Connected-homogeneous digraphs

Matthias Hamann

Banff, 12 November 2015

The problem

Open problem

Problem

Classify the infinite one-ended C-homogeneous digraphs that are not locally finite.

オロンオ 理 とうき とうとう きょうへん

The problem is solved

Done!

If homogeneous graphs are not connected

• consider graphs as metric objects (project of Cherlin)

consider graphs as metric objects (project of Cherlin)

Definition

A graph is connected-homogeneous, or C-homogeneous, if every isomorphism between any two finite connected induced subgraphs extends to an automorphism of the whole graph.

Digraphs

Digraphs:

- no loops
- if xy is an edge, yx is not

Digraphs

Digraphs:

- no loops
- if xy is an edge, yx is not
- is connected if its underlying undirected graph is

Digraphs

Digraphs:

- no loops
- if xy is an edge, yx is not
- is connected if its underlying undirected graph is

Definition

A digraph is connected-homogeneous, or C-homogeneous, if every isomorphism between any two finite connected induced subgraphs extends to an automorphism of the whole graph. • Homogeneous (di-)graphs are C-homogeneous.

• Homogeneous (di-)graphs are C-homogeneous.

• Homogeneous (di-)graphs are C-homogeneous.

• C-homogeneous (di-)graphs need not be homogeneous.

	homogeneous	C-homogeneous
partial orders	Schmerl (1979)	Gray&Macpherson (2010)
	Gardiner (1976)	Gardiner (1978)
graphs	Lachlan&Woodrow (1980)	Enomoto (1981)
		Gray&Macpherson (2010)
	Lachlan (1982)	Gray&Möller (2011)
digraphs	Cherlin (1998)	H&Hundertmark (2012) H (2015 ⁺ &2015 ⁺⁺)

Question

How can we obtain structural facts from the property 'C-homogeneous' that will help us in the proof?

Lemma

- The out-neighbourhood of some (and hence every) vertex of a C-homogeneous digraphs induces a homogeneous digraph.
- The in-neighbourhood of some (and hence every) vertex of a C-homogeneous digraphs induces a homogeneous digraph.

First structural fact (proof)

For every countable C-homogeneous digraph D one of the following statements is true:

- D is a blow-up of a homogeneous digraph;
- 2 D has more than one end;
- every vertex of D has an independent out- and an independent in-neighbourhood.

Theorem (Dunwoody&Krön 2015)

For transitive graphs G with more than one end there is an Aut(G)-invariant nested set of vertex cuts distinguishing some ends.

Theorem (Dunwoody&Krön 2015)

For transitive graphs G with more than one end there is an Aut(G)-invariant nested set of vertex cuts distinguishing some ends.

They associate to such a set of vertex cuts a structure tree that resembles the global structure of G.

Theorem (Dunwoody&Krön 2015)

For transitive graphs G with more than one end there is an Aut(G)-invariant nested set of vertex cuts distinguishing some ends.

They associate to such a set of vertex cuts a structure tree that resembles the global structure of G.

Theorem 2

Connected C-homogeneous digraphs with at least two ends have connectivity 1 or 2 and are tree-like.

There are five classes of such digraphs.

An infinitely ended C-homogeneous digraph

An infinitely ended C-homogeneous digraph

Reachability

Definition

An edge e is reachable from an edge f if there is some walk $x_1 \dots x_n$ containing e and f such that:

$$x_{i-1} \in N^+(x_i) \Leftrightarrow x_{i+1} \in N^-(x_i).$$

Reachability

Definition

An edge *e* is reachable from an edge *f* if there is some walk $x_1 \dots x_n$ containing *e* and *f* such that:

$$x_{i-1} \in N^+(x_i) \Leftrightarrow x_{i+1} \in N^-(x_i).$$

Remark

Reachability is an equivalence relation.

Reachability

Definition

An edge e is reachable from an edge f if there is some walk $x_1 \dots x_n$ containing e and f such that:

$$x_{i-1} \in N^+(x_i) \Leftrightarrow x_{i+1} \in N^-(x_i).$$

Remark

Reachability is an equivalence relation.

Lemma (Cameron&Praeger&Wormald 1993)

In edge-transitive digraphs either the reachability relation is universal or one (and hence every) equivalence class forms a bipartite digraph.

Lemma (Gray&Möller 2011)

In C-homogeneous digraphs whose reachability relation is not universal and with independent out- and in-neighbourhood for every vertex, the equivalence classes of the reachability relation form (non-empty) C-homogeneous bipartite digraphs.

Lemma (Gray&Möller 2011)

In C-homogeneous digraphs whose reachability relation is not universal and with independent out- and in-neighbourhood for every vertex, the equivalence classes of the reachability relation form (non-empty) C-homogeneous bipartite digraphs.

All C-homogeneous bipartite digraphs can be easily obtained from the homogeneous bipartite graphs.

For every countable C-homogeneous digraph D with at most end whose reachability relation is not universal and with independent out- and in-neighbourhood for every vertex one of the following statements is true.

- **1** D is a (random) blow-up of directed cycles or the double ray.
- **2** *D* is the generic 2-partite digraph.
- D is a quotient digraph of D^* .

The bipartite digraphs are either

- complete or
- complements of perfect matchings or
- generic bipartite.

If the reachability relation is universal, then the digraph contains the following *induced* subdigraph:

Lemma

If D is a countable C-homogeneous digraph with universal reachability relation and with independent outand in-neighbourhood for every vertex, then with $A := N^+(y) \setminus N^-(x)$ and $B := N^-(x) \setminus N^+(y)$ for $xy \in E(D)$ the digraph induced by $A \cup B$ is a non-empty homogeneous 2-partite digraph.

A countable C-homogeneous digraph with universal reachability relation and with independent out- and in-neighbourhood for every vertex is homogeneous. Our classification needed the classification of the countable homogeneous

- digraphs
 (Cherlin 1998)
- bipartite graphs (Goldstern&Grossberg&Kojman 1996)
- 2-partite digraphs (H 2014)

A countable digraph is C-homogeneous if and only if all its components are isomorphic and belong to one of twelve classes.

A countable digraph is C-homogeneous if and only if all its components are isomorphic and belong to one of twelve classes.

• Eleven of these classes have explicit constructions

A countable digraph is C-homogeneous if and only if all its components are isomorphic and belong to one of twelve classes.

- Eleven of these classes have explicit constructions but
- one does not!

A C-homogeneous digraph: D^*

One particular class

A special class of C-homogeneous digraph of degree 4: D^* factorised by some non-universal $Aut(D^*)$ -invariant equivalence relation

One particular class

A special class of C-homogeneous digraph of degree 4: D^* factorised by some non-universal $Aut(D^*)$ -invariant equivalence relation

Theorem

There is a canonical bijection from this class of C-homogeneous digraphs to those subgroups of the modular group $C_2 * C_3$ that contain a fixed involution.

The classification

Theorem

A countable digraph is C-homogeneous if and only if it is a disjoint union of countably many copies of one of the following digraphs:

- (i) a countable homogeneous digraph;
- $H[I_n]$ for some $n \in \mathbb{N}^{\infty}$ and with either H = S(3) or $H = T^{\wedge}$ for some (ii) countable homogeneous tournament $T \neq S(2)$;
- (iii) $X_{\lambda}(T)$ for some countable homogeneous tournament T and $\lambda \in \mathbb{N}^{\infty}$;
- (iv) a regular tree;
- (v) $DL(\Delta)$, where Δ is a bipartite digraph such that $G(\Delta)$ is one of
 - C_{2m} for some integer m ≥ 2,
 CP_k for some k ∈ N[∞] with k > 3,

 - $K_{k,l}$ for $k, \ell \in \mathbb{N}^{\infty}$, $k, \ell \geq 2$, or
 - the countable generic bipartite graph;
- (vi) M(k,m) for some $k \in \mathbb{N}^{\infty}$ with k > 3 and some integer m > 2;
- (vii) M'(2m) for some integer $m \ge 2$;
- (viii) Y_k for some $k \in \mathbb{N}^\infty$ with k > 3;
- (ix) $C_m[I_k]$ for some $k, m \in \mathbb{N}^\infty$ with $m \ge 3$;
- (x) \mathcal{R}_m for some $m \in \mathbb{N}^\infty$ with m > 3;
- (xi) the generic 2-partite digraph; or
- (xii) $X_2(C_3)_{\sim}$, where \sim is a non-universal Aut($X_2(C_3)$)-invariant equivalence relation on $V(X_2(C_3))$.