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FOLKLORE
The cycles of a planar graph are the cuts of its dual. J
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DEFINITION

@ The cycle space of a graph is the set of all finite sums (over
GF(2)) of edge sets of finite cycles.
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CASE: FINITE GRAPHS

REMARK (1)

In a finite graph the cut space is the orthogonal space of the cycle
space and vice versa.

REMARK (2)

In a finite graph with n vertices and m edges, the cut space has
dimension n — 1 and the cycle space has dimension m — n + 1.

e Remark (1) has a rather complicated counterpart for infinite
graphs for which we have to consider ‘infinite cycles’ and suitable
compactifications of infinite graphs.

e Remark (2) seems to have no counterpart at all for infinite
graphs.
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THEOREM (DuNwoODY 1985) }

Finitely presented groups are accessible.

A finitely presented group G = (S | R) has a locally finite Cayley
graph I whose first homology group is generated by

{g(C) | C €C,g € G} for some finite set C of closed walks
corresponding to the relators in R, that is, its first homology group
is a finitely generated G-module.

THEOREM (Dicks & Dunwoobpy 1989)

The cut space of a locally finite Cayley graph G of a finitely
generated accessible group is a finitely generated Aut(G)-module.

THEOREM (DuNwoODY 1985)

Let G be a locally finite Cayley graph. If its first homology group
is a finitely generated Aut(G)-module, then so is its cut space.
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W CONNECTION

THEOREM

Let G be a 2-edge-connected transitive graph. If its cycle space is
a finitely generated Aut(G)-module, then so is its cut space.

Can we ask for ‘if and only if’?

REMARK

Bieri and Strebel (1980) gave an example of a finitely generated
accessible group that is not finitely presentable, that is, of a Cayley
graph G whose cut space is a finitely generated Aut(G)-module
but its first homology group is not.
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THEOREM (THOMASSEN & WOESS 1993)

A finitely generated group is accessible if and only if one (and
hence every) of its locally finite Cayley graphs is accessible.

THEOREM (DuNwoODY 1985)

Every locally finite Cayley graph G whose first homology group is a
finitely generated Aut(G)-module is accessible.
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CONJECTURE

CONJECTURE (DIESTEL 2010)

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.




CONJECTURE IS CONFIRMED

THEOREM

Every locally finite transitive graph whose cycle space is generated
by cycles of bounded length is accessible.
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We obtain a combinatorial proof of

THEOREM (DuNwoODY 1985)

Finitely presented groups are accessible.

THEOREM (DuNwoODY 2007)

Every locally finite transitive planar graph is accessible.




OLICATION II: HYPERBOLIC GRAPHS

DEFINITION

A connected graph G is called
hyperbolic if there exists some § > 0
such that for any three vertices x, y, z
of G and for any three shortest paths,
one between every two of the vertices,
each of those paths lies in the
d-neighbourhood of the union of the
other two. X y
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THEOREM (GROMOV 1987)

Finitely generated hyperbolic groups are finitely presented
(and hence accessible).

CONJECTURE (Dunwoobny 2011)

Every locally finite transitive hyperbolic graph is accessible.

THEOREM

Every locally finite transitive hyperbolic graph is accessible.




OESS” QUESTION FOR HYPERBOLIC GRAPHS

QUESTION
Is every locally finite hyperbolic transitive graph quasi-isometric to
some Cayley graph?




