
ON THE TREE-LIKENESS OF HYPERBOLIC SPACES

MATTHIAS HAMANN

Abstract. Inside any proper hyperbolic geodesic space X we construct a

rooted topological R-tree T that reflects the geometry of X in the following

sense. All rays in T are quasi-geodesic in X. Every geodesic ray in X lies
eventually close to a ray of T . The embedding of T in X extends continuously

to their boundaries in a finite-to-one way, the number of boundary points of T

mapping to a given boundary point of X being bounded if the (Assouad)
dimension of the boundary of X is finite.

1. Introduction

Since Gromov’s article on hyperbolic groups [15] appeared, there have been vari-
ous attempts to describe a given hyperbolic space by comparing it with the simplest
form of a hyperbolic space, an R-tree.

On the one hand, there are results that construct for a given hyperbolic space an
R-tree whose local structure resembles the local structure of the hyperbolic space.
The best known among these are results attributed to Gromov (see [11, Chapitre 8]
and [14, §2.2]) that construct for a finite subset of the completion of a δ-hyperbolic
space an R-tree in the space whose completion contains the given set and such
that all of its geodesics between elements of the finite set are quasi-geodesics in the
hyperbolic space for constants that depend only on the size of the set and on δ.
There is also a result by Benjamini and Schramm [4, Theorem 1.5] for locally finite
hyperbolic graphs which states that if they have exponential growth then there
exists a subtree with exponential growth such that the embedding is a bilipschitz
map.

On the other hand there are constructions of trees that try to capture the entire
hyperbolic boundary of a given hyperbolic space. When the space is a locally finite
graph, then several ideas for such constructions can already be found in Gromov’s
article [15, Sections 7.6, 8.5.B, and 8.5.C]. They have been elaborated on in [12,
Chapter 5]. These trees capture the hyperbolic boundary of the hyperbolic graph
in that there are continuous maps from their own boundary onto that of the graph.
However, these trees are not necessarily subtrees of the hyperbolic graph. If the
hyperbolic graph has bounded degree, then some of these maps are finite-to-one.
In [17] the author showed that inside every hyperbolic graph of bounded degree
there exists a spanning tree whose boundary maps continuously and finite-to-one
onto the hyperbolic boundary of the graph.

Both approaches can be combined in the case of hyperbolic groups. In that
situation there is a geodesic rooted spanning tree of any of its locally finite Cayley
graphs that has a finite-to-one continuous surjection from its boundary to the one
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of the Cayley graph, cp. [20, p. 10].1 But in general, the same approach does not
work for arbitrary proper hyperbolic geodesic spaces: Example 4.5 of [17] discusses
a locally finite hyperbolic graph with precisely one hyperbolic boundary point all
of whose geodesic spanning trees have infinitely many boundary points.

In this article, we show that it is possible also in the general situation to com-
bine these two approaches except that the tree we construct is only quasi-geodesic
eventually: we shall construct in Section 4 inside every proper hyperbolic geodesic
spaceX whose boundary has finite Assouad dimension a rooted topological R-tree T
such that

• all rays are eventually quasi-geodesic rays (for the same global constants) and
• the embedding T → X induces a continuous bounded-to-one map from the

boundary of the tree onto the one of the hyperbolic space.

If the hyperbolic space is visual, that is roughly speaking that every point has
bounded distance to some geodesic double ray (see Section 5 for more details), then
every point of the space has distance at most some constant κ from the constructed
tree (Theorem 6.2). If we consider an arbitrary proper hyperbolic geodesic space,
then there is some κ with the property that every geodesic outside the described
set has finite length (Theorem 6.3).

The assumption that the hyperbolic boundary has finite Assouad dimension is
not a strong assumption. For example, if the space is a locally finite hyperbolic
graph of bounded degree, e.g. if the graph is the Cayley graph of a finitely gen-
erated hyperbolic group with a finite set of generators, then it has finite Assouad
dimension. More generally, Bonk and Schramm [5, Theorem 9.2] showed that
the hyperbolic boundary of every proper hyperbolic geodesic space with bounded
growth at some scale has finite Assouad dimension, where a metric space X has
bounded growth at some scale if there are constants N ∈ N and r,R ∈ R with
R > r > 0 such that every open ball of radius R in X can be covered by N open
balls of radius r.

Other approaches exhibiting the tree-likeness of hyperbolic spaces include quasi-
isometric embeddings of visual hyperbolic spaces into the product of binary metric
trees, see Buyalo et al. [8], or sub-cones at infinity, see [14, Proposition 2.1.11] and
[24, Lemme 5.6].

In the final section we give a proof that, for every proper hyperbolic geodesic
space X and every topological R-tree T ⊆ X whose embedding into X induces a
continuous surjection from the boundary of T to the boundary of X, the number
of inverse images of a boundary point of X is bounded from below by a function
that depends only on the topological dimension of the hyperbolic boundary of X.

2. Hyperbolic spaces

In this section we define properties for metric spaces, in particular, for hyper-
bolic spaces and cite some of their properties. For a more detailed introduction to
hyperbolicity, we refer to [1, 11, 14, 15, 23] as well as [7, Chapter III.H] and [25,
Chapter 22].

1A rooted spanning tree is geodesic if the distance between any vertex and the root is the same
in the tree as in the graph.
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Let X be a metric space. A geodesic between two points x, y ∈ X is the image
of an isometric map ϕ : [0, d(x, y)] → X with ϕ(0) = x and ϕ(d(x, y)) = y. By
[x, y] we denote a geodesic between x and y. If we want to specify the particular
metric space X, then we write [x, y]X . The space X is geodesic if for any two points
x, y ∈ X there exists a geodesic in X between them. It is proper if for every r ∈ R
and x ∈ X the closed ball Br(x) is compact. If there is a δ ≥ 0 such that for
any three points x, y, z and any geodesics [x, y], [y, z], [z, x] between each two of the
points [x, z] lies in Bδ([x, y] ∪ [y, z]) then we call the space (δ-)hyperbolic and δ is
the hyperbolicity constant.

Homeomorphic images of [0, 1] are called paths. A ray is a homeomorphic image
R of [0,∞) such that for every ball of finite diameter R lies eventually outside that
ball. Double rays are homeomorphic images of R such that the restrictions to R≥0

and to R≤0 are both rays. A (double) ray is geodesic if it is an isometric image
of [0,∞) (of R). A ray R is eventually geodesic if there is a ball B of finite diameter
such that RrB is geodesic.

Since we are looking at the hyperbolic boundary from distinct viewpoints, we
state here three different definitions of the hyperbolic boundary all of which are
equivalent. Two geodesic rays π1, π2 are equivalent if for any sequence (xn)n∈N of
points on π1 we have lim infn→∞ d(xn, π2) ≤ M for an M < ∞. In hyperbolic
geodesic spaces, this is an equivalence relation, compare with [9, Section 2.4.2].
The hyperbolic boundary ∂X is the set of all equivalence classes of this relation. By

X̂ we denote X ∪ ∂X.
The Gromov-product (with respect to o ∈ X) of two elements x, y ∈ X is

(x, y)o :=
1

2
(d(x, o) + d(y, o)− d(x, y)).

If it is obvious by the context which point we use as the base-point for the product,
we simply write (x, y).

Now we give the second definition of the hyperbolic boundary. A sequence
(xi)i≥0 converges to a point x if limi→∞(xi, x) = 0. A sequence (xi)i≥0 converges
to infinity if limi,j→∞(xi, xj) → ∞. Two sequences (xi)i≥0, (yj)j≥0 that converge
to infinity are equivalent if limi,j→∞(xi, yj) =∞. In hyperbolic geodesic spaces this
is an equivalence relation. The hyperbolic boundary is the set of equivalence classes
of this equivalence relation. A sequence (xi)i≥0 converges to a boundary point η if
it is in the equivalence class η (notation: (xi)i≥0 → η). In [14] the equivalence of
this definition with the first one given is shown.

A third way to define the hyperbolic boundary is via the completion defined by
a metric dε. Let ε > 0 with ε′ := exp(εδ)− 1 <

√
2− 1. Let

dε(x, y) := inf{
n∑
i=1

exp(−ε(xi−1, xi)) | xi ∈ X,x0 = x, xn = y}.

Then dε is a metric on X. The hyperbolic boundary is the completion of X with
respect to this metric without X. For a proof of the equivalence of this definition
with the previous ones see [14, Proposition 7.3.10].

An important theorem about the hyperbolic boundary is the following. For
references see [5, Section 6], [11, Proposition 2.3.2], and [23, Corollary 2.65].

Theorem 2.1. If X is a proper geodesic hyperbolic space, then the hyperbolic bound-
ary is compact for all metrics dε with ε > 0 and exp(εδ) <

√
2.
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Furthermore, for all η, µ ∈ ∂X and with ε′ = exp(εδ)− 1 we have
ε′ exp(−ε (η, µ)) ≤ dε(η, µ) ≤ exp(−ε (η, µ)). �

Geodesic (double) rays play an important role in the context of hyperbolic geo-
desic spaces, as we already saw in the first definition of the hyperbolic boundary.
The following proposition shows that there are plenty of them.

Proposition 2.2. [23, Proposition 2.60], [11, Proposition 2.2.1] Let X be a proper
hyperbolic geodesic space. For every x ∈ X and every hyperbolic boundary point η
there is a geodesic ray from x to η, and for every two distinct hyperbolic boundary
points there is a geodesic double ray between these two boundary points. �

Let γ ≥ 1, c ≥ 0. A (γ, c)-quasi-isometry from X to another metric space Y is a
map f : X → Y with

γ−1dX(x, y)− c ≤ dY (f(x), f(y)) ≤ γdX(x, y) + c

for all x, y ∈ X and with sup{dY (y, f(X)) | y ∈ Y } ≤ c. Then X is quasi-isometric
to Y . A (double) ray R in X is (γ, c)-quasi-geodesic if it is the image of a (γ, c)-
quasi-isometry from R≥0 (R, resp.) to R. Hence a (double) ray is geodesic, if it is
a (1, 0)-quasi-geodesic (double) ray. If the constants γ, c are unimportant, then we
just speak of quasi-geodesics.

The next proposition shows that in every proper hyperbolic geodesic space the
geodesics and quasi-geodesics lie close to each other.

Proposition 2.3. [23, Theorem 2.31], [11, Théorème 3.1.4] Let X be a proper δ-
hyperbolic geodesic space. For all γ1 ≥ 1, γ2 ≥ 0 there is a constant κ = κ(δ, γ1, γ2)
such that for every two points x, y ∈ X every (γ1, γ2)-quasi-geodesic between them
lies in a κ-neighborhood around every geodesic between x and y and vice versa.

Furthermore, this extends to (γ1, γ2)-quasi-geodesic and geodesic (double) rays.
�

Proposition 2.4. [25, (22.4)] Let X be a proper δ-hyperbolic geodesic space. Then
for all x, y, z ∈ X we have

(x, y)z ≤ d(z, [x, y]) ≤ (x, y)z + 2δ. �

We extend to definition of the Gromov-product to X̂: for a, b ∈ X̂ let

(a, b) := inf lim inf
i,j→∞

(xi, yj)

where the infimum is taken over all sequences (xi)i≥0 → a and (yi)i≥0 → b.
Combining Proposition 2.3 and [9, Lemma 2.2.2] we obtain the following propo-

sition.

Proposition 2.5. Let X be a proper δ-hyperbolic geodesic space, let η, ν ∈ ∂X,
and let o ∈ X. For all geodesic double rays π from η to ν we have

(η, ν)o ≤ d(o, π) ≤ (η, ν)o + 4δ. �

Proposition 2.6. Let X be a proper geodesic hyperbolic space with a metric dε
as in Theorem 2.1 with ε > 0 and ε′ := exp(εδ) − 1 <

√
2 − 1. Let o ∈ X be the

base-point for the Gromov-product of X. Then, for every q ≥ 1, there exists a β =
β(δ, q, ε) > 0 such that for all η1, η2, µ1, µ2 ∈ ∂X with 1

q ≤ dε(η1, µ1)/dε(η2, µ2) ≤ q
we have |d(o, [η1, µ1])− d(o, [η2, µ2])| ≤ β.
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Proof. By Theorem 2.1 we have

ε′ exp(−ε(η1, µ1)) ≤ dε(η1, µ1) ≤ qdε(η2, µ2) ≤ q exp(−ε(η2, µ2)).

As a consequence we have by symmetry

|(η1, µ1)− (η2, µ2)| ≤ 1

ε
ln(

q

ε′
).

The claim follows immediately with Proposition 2.5. �

An R-tree is a metric space T such that for any two points x, y ∈ T there exists
a unique arc between them, which has length d(x, y), and a topological R-tree is
a homeomorphic image of an R-tree. An easy observation is that R-trees are 0-
hyperbolic geodesic spaces. The converse direction – that 0-hyperbolic geodesic
spaces are R-trees – is a bit more difficult. But proofs can be found in nearly every
of the introductory books or articles on hyperbolic spaces. For more details on
R-trees see for example [10, 18, 19].

3. The Assouad dimension

In this section we introduce the Assouad dimension, which is the main dimen-
sion concept in this article. Furthermore, we compare it with a related concept.
For a more detailed introduction to the Assouad dimension we refer to [2] and in
particular to [22, Appendix A].

Let X be a metric space. For α, β > 0 let S(α, β) be the maximal cardinality of
a subset V of X such that each two distinct elements of V have distance at least α
and at most β. Let n be the infimum of all s ≥ 0 such that there is a C ≥ 0 with
S(α, β) ≤ C(βα )s for all 0 < α ≤ β. Then n is called the Assouad dimension of the
metric space X (notation: dimA(X) = n).

A metric space X is doubling if there exists a κ ≥ 1 such that every ball of radius
r can be covered by at most 2κ balls of radius at most r

2 . By dim2(X) we denote
the infimum of all these κ. A subset Y of X has diameter sup{d(x, y) | x, y ∈ Y }
(notation: diam(Y )), and a set Y ⊆ P(X) has diameter diam(Y) = sup{diam(Y ) |
Y ∈ Y}. The radius of a subset Y of X is rad(Y ) := inf{sup{d(x, y) | x ∈ Y } |
y ∈ Y } and the radius of a set Y ⊆ P(X) is rad(Y) := sup{rad(Y ) | Y ∈ Y}. For
every r ≥ 0, a family B = (Bi)i∈I of subsets of X has r-multiplicity at most n if
every subset of X with diameter at most r intersects with at most n members of
the family. A point x ∈ X has r-multiplicity at most n in B if Br(x) intersects with
at most n members of the family B non-trivially.

One assumption in our main result is that the Assouad dimension of the hyper-
bolic boundary of the proper hyperbolic geodesic space is finite. It is easier to use
the doubling property instead. The following theorem guarantees that we treat the
same hyperbolic spaces.

Theorem 3.1. [22, Theorem A.3] Let X be a metric space. Then, X is doubling
if and only if it has finite Assouad dimension. �

It is easy to adapt the proof of [21, Lemma 2.3] for Lemma 3.2, see [17, Lemma
3.2] for details.

Lemma 3.2. Let X be a doubling metric space, let N = 2dim2(X), and let r > 0.
Then X has a covering B of closed balls of diameter at most 2r such that B is the
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disjoint union of at most N4 subsets Bi of B each of which has r-multiplicity at
most 1; so B has r-multiplicity at most N4.

Furthermore, it is possible to choose B so that a given subset Y of X with
d(x, y) > r for all x, y ∈ Y is a subset of the set of centers of the balls in B,
so that each two centers have distance more than r and so that every center has
3r-multiplicity at most N4 in B.

Additionally, if Y is finite and X bounded, then we may choose B finite. �

Let us briefly compare the Assouad dimension with another dimension concept.
A metric space X has asymptotic dimension n (notation: asdim(X) = n) if n is
the smallest natural number such that for every % > 0 there exists an open cover
U of X such that every x ∈ X lies in at most n + 1 elements of U , such that
supU∈U diam(U) <∞, and such that

inf
x∈X

sup
U∈U

d(x,X r U) ≥ %.

In the main theorems (Theorem 6.2 and Theorem 6.3) we are talking about
proper hyperbolic geodesic spaces whose hyperbolic boundary has finite Assoud
dimension. Since the hyperbolic boundary is a doubling space, we conclude from [9,
Corollary 10.2.4] that the hyperbolic space itself has finite asymptotic dimension
as soon as the space is visual hyperbolic (see Section 5 for the definition). We
refer to [9] for a broader overview of the distinct dimension concepts for hyperbolic
spaces and to [3, 16] for more about the asymptotic dimension.

4. Construction of the topological R-tree

In this section we construct a rooted topological R-tree T inside a geodesic proper
hyperbolic space X whose hyperbolic boundary has finite Assouad dimension and
whose hyperbolic constant is not 0.

The idea of the construction is similar to the construction of the main result
in [17] for locally finite hyperbolic graphs. But because the aim of the construction
and therefore the construction itself differs from the one in [17] and because we are
dealing with proper hyperbolic geodesic spaces instead of locally finite hyperbolic
graphs, we have to prove some properties at the end of this section.

Let dh = dε be a metric such that ε satisfies the assumptions as in Theorem 2.1

and hence such that (X̂, dh) is a compact metric space. By [5, Sections 6 and 9] the
property of ∂X having finite Assouad dimension does not depend on the particular
choice of ε. That means if ∂X has finite Assouad dimension for one metric dε, then
this holds for all these metrics. That is the reason why we are able just to say that
∂X has finite Assouad dimension. By Theorem 3.1, we know that ∂X is a doubling

metric space. So let N = 2dim2(∂X) and let % = exp(7εδ)
ε′ (with ε′ = exp(εδ)− 1).

The rooted topological R-tree T that we shall construct will have the following
properties.

(1) Every ray in T converges to a point in the hyperbolic boundary of X;
(2) for every boundary point η of X there is a ray in T converging to η;
(3) there is an n ∈ N such that for every boundary point η of X there are at most

n distinct rays in T that start at the root of T and converge to η.

We construct the rooted topological R-tree T recursively. Let r ∈ X be the
base-point of the Gromov-product which we used for the definition of the metric dε.
The point r will be the root of T . For the construction of T we construct a strictly



ON THE TREE-LIKENESS OF HYPERBOLIC SPACES 7

descending sequence (εj)j∈N in R>0, a strictly increasing sequence (dj)i∈N two
sequences (Sj)j∈N, (Yj)j∈N of finite subsets of ∂X, two sequences (Uj)j∈N, (Bj)j∈N
of closed covers of ∂X, and a sequence (Tj)j∈N of topological R-trees that lie in X.
Our final tree T will be the union of all the Tj . The other sequences will help us in
the construction of the topological R-trees Tj and they will satisfy the assertions
(a) to (k) for every j.

(a) εj =
εj−1

64%N4 ;

(b) Sj−1 ⊆ Yj ⊆ Sj ;
(c) dh(η, µ) ≥ εj for all η 6= µ ∈ Sj ;
(d) dh(η, µ) ≥ εj−1

32 for all η 6= µ ∈ Yj ;
(e) the closed cover Uj consists of precisely the closed εj-balls around the elements

of Sj ;

(f) the set Uj has
εj−1

8 -multiplicity at most N log2(32%N4);

(g) the set Bj consists of all closed balls of radius
εj−1

32 around the elements of Yj
and it has

εj−1

32 -multiplicity at most N4;

(h) every η ∈ Yj has (
3εj−1

32 )-multiplicity at most N4 in Bj ;
(i) Tj−1 ⊆ Tj ;
(j) every ray in Tj converges to an elements of Sj and to each element of Sj

converges precisely one ray in Tj that starts at the root;
(k) every ray in Tj is eventually geodesic, in particular, there is a constant c de-

pending only on εj such that every ray in Tj rBc(x) is a geodesic ray;

(l) dj depends only on εj and we have Bdj (r) ∩ (Tj r Tj−1) = ∅.

Before we start the recursion step, we first define the elements of all sequences
for j = 0. Let µ0 ∈ ∂X, S0 = Y0 = {µ0} and ε0 = sup{dh(µ0, η) | η ∈ ∂X}
(notice that ∂X is bounded by Theorem 2.1). Let B0 = U0 = {∂X} and let T0 be a
geodesic ray from r to µ0 which exists by Proposition 2.2. Then all the properties
(a) – (l) are satisfied for j = 0.

For the recursion step we may choose εj so that (a) holds. Lemma 3.2 shows
that there is a finite closed covering Bj of ∂X with balls of radius

εj−1

32 such that

this covering has
εj−1

32 -multiplicity at most N4 and such that the set Yj of centers

of these balls contains Sj−1 and such that every η ∈ Yj has (
3εj−1

32 )-multiplicity at

most N4 in Bj . Then (d), (g), (h), and the first inclusion of (b) hold.
Let Sj be a subset of ∂X with Yj ⊆ Sj such that dh(µ, ν) > εj for all µ, ν ∈ Sj ,

such that Uj := {Bεj (µ) | µ ∈ Sj} is a closed cover of ∂X with
εj−1

8 -multiplicity at
most N log2(32%N4). This set Sj exists by applying the proof of Lemma 3.2, cf. [17,
Proof of Theorem 1.4]. As a consequence we have (c), (f), (e), and the remaining
part of (b). The only element of any of the sequences that remains to be constructed
is the topological R-tree Tj .

We construct the topological R-tree Tj by recursion. Let T 0,1
j = Tj−1. We

enumerate the set Sj r Sj−1 in the following way. Let µ1
1, µ

1
2, . . . be the elements

with 8εj−1-multiplicity 1 in Bj−1, let µ2
1, µ

2
2, . . . be the elements with (2 · 8εj−1)-

multiplicity at most 2 in Bj−1 but not 8εj−1-multiplicity at most 1 in B)j − 1,
and so on. As the set Bj−1 has

εj−2

32 -multiplicity at most N4 and 2%N4εj−1 =
εj−2

32 ≥ rad(Bj−1), there are no µik with i > N4 by (g), in particular, we have
Sj r Sj−1 = {µ1

1, . . . , µ
M
m } for some m,M ∈ N with M ≤ N4.

The topological R-tree T i,kj will be the union of the topological R-tree T i−1,k
j

and an eventually geodesic ray from T i−1,k
j to the hyperbolic boundary point µik,
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where we denote by T 0,k
j the union of all Tn,k−1

j . So let µik ∈ SjrSj−1 and assume
that we have already constructed the topological R-tree T i−1,k

j . Due to (e), there is
a µ ∈ Sj−1 with dh(µik, µ) ≤ εj−1. Due to Proposition 2.2, there exists a geodesic
double ray R from µik to µ in X. Let Q denote the largest distance from r to any
geodesic double ray between two boundary points of distance at most εj−1 and at
least εj and let q denote the smallest distance of from r to any such double ray.
Then we have β ≥ Q− q for the constant β = β(δ,

εj−1

εj
, ε) from Proposition 2.6.

Let us first consider the case that R is totally disjoint from T i−1,k
j in the ball with

center r and radius Q + 5δ. Due to the construction of T i−1,k
j , there is a geodesic

ray P in T i−1,k
j that converges to µ and whose first point xR has distance Q + 5δ

to r. We consider a geodesic π̃R from R to P that has length at most δ with the
additional property that for some point z on R∩BQ(r) we have that dR∪π̃R

(z, xP )
is minimal. This exists because X is proper and because every point y on P with
d(r, y) ≥ Q+3δ is δ-close to a point on R, and hence the same holds for every point
on P . As π̃R lies in the ball with center r and radius Q+6δ, which is compact, there
is a smallest subpath πR of π̃R that contains a point of R and a point of T i−1,k

j .
Let yR denote the intersection point of πR and R. Then we add the subray of R
from yR to µik together with πR to T i−1,k

j to obtain the new topological R-tree T i,kj .
If x lies during the construction on a geodesic double ray P , then we say that we
have connected µik to that limit point η of P that has smaller distance to µik and if
they have the same distance to µik, then we choose one of them arbitrary. If x lies
on some πP for a double ray P , then we have connected µik either to the boundary
point η we constructed a new ray to with P or inductively to the boundary point
we connected η to, depending which one has the smallest distance to µik; in the case
of a tie, we choose again arbitrary. If the hyperbolic boundary point η to which
µik is connected lies in Sj−1, then µik is eventually connected to η. If this is not the
case, then µik is eventually connected to that hyperbolic boundary point to which η
is eventually connected to.

Now we look at the case that there is a common point of R and T i−1,k
j that

has distance at most Q + 5δ to r. Then there is a unique common point x of R
and T i−1,k

j such that Rx, the subray of R from x to µik, contains no other point
of T i−1,k

j by compactness of the ball of radius Q + 5δ. In this case we just add
the subray Rx to the boundary point µik to the topological R-tree to obtain the
topological R-tree T i,kj . By the choice of x, the space T i,kj is indeed a topological
R-tree. In preparation of the proof of Lemma 6.1 we denote by πR the point x and
we set xR := x. The property for µik of being connected to and being eventually
connected to is defined analogously to the first case.

Let Tj :=
⋃
i,k T

i,k
j . That Tj is a topological R-tree is an easy observation, be-

cause Tj is the union of a finite chain of topological R-trees, so it is the last element
of the chain. We remark that the topological R-tree Tj satisfies the properties (i),
(j), (k) for c = Q+ 6δ, and (l) for d = q.

We just have defined all sequences as claimed. Set

T :=
⋃
j∈N

Tj .

It remains to prove that T is a topological R-tree and satisfies the assertions (1) to
(3) as claimed. Since each of the topological R-trees Tj is connected and Tj ⊆ Tj+1,
we know that T is connected. It is obvious that T contains no circle, i.e. no
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homeomorphic image of S1, as a circle is a compact and hence bounded subset
of (X, dε) and due to the choice of the constant in (l) during the construction.
Furthermore, the fact that T is homeomorphic to an R-tree follows from (l) as
(dj)j∈N is strictly increasing, because each Tj−1 ∩ Bdj (r) is homeomorphic to an
R-tree by construction.

In order to prove the assertions (1) to (3) we shall prove two claims in which we
use the notations from the step j of the construction.

Claim 4.1. Let µnk and µnl be two elements of Sj \ Sj−1 with dh(µnk , µ
n
l ) ≤ %εj−1

for some n ≤ N4. Then for any η ∈ Yj−1 with dh(µnk , η) ≤ n%εj−1 we have
dh(µnl , η) ≤ n%εj−1.

Proof of Claim 4.1. The ((n−1)%εj−1)-multiplicity of µnk and the one of µnl in Bj−1

must be n. Thus, for every hyperbolic boundary point η in Yj−1 with distance at
most n%εj−1 to µnk we have dh(µnk , η) ≤ (n − 1)%εj−1 and hence also dh(µnl , η) ≤
n%εj−1. �

Claim 4.2. (i) If µki is connected to µ ∈ Sj, then we have

dh(µ, µki ) ≤ %εj−1.

(ii) If µki is eventually connected to η ∈ Sj−1 in Tj, then we have

dh(η, µki ) ≤ %N4εj−1 + rad(Bj−1) = 5%N4εj−1.

Furthermore, η lies in some B ∈ Bj−1 with dh(µki , B) ≤ %N4εj−1.

Proof of Claim 4.2. Let us first prove (i). Let us assume xR ∈ R. Then R meets
some other double ray R′ or a geodesic segment πR′ . If R meets some other double
ray R′, then µ is a limit point of R′ and any geodesic double ray [µki , µ] lies in a
δ-neighborhood of R∪R′, so it has distance at least q−δ to r. Let µ′ be the second
accumulation point of R. So we have εj ≤ dh(µ′, µki ) ≤ εj−1 and we conclude by
Proposition 2.5 that (µ′, µki ) ≤ (µ, µki ) + 5δ. By Theorem 2.1, we have

dh(µ, µki ) ≤ exp(−ε(µ, µki ))
≤ exp(−ε(µ′, µki ) + 5εδ)
≤ %ε′ exp(−ε(µ′, µki ))
≤ %dh(µ′, µki )
≤ %εj−1.

Let us assume that either R meets some πR′ , or πR is non-trivial and meets either
some ray R′ or some πR′ . Then yR has distance at most 2δ to yR′ . Let P ′ be
the ray for R′ that is P for R if R or πR meets πR′ . Let µ′ be the limit point
of R′ that is not the limit point of P ′. Then [µki+1, µ

′] lies in a 3δ-neighborhood of
R ∪ πR ∪ πR′ ∪R′. By Theorem 2.1, this gives us the following inequality, where ν
is the second accumulation point of R. Notice that we have εj ≤ dh(µki , ν) ≤ εj−1

and, due to Proposition 2.5, we have (ν, µki ) ≤ (µ′, µki ) + 7δ.

dh(µ′, µki ) ≤ exp(−ε(µ′, µki ))
≤ exp(−ε(ν, µki ) + 7εδ)
≤ %ε′ exp(−ε(ν, µki ))
≤ %dh(ν, µki )
≤ %εj−1.

By the choice of µ, we know dh(µ, µik) ≤ dh(µ′, µik) ≤ %εj−1.



10 MATTHIAS HAMANN

Now, we prove the second assertion. Let us choose m be minimal such that the
((m− 1)%εj−1)-multiplicity of µ in Bj−1 is not m− 1 but such that the (m%εj−1)-
multiplicity of µ in Bj−1 is m. We may assume that µ 6= η, that is µ ∈ Sj \ Sj−1.
By induction we know that η lies in one of the elements of Bj−1, say in B, that is
responsible for the (n%εj−1)-multiplicity of at most n of µ in Bj−1 where n denotes
the corresponding value for µ that is m for µki . As µki is connected to µ, we have
n ≤ m. So we have dh(µki , B) ≤ m%εj−1 and hence

dh(η, µki ) ≤ m%εj−1 + diam(Bj−1) ≤ m%εj−1 + 4%N4εj−1.

Since every element of Sj \ Sj−1 has (m%εj−1)-multiplicity at most m in Bj−1 for
some m ≤ N4, we have dh(η, µki ) ≤ 5%N4εj−1. �

By construction of the topological R-trees Tj and due to Claim 4.2 and Properties
(f) and (g), we have the following property.

(∗)

In every step and for every closed ball B ∈ Bk a boundary point in B can
only be eventually connected to elements of at most N4 different balls in Bk.

Furthermore, there are at most N log2(32%N4) distinct boundary points in B
that are eventually connected to elements of the same ball of Bk.

Let us now show the assertions (1) to (3) for the topological R-tree T . For a
closed ball B ∈ Bk let B′ be the union of B and all other (at most N4) closed balls
in Bk of distance at most %N4εk to B.

Because of (j) we just have prove that any ray that we created without our
knowledge in the limit step converges to some hyperbolic boundary point. Let π
be such a ray in T . We remark that we do not need any of the properties (1) to (3)
for the proof of Lemma 6.1. Thus, we can apply it here without creating a circular
argument. The lemma says that π is eventually a quasi-geodesic ray. We deduce
from Proposition 2.3 that there is a geodesic ray π̂ and a κ ≥ 0 such that π lies
eventually in a κ-neighborhood of π̂. Hence, π converges to the same boundary as
π̂ and we have proved (1).

For the proof of (2), let η ∈ ∂X. In every construction step k there is at least
one closed ball Bk ∈ Bk with η ∈ Bk because Bk is a cover of ∂X. Hence there
is in each step some boundary point ηk ∈ Sk ∩ Bk with dh(ηk, η) ≤ εk. So Tk
contains a ray to ηk. Let πk be a ray from r to ηk in Tk. For every % ∈ N there is
a path in Tk ∩B%(r) that is contained in infinitely many of the πk by compactness

of B%(r) and because there are only finitely many paths in Tj that starts at r and
end at a point with distance % from r. Thus there is a ray π such that every point
on π lies on infinitely many of the rays πk. Due to (1), the ray π has precisely one
accumulation point. This accumulation point must be η because of Claim 4.2 and
the choice of the rays πk.

For every B ∈ Bk in step k there are at most N4 closed balls in the step k − 1
such that a boundary point in (B ∩ Sk) r Sk−1 is eventually connected to some
hyperbolic boundary point of such a ball. Furthermore, for each of these balls there

are at most N log2(32%N4) many hyperbolic boundary points to which our new ones
are eventually connected. Thus, we know that the number of rays to one boundary
point is bounded by a function depending only on dim2(∂X). Hence, we have also
proved the remaining assertion (3).
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5. Visual hyperbolic spaces

We call a hyperbolic space X visual if for some o ∈ X there is a D > 0 such that
for every x ∈ X there is an η ∈ ∂X with

d(o, x) ≤ (x, η)o +D.

Remark that the property for hyperbolic spaces to be visual is independent of the
choice of o.

An easy observation is that the definition of visual hyperbolic spaces is equivalent
to the following. For some (and hence every) o ∈ X there is a D′ > 0 such that for
every x ∈ X there is an η ∈ ∂X such that any geodesic between o and x lies in a
D′-neighborhood of a geodesic ray from o to η.

Remark that by Corollary 1.3.5 of [9] hyperbolicity is preserved by quasi-isome-
tries and it is not hard to see that the same holds for visual hyperbolicity.

5.1. Hyperbolic approximations of metric spaces. For every metric space X,
there is a hyperbolic space Y whose hyperbolic boundary is homeomorphic to X.
Constructions of such spaces can be found in [6, 8, 9, 13]. The hyperbolic space
Y is called a hyperbolic approximation of X. That the constructed space Y is
indeed a hyperbolic space is shown in [9, Proposition 6.2.10] and we just state the
proposition without proof. Note that by looking at the construction it is easy to
see that Y is visual hyperbolic since any vertex of Y lies on an infinite geodesic ray
that starts at the root of the hyperbolic approximation.

Proposition 5.1. [9, Proposition 6.2.10] A hyperbolic approximation Y of any
metric space X is a visual hyperbolic graph with ∂Y ∼= X. �

If we restrict the metric space X to be doubling, then the degrees of all the
vertices in a hyperbolic approximation of X are uniformly bounded by [9, Propo-
sition 8.3.3]. We combine this result with Proposition 5.1 and obtain the following
proposition.

Proposition 5.2. A hyperbolic approximation Y of any doubling metric space X
is a visual hyperbolic locally finite graph of bounded degree with ∂Y ∼= X. �

5.2. Rough similarities. We cite a result by Buyalo and Schroeder [9]. In order
to do that we have to make some further definitions.

Let X and Y be two metric spaces. If there are a map f : X → Y and constants
k, λ > 0 such that

|λdX(x, y)− dY (f(x), f(y))| ≤ k
holds for all x, y ∈ X and supy∈Y dY (y, f(X)) ≤ k, then X is (λ, k)-roughly similar
to Y , or just roughly similar to Y , and we call f a (λ, k)-rough similarity, or just a
rough similarity.

In particular, every space Y that is roughly similar to a space X is also quasi-
isometric to X. As (visual) hyperbolicity is preserved by quasi-isometries, it is also
preserved by rough similarities.

Theorem 5.3. [9, Corollary 7.1.5.] Every visual hyperbolic space X is roughly
similar to a subspace of a hyperbolic geodesic space Y with the same hyperbolic
boundary, ∂X = ∂Y . �

We obtain the following corollary.
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Corollary 5.4. Let X be a proper hyperbolic geodesic space whose hyperbolic bound-
ary is doubling. Let γ1 ≥ 1, γ2 ≥ 0 be constants. Then there is a subspace Y of X
such that the following statements hold for Y .

(1) Y is a proper visual hyperbolic geodesic space;
(2) every (γ1, γ2)-quasi-geodesic ray of X lies eventually in Y ;

(3) the identity ι : Y → X extends to a continuous map ι̂ : Ŷ → X̂ with ι̂(∂Y ) =
∂X.

Proof. Let Z be a visual hyperbolic locally finite graph that is a hyperbolic ap-
proximation of the hyperbolic boundary ∂X. By Theorem 5.3, there is a subspace
Z ′ of X that is (λ, k)-roughly similar to Z for some constants λ ≥ 1, k ≥ 0. Let
Y be the subspace of X that is induced by Z ′ and all points with distance at
most κ(δ, γ1, γ2) + 2κ(δ, λ, k) to any element of Z ′ for the constants κ(δ, γ1, γ2) and
κ(δ, λ, k) of Proposition 2.3. Since Z is locally finite and X is proper, the space Z ′

is proper and the same holds for Y . As Z is visual hyperbolic and this is a property
that is preserved by quasi-isometries, assertion (1) holds for Z ′ and thus also for
Y as the identity from Z ′ to Y is a quasi-isometry by the choice of Y . Since Z is
a geodesic space, every two points of Z ′ can be joined by a (λ, k)-quasi-geodesic.
This together with various applications of Proposition 2.3 implies (2). The assertion
(3) is a direct consequence of the fact that quasi-isometries between proper hyper-
bolic geodesic spaces can be extended to quasi-isometries between their hyperbolic
compactifications. �

6. Tree-likeness of hyperbolic spaces

We remark that, usually, the constructed tree in [17] for locally finite hyperbolic
graphs is far from having only rays that are eventually quasi-geodesic. But the
changes in the construction we made in this paper are strong enough to guarantee
that all rays in the constructed topological R-tree are already eventually quasi-
geodesic rays in the hyperbolic space.

Lemma 6.1. Let X be a proper hyperbolic geodesic space whose hyperbolic boundary
has finite Assouad dimension and let T be the topological R-tree that was constructed
in Section 4 with root r. Then there are constants γ1 ≥ 1, γ2 ≥ 0 such that every
ray in T starting at the root is a (γ1, γ2)-quasi-geodesic ray in X.

Proof. We assume all assumptions and notations as in the construction step j of
Section 4. By Proposition 2.6 there is a constant β depending only on the quotient
εj
εj−1

and not depending on the particular j such that for every four boundary points

η1, η2, η3, η4 with
εj−1 ≥ dh(η1, η2), dh(η3, η4) ≥ εj

we have
|d(r, [η1, η2])− d(r, [η3, η4])| ≤ β.

Note that β ≥ Q− q with Q, q as defined in Section 4. Let M := N4N log2(32θN4).
In the first step of the proof we shall prove for every two points w, y with y ∈
T i,kj \ T

i−1,k
j , w ∈ T i,kj ∩ [r, y]T the inequality

(1) dY (w, y) ≤ d(w, y) + (jM + n)(88δ + 4β)

with Y := T i,kj for an n that denotes the number how often we have already enlarged

the tree Tj−1 by additional rays whose intersection with [r, y]T is not empty. We
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conclude from (∗) in Section 4 that n is bounded by M and we even have n < M ,
since we add just in this step a ray.

Let R be the geodesic double ray, as in the recursion step and let P be that

geodesic ray with P ⊆ R that we added together with πR to T i−1,k
j to obtain T i,kj .

Let x be the unique point in T i−1,k
j ∩ πR and let x′ be the unique point in πR ∩ P .

By the choice of πR we have d(x, x′) ≤ δ. Furthermore, we have d(x, r) ≤ Q + 5δ
and d(x′, r) ≤ Q+ 6δ.

Let η := µki and let µ be the other limit point of R. Let b ∈ R with d(b,Qη) ≤ δ
for Qη = [r, η] and d(b,Qµ) ≤ δ for Qµ = [r, µ]. Such a point exists by definition
of hyperbolicity and as X is proper. Let a be a point on R with minimal distance
to r.

Let us prove

(2) d(a, b) ≤ 4δ.

Let c ∈ Qη and c′ ∈ Qµ both of minimal distance to b. By the choice of b we
have d(b, c) ≤ δ and d(b, c′) ≤ δ. As X is hyperbolic, the geodesic double ray R is
contained in the δ-neighborhood of the subset

Z := ηQηc ∪ [c, b] ∪ [b, c′] ∪ c′Qµµ
of X, where ηQηc is the subray of Qη from c to η and analogously for c′Qµµ. In
particular, we have d(a, Z) ≤ δ. Let a′ ∈ Z with d(a, a′) ≤ δ. Then we have
d(r, a′) ≤ d(r, a) + δ. By symmetry, we may assume that a′ ∈ ηQηc ∪ [c, b]. If
a′ ∈ [c, b], then we have d(a′, c) ≤ δ. If a′ ∈ ηQηc, then we have d(a′, c) ≤ 2δ, since
c is the point on Qη ∩ Z with minimal distance to r and d(r, c) ≥ d(r, a)− δ. The
inequality

d(a, b) ≤ d(a, a′) + d(a′, c) + d(c, b) ≤ δ + 2δ + δ = 4δ

proves (2).
For any another point â on R with distance d(r, a) to r, we conclude from (2)

that d(a, â) ≤ 8δ.
Let x′′ be the point on [r, x′] with d(r, x′′) = d(r, a) − δ. In particular, we have

d(x′, x′′) ≤ β + 7δ. Since X is hyperbolic, there is a point on [r, a] ∪ [a, x′] with
distance at most δ to x′′. If this point lies on [r, a], then we have d(x′′, a) ≤ 3δ,
and, if this point lies on [a, x′], then it has the same distance to r as a and hence
distance at most 8δ to a. Thus, we have d(x′′, a) ≤ 9δ. So we proved

(3) d(a, x′) ≤ β + 16δ.

Let aw be a point on R with d(w, aw) = d(w,R). To prove

(4) d(w, y) ≥ d(w, aw) + d(aw, y)− 4δ

let y′ a point on [w, y] with distance at most δ to both [w, aw] and [aw, y]. Such
a point exists by the same arguments as for b. Let y1 ∈ [w, aw] ∩ Bδ(y′) and
y2 ∈ [aw, y] ∩Bδ(y′). We have d(w, y2) ≥ d(w, aw) and hence

d(y1, aw) ≤ d(y1, y
′) + d(y′, y2) ≤ 2δ.

This immediately implies d(y, y′) + 3δ ≥ d(aw, y). In addition, we have

d(w, y′) ≥ d(w, y2)− δ ≥ d(w, aw)− δ.
As y′ ∈ [w, y], we conclude

d(w, y) = d(w, y′) + d(y′, y) ≥ d(w, aw) + d(aw, y)− 4δ.
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So we have proved (4).
The next step is to show

(5) d(a, aw) ≤ 18δ + β.

As X is hyperbolic, we conclude directly that [a, aw] lies in a 2δ-neighborhood of
[a, r]∪ [r, w]∪ [w, aw]. But since d(r, a) = d(r,R) and d(w, aw) = d(w,R), a part of
length at most 4δ of [a, aw] lies in the 2δ-neighborhood of [r, a] and a part of length

at most 4δ lies in the 2δ-neighborhood of [w, aw]. The point w lies in [r, y]∩T i−1,k
j

and hence d(r, w) ≤ d(r, a) + β + 6δ, so at most a part of length 10δ + β of [a, aw]
lies in a 2δ-neighborhood of [r, w]. Then we conclude directly (5).

Let a′w be a point on P with minimal distance to w and with a′w = aw if aw lies
on P . Let us show

(6) aw = a′w or d(r, aw) ≤ d(r, x′) + β + 8δ.

Let us assume that aw 6= a′w. Let z be a point on [aw, w] with distance δ to aw. Since
X is proper, z must have a point of distance at most δ on [w, x′]. As [x′, w] lies in
the δ-neighborhood of [r, w]∪ [r, x′], it lies in BQ+7δ(r). Because of d(r, x′) ≥ Q−β,
we obtain d(r, aw) ≤ Q+ 8δ and (6) follows immediately.

Since X is δ-hyperbolic and proper, there is a point z on [x′, aw] with distance
at most δ to [r, x′] and to [r, aw]. By (6), we obtain

d(w, a′w) ≤ d(w, x′) ≤ d(w, aw) + β + 12δ.

By an analogous argumentation, we conclude

(7) d(aw, a
′
w) ≤ β + 16δ.

Then we can conclude inductively, where j′ denotes the recursion step in which
we added x to the previous topological R-tree.

dY (w, y) = dY (w, a′w) + dY (a′w, y)
≤ dY (w, x) + d(x, x′) + d(x′, a) + d(a, aw) + d(aw, a

′
w)

+d(a′w, y)
≤ dY (w, x) + δ + β + 16δ + β + 18δ + β + 16δ + d(aw, y)
≤ d(w, x) + ((j − (j′ + 1))M + n)(α1δ + α2β)

+51δ + 3β + d(aw, y)
≤ d(w, aw) + d(aw, a) + d(a, x′) + d(x, x′) + d(aw, y) + 51δ + 3β

((j − (j′ + 1))M + n)(α1δ + α2β)
≤ d(w, aw) + d(aw, y) + β + 18δ + β + 16δ + δ + 51δ + 3β

((j − (j′ + 1))M + n)(α1δ + α2β)
≤ d(w, y) + 4δ + 86δ + 5β + ((j − (j′ + 1))M + n)(α1δ + α2β)
≤ d(w, y) + ((j − (j′ + 1))M + (n+ 1))(α1δ + α2β)

with α1 = 90 and α2 = 5. So we have

dY (w, y) ≤ d(w, y) + ((j − (j′ + 1))M + (n+ 1))(90δ + 5β).

Let π be a ray in T that starts at r. Inductively, there are constants c1 and c2
(independent of the choice of π) such that π is a (c1, c2)-quasi-geodesic ray. �

This lemma enables us to prove our main result. We will prove it in two steps.
First, we prove the result for proper visual hyperbolic geodesic spaces and then for
arbitrary proper hyperbolic geodesic spaces.
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6.1. The case: visual hyperbolic spaces. Visual hyperbolic spaces seem to
have a treelike-structure, since there is a maximal distance from each point to the
union of all geodesic rays starting at the same point. This in fact is the main reason
why the topological R-tree constructed in Section 4 points out the tree-likeness of
visual hyperbolic spaces. This is specified in Theorem 6.2.

For a hyperbolic space X and a subspace Y of X, we say that the canonical
map from ∂Y to ∂X exists if the identity ι : Y → X extends to a continuous map

ι̂ : T̂ → Ŷ and we call ι̂|∂Y is the canonical map from ∂Y to ∂X.

Theorem 6.2. Let X be a proper visual hyperbolic geodesic space whose hyperbolic
boundary has finite Assouad dimension. Then there is a topological R-tree T ⊆ X
that has the following properties:

(i) the canonical map γ from ∂T to ∂X exists and is surjective;
(ii) there is a constant M < ∞ such that every η ∈ ∂X has at most M inverse

images under γ;
(iii) there are constants c1 ≥ 1, c2 ≥ 0 such that every ray in T is eventually

(c1, c2)-quasi-geodesic;
(iv) there is a constant ∆ <∞ such that every point of X lies in a ∆-neighborhood

of a point of T ;
(v) there is a constant Λ < ∞ such that every geodesic ray of X lies eventually

in the Λ-neighborhood of some ray of T .

The constants M , c1, c2, ∆, and Λ depend only on the hyperbolicity constant δ and
on the doubling constant of ∂X.

Proof. Let T be the topological R-tree constructed in Section 4 with root r. We
already proved in that section the properties (i) and (ii). Lemma 6.1 gives us (iii).
Because X is visual hyperbolic, there is a D > 0 such that for every x ∈ X there
is an η ∈ ∂X with d(x, π) ≤ D for every geodesic ray π from r to η. Let πx be a
point on π with d(x, πx) ≤ D. In T there is a ray πT from r converging to η. Due
to Proposition 2.3 there is a point xT on πT with d(πx, xT ) ≤ κ for a constant κ
that depends only on δ, c1, and c2. Hence we have d(x, xT ) ≤ κ + D and (iv) is
proved with ∆ = κ+D.

To prove (v), let π be a geodesic ray in X and let π′ be a geodesic ray in X that
starts at r and converges to the same hyperbolic boundary point η like π. Due to (i),
there is a ray πT in T that converges to η. This ray in T is a (c1, c2)-quasi-geodesic
ray in X due to (iii). By Proposition 2.3, there is a constant κ = κ(δ, c1, c2) such
that π′ lies in the κ-neighborhood of πT . So (v) follows with Λ = κ. �

6.2. The case: hyperbolic spaces. The final aim of the main part of this paper
is to demonstrate the tree-likeness of arbitrary proper hyperbolic geodesic spaces
in terms of contained topological R-trees. For that, we combine the result for the
visual hyperbolic spaces with the theorems from Section 5.

A subset Y of a hyperbolic geodesic space X has finite geodesic out-spread if
every geodesic in X r Y has finite length.

Theorem 6.3. Let X be a proper hyperbolic geodesic space whose hyperbolic bound-
ary has finite Assouad dimension. Then there is a topological R-tree T ⊆ X that
has the following properties:

(i) the canonical map γ from ∂T to ∂X exists and is surjective;
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(ii) there is a constant M < ∞ such that every η ∈ ∂X has at most M inverse
images under γ;

(iii) there are constants c1 ≥ 1, c2 ≥ 0 such that every ray in T is eventually
(c1, c2)-quasi-geodesic;

(iv) there is a constant ∆ < ∞ such that the set BD(T ) has finite geodesic out-
spread;

(v) there is a constant Λ < ∞ such that every geodesic ray of X lies eventually
in the Λ-neighborhood of some ray of T .

The constants M , c1, c2, ∆, and Λ depend only on the hyperbolicity constant δ and
on the doubling constant of ∂X.

Proof. Let T ′ be a topological R-tree in X as constructed in Section 4 and let
γ1, γ2 be the constants of Lemma 6.1. By Corollary 5.4, there is a proper visual
hyperbolic geodesic subspace Y of X that has the properties that every geodesic
in X r Y has finite length, so Y has finite geodesic out-spread in X, and that
every (γ1, γ2)-quasi-geodesic ray lies eventually in Y . In Y we find a topological
R-tree T as in Theorem 6.2. For this topological R-tree, also the canonical map
∂T → ∂X exists and is surjective by Theorem 6.2 (i) applied for T and Y and due
to Corollary 5.4 (3). Furthermore, (ii) also holds because it holds for T and Y and
because ∂X = ∂Y . In addition, Lemma 6.1 implies (iii). Since Y has already finite
geodesic out-spread, the same holds for B∆(T ) because of Y ⊆ B∆(T ), where ∆
denotes the constant from Theorem 6.2 (iv). Finally, (v) is a direct consequence of
Theorem 6.2 (v), since every geodesic ray in X lies eventually in Y . This finishes
the proof of Theorem 6.3. �

7. The topological dimension of the boundary

Before we prove the main result of this section, we define the topological dimen-
sion of a topological space X. A refinement U of an open cover V of X is an open
cover of X such that for every U ∈ U there is a V ∈ V with U ⊆ V . We say that X
has topological dimension at most n if every open cover has a refinement such that
each x ∈ X lies in at most n+ 1 elements of the refinement, and X has topological
dimension n if it has topological dimension at most n but not topological dimension
at most n− 1. We call an open cover U of a topological space X with topological
dimension n critical if there exists no refinement V of U such that each x ∈ X lies
in at most n sets V ∈ V. For completion, we mention that dimX ≤ dimAX holds
due to [22, Facts 3.3].

Lemma 7.1. Let X be a compact metric space such that there exists a totally
disconnected metric space Y and an equivalence relation ∼ on Y with at most
M ∈ N elements in each equivalence class such that X and Y/∼ are homeomorphic.
Then X has topological dimension at most M − 1.

Proof. Let U be a finite critical open cover of X and ϕ : X → Y/∼ be a homeo-
morphism. Let U ′ be that open cover of Y that is induced by U , that is for every
U ′ ∈ U ′ there is a U ∈ U with U ′ =

⋃
u∈U ϕ(u). As Y is totally disconnected, it has

topological dimension 0. Hence, there is a finite open cover V ′ of U ′ with pairwise
disjoint elements. For any V ′ ∈ V ′ let V be the set of all ϕ−1([y]) with y ∈ V ′ and
let V be the set of all these sets V for V ′ ∈ V ′. Since all V ′ are open sets so are
all V and thus V is an open cover of X. By construction, V is also a refinement of U
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and every x ∈ X lies in at most M elements of U . Thus the topological dimension
of X is at most M − 1. �

Theorem 7.2. Let X be a proper hyperbolic geodesic space and let T be a topological
R-tree in X such that the canonical map from ∂T to ∂X exists and is surjective
and such that every hyperbolic boundary point of X has at most M inverse images
in ∂T for some M ∈ N. Then the topological dimension of ∂X is at most M − 1.

Proof. Since ∂T is compact and ∂T totally disconnected, the assertion is a direct
consequence of Lemma 7.1. �

In the terms of [17], where spanning trees of locally finite hyperbolic graphs
were investigated, we obtain an analogous result. A spanning tree of a graph is a
subgraph on all vertices of the graph that is a tree.

Theorem 7.3. Let G be a locally finite hyperbolic graph and let T be a spanning
tree of G such that the canonical map from ∂T onto ∂G exists and is surjective and
such that every hyperbolic boundary point of G has at most M inverse images for
some M ∈ N. Then the topological dimension of ∂G is at most M − 1. �
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