graphs of average degree
at least d contains a (k + 1)-block.




URTHER DIRECTIONS

o WeiBauer recently investigated connections between having a
k-block and width parameters.

o Otherwise not much is known.



