QUASI-TRANSITIVE K, .-MINOR FREE GRAPHS

MATTHIAS HAMANN

ABsTrRACT. We prove that every locally finite quasi-transitive graph that does
not contain Ko, as a minor is quasi-isometric to some planar quasi-transi-
tive locally finite graph. This solves a problem of Esperet and Giocanti and
improves their recent result that such graphs are quasi-isometric to some planar
graph of bounded degree.

1. INTRODUCTION

Recently, Esperet and Giocanti [2] proved a theorem for quasi-transitive graphs,
where a graph is quasi-transitive if its automorphism group acts on its vertex set
with only finitely many orbits. Before we state their theorem , let us briefly intro-
duce quasi-isometries. A graph G is quasi-isometric to another graph H if there
exists v > 1 and ¢ > 0 and a map ¢: V(G) — V(H) such that the following holds.

(1) %dg(u,v) —c<dpu(e(u),p)) <ydg(u,v) + ¢ for all u,v € V(G) and
(i) du(w, p(V(G))) <cforall w e V(H).

Then ¢ is a quasi-isometry. If the constants v and ¢ are important, we call ¢ also
a (v, ¢)-quasi-isometry and say that G and H are (7, ¢)-quasi-isometric.
Now we are able to state the theorem of Esperet and Giocanti.

Theorem 1.1. [2, Theorem 1.3] Every locally finite quasi-transitive graph that does
not contain K., as a minor is quasi-isometric to some planar graph of bounded
degree.

Esperet and Giocanti proved their theorem as a first step towards a more general
conjecture by Georgakopoulos and Papasoglu [4]. In order to state their conjecture,
let us introduce the notion of asymptotic minors.

For K € N, a graph H is a K-fat minor of a second graph G if there exists a
family (B,)ycv(m) of connected subsets of V(G) and a family (P.)ccp(m) of paths
in G such that

(1) for all wv € E(H), the path Py, intersects [, cy sy Bw in exactly its end
vertices, one of which lies in B, the other in B,,

(2) d(Pyy, By) > K for all wv € E(H) and w € V(H) \ {u, v},

(3) d(By, B,) > K for all distinct u,v € V(H), and

(4) d(P,, P./) > K for all distinct e, e’ € E(H).

We call H an asymptotic minor of G if for every K > 0, H is a K-fat minor of G.
Now we can state Georgakopoulos’ and Papasolgu’s conjecture.

Conjecture 1.2. [4, Conjecture 9.3] Let G be a locally finite transitive graph. Then
either G is quasi-isometric to a planar graph, or it contains every finite graph as
an asymptotic minor.
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The obvious question regarding Conjecture 1.2 is whether we can ask the planar
graph to be transitive, too. Indeed, Esperet and Giocanti [2, Section 6] raised the
problem whether the planar graph in their theorem can be asked to be quasi-tran-
sitive, too. We will prove that this is possible. That is, we will prove the following
theorem.

Theorem 1.3. Every locally finite quasi-transitive graph that does not contain K
as a minor is quasi-isometric to some planar quasi-transitive locally finite graph.

This result indicates that a possible positive solution of the following problem
might be expectable.

Problem 1.4. If G is a quasi-transitive locally finite graph quasi-isometric to a
planar graph, then is G quasi-isometric to a quasi-transitive locally finite planar
graph?

Another hint that this might be true is that MacManus [7] recently proved the
following analogous statement for finitely generated groups.

Theorem 1.5. [7, Corollary D| The following are equivalent for every finitely gen-
erated group G.

(1) G is quasi-isometric to a planar graph.

(2) G is quasi-isometric to a planar Cayley graph.

Furthermore, he proved a structural result for quasi-transitive locally finite
graphs that are quasi-isometric to planar graphs, see [7, Corollary C], in terms
of canonical tree-decompositions: the parts are either finite or quasi-isometric to
complete Riemannian planes. We refer to Section 2 for the definition of (canonical)
tree-decompositions. This structural result might be useful for Problem 1.4.

2. PRELIMINARIES

Let G be a graph. A tree-decomposition of G is a pair (T,V) of a tree T, the

decomposition tree, and a family V = (V;)icv (1) of vertex sets of G, one for every
t € V(T), such that
(T1) V(G) = UvEV(T) Vis
(T2) for every e € E(G) there exists t € V(T') with e C V4, and
(T3) Vi, NV, C V4, for all t5 on the t1-t5 path in 7'
The sets V; are the parts of the tree-decomposition and the intersection V;, NV;, for
adjacent t; and to are the adhesion sets. The adhesion of (T,V) is the supremum
of the sizes of the adhesion sets. The width of (T,V) is sup,cy (p) [Vi| — 1, seen as
an element of NU {oo}, if all V; are finite and oo otherwise. The tree-width of G is
the minimum width among all tree-decompositions of G.

If the automorphism group of G induces an action on the family V and thereby
also an action on 7' then we call the tree-decomposition canonical.

If V; is a part of (T, V), then the subgraph of G induced by V; together with all
(possibly new) edges uv for all distinct u, v that lie in a common adhesion set in V;
is a torso of (T, V).

A separation of G is a pair (A, B) with A, B C V(G) such that AU B = V(G)
and such that e C A or e C B for all edges of G. We call |A N B| its order. The
separation is tight if there are components C4 in A \ B and Cp in B \ A with
N(Ca)=ANB=N(Cp).
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For a tree-decomposition (T,V) and an edge e € E(T), the edge-separation of e

is the separation
(U w U w,

teV(T1) teV(Ts)
where T7 and 75 are the two components of T — e.
The following result by Thomassen and Woess [9, Corollary 4.3] was stated for
transitive graphs, but its proof carries over almost verbatim to quasi-transitive
graphs.

Lemma 2.1. [9, Corollary 4.3] Let G be a connected quasi-transitive locally finite
graph and let k € N. Then there are only finitely many Aut(G)-orbits of tight
separations of order k.

The major tool in our proof of Theorem 1.3 is the following result by Esperet et
al. [3].

Theorem 2.2. [3, Theorem 4.3] Let G be a quasi-transitive locally finite graph with-
out K as a minor and let T be a group acting quasi-transitively on G. Then there
exists k € N and a I'-invariant tree-decomposition (T, V) of adhesion at most 3, and
such that for every t € V(T') the torso of V; is a minor of G that is either planar
or has tree-width at most k and such that Ty acts quasi-transitively on that torso.
Furthermore, the edge-separations of (T,V) are all tight.

One-way infinite paths are rays and two rays in a graph G are equivalent if, for
every finite vertex set S C V(G), both rays have all but finitely many vertices in
the same component of G — S. This is an equivalence relation whose equivalence
classes are the ends of G. An end is thick if it contains infinitely many pairwise
disjoint rays and it is thin otherwise. By a result of Halin [5], for every thin end,
there exists n € N such that there are n but not n + 1 pairwise disjoint rays in that
end.

Two ends are k-distinguishable for some k € N if there exists a vertex set S of
size at most k such that no component of G — S contains all but finitely many
vertices from rays from both ends. A tree-decomposition distinguishes two ends
efficiently if there is an edge-separation (A, B) such that all rays from one of the
ends lie eventually in A, all rays from the other end lie eventually in B and the
ends are not (|A N B| — 1)-distinguishable.

The following is a special case of [1, Theorem 7.3].

Theorem 2.3. Let G be a locally finite graph and let k € N. Let £ be a set of ends
of G that are pairwise k-distinguishable. Then there is a canonical tree-decomposi-
tion distinguishing all end in & efficiently.

While the following statement follows from results about factorisations and tree
amalgamations of quasi-transitive graphs, we offer here a proof that avoids most of
the definitions that we would need, if we conclude it from [6, Theorem 7.5].

Theorem 2.4. Let G be a locally finite graph of finite tree-width. Then there exists
a canonical tree-decomposition of finite width distinguishing all ends of G efficiently.

Proof. A ray R of G lies in an end of any decomposition tree of a tree-decom-
position of finite width of G if there is a ray in that end whose parts combined
contain infinitely many vertices from R and each of those parts contains at least
one vertex of R. It is easy to see that equivalent rays in G must lie in the same
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end of the decomposition tree. Thus, every end of G is thin and contains at most
k distinct rays. In particular, the ends of G are pairwise k-distinguishable. So let
(T, V) be a canonical tree-decomposition distinguishing all ends of G efficiently. We
may assume that every edge-separation distinguishes some pair of ends efficiently.
In particular, there is an upper bound on the adhesion sets. By Lemma 2.1, there
are only finitely many orbits of tight separations of bounded order. Thus, there are
only finitely many orbits on E(T") and hence on V(T). If we show that all parts
are finite, then this implies that the tree-decomposition has finite width. So let us
suppose that some part is infinite. Since (7,)) distinguishes all ends, there is a
unique end in this part’ and hence also in this torso. Note that the torso is locally
finite, since it follows from Lemma 2.1 that every vertex lies in only finitely many
separators of tight separations. Since the stabiliser of that part acts quasi-transi-
tively on the torso by a results of Esperet and Giocanti [3, Lemma 3.13], it is a
one-ended quasi-transitive graph. By a result of Thomassen [8, Proposition 5.6],
this end must be thick, a contradiction since all ends are thin. Thus, all parts are
finite, which finishes the proof as mentioned above. O

For a finite tree T', we call a vertex of T' central if it is the middle vertex of a
longest path in 7. Similarly, an edge of T is central if it is the middle edge of a
longest path in 7. Note that every finite tree has either a central vertex or a central
edge and that this is always fixed the automorphism group of the tree.

3. PROOF OF THEOREM 1.3

Let G be a quasi-transitive locally finite graph that omits K, as a minor. By
Theorem 2.2, there exist k£ € N and a canonical tree-decomposition (T',)) of G of
adhesion at most 3 such that the torsos are minors of G and each torso is either
planar or has tree-width at most k and such that the stabiliser of each torso acts
quasi-transitively on that torso. Furthermore, the edge-separations of (T,V) are
tight. Thus, there are only finitely many orbits of them by Lemma 2.1 and hence
there are only finitely many Aut(G)-orbits on V(T).

We distinguish three types of torsos (finite torsos, infinite torsos of tree-width at
most k and infinite planar torsos) and prepare them for our final quasi-isometry:
we find for each torso of the first two kinds quasi-isometries to planar quasi-transi-
tive locally finite graphs and, in the last situation, we have to prepare them such
that separations of order 3 whose separator is also an adhesion set in (T,)) does
not leave three distinct components. We do this by adding additional separators of
size 1.

If there are finite torsos, then there is an upper bound B; on the number of
vertices in each such torso as there are only finitely many Aut(G)-orbits on V(T).
Thus, each of those torsos is (1, By)-quasi-isometric to a single vertex.

Let us now consider an infinite torso H; of tree-width at most k. Since it is
locally finite, H; has a canonical tree-decomposition of finite width. Again, since
there are only finitely many Aut(G)-orbits on V(T'), there exists an upper bound
Bs on the width of the canonical tree-decompositions of such torsos. Let (13, V;) be
a canonical tree-decomposition of H; of width at most Bs distinguishing all ends
and such that all of its edge-separations are tight, which exists by Theorem 2.4.
Since there are only finitely many orbits on V(T;) under the stabiliser of H; by

1An end w lies in a part V; if some ray R € w meets V; infinitely often.
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the same argument that we have only finitely many Aut(G)-orbits on V(T'), there
exists an upper bound Bs on the diameter of the parts of (73,V;) and an upper
bound B4 on the number of parts that contain a vertex v. Again, we may assume
that these bounds Bz and By hold for all torsos of this type, i.e. all infinite torsos
of tree-width at most k. Thus, any map that maps each vertex u of H; to some
s € V(T}) such that u lies in the part of s is a (1, B3B4)-quasi-isometry from H;
to T;. Since every adhesion set S of (T,V) in H, is a clique and thus must lie in
some common part of (T}, V;), there exists a non-empty subtree T;° of T} all of
whose parts contain S. As all edge-separations of (T3,);) are tight, Lemma 2.1
implies that every T} is finite. So it has a central vertex vg or a central edge eg.

For every infinite planar torso H; and every adhesion set S in H; of size 3, there
are at most two components C' of H; — S with N(C) = S, since Hy is planar and
thus does not contain K3 3 as a minor. Let (7%, V;) be a canonical tree-decomposi-
tion of adhesion at most 3 distinguishing all 3-distinguishable ends of H; such that
all of its edge-separations are tight. This exists by Theorem 2.3. We contract all
edges whose edge-separations do not have one of the adhesion sets of size 3 from
(T,V) as separator and join their parts. Thereby, we obtain a tree-decomposition
(T},V}) that has as adhesion sets only adhesion sets of size 3 that are also adhesion
sets in (T,V). Note that the torsos are the subgraphs of H; induced by the parts.
Let G be a torso of (T}, V). If there is an adhesion set S C V(G;) of (T, V) that
is not an adhesion set in (77,Vy), then G; — S has a unique infinite component
that is completely attached to S, i.e. has all vertices from S in its neighbourhood,
and perhaps one finite component. We delete that finite one. By doing this for all
choices of S, we obtain a new graph G’,. As there are only finitely many orbits on
the adhesion sets in (T, V), there exists Bs such that G is (1, Bs)-quasi-isometric
to G, for all choices of Gs.

Now we are ready to define the graph H that will be quasi-transitive, locally
finite, planar and quasi-isometric to G. For that, we take the disjoint union H’ of
the following graphs:

(i) one vertex xg for every adhesion set S in (T, V);
(ii) one vertex x; for every finite torso Hy of (T,V);
(iii) one copy of the decomposition tree T} for every infinite torso of tree-width at
most k and
(iv) the disjoint union of all graphs G obtained from torsos G’ in the tree-decom-
position (T7,V;) of the infinite planar torsos of (7,V) that do not have tree-
width at most k.

In order to form the graph H, we add some edges to H':

(v) an edge xgx; for all adhesion sets S and finite torsos H; with S C V;;
(vi) an edge xsvg or two edges from zg to the vertices incident with eg for all
adhesion sets S and infinite torsos of tree-width at most & that contain S and
(vii) edges from all s € S to zg for all adhesion sets S in (T',V) and the graphs G
that contain S.

The resulting graph is denoted by H. By construction, G is connected and (1, B)-
quasi-isometric to H, where B is the maximum of By, B3B; and Bs. Since we
made no choices during the construction of H that were not invariant under the
automorphisms, the automorphism group of G acts on H. By the choices during
the construction, the stabiliser of each torso of (T',V) still acts quasi-transitively
on the graph that replaces this torso and as a result, H is a quasi-transitive graph.
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Obviously, it is locally finite. Since all components in H’ are planar and since the
vertices xg are l-separators and attached to either at most two adjacent vertices
in a component of H' or to all vertices from the adhesion set S of (7,V) whose
removal from each component of H' leave exactly one component with all of S
in its neighbourhood, we obtain that H is planar, too. This finishes the proof of
Theorem 1.3. O
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