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CHAPTER 1

Introduction

We investigate several classes of infinite graphs that turn out to have a tree-
like structure, each in their own way. Although this thesis consists of three parts,
there is a connection from each part to its succeeding one. Before it comes to the
three parts, we recall in Chapter 2 several definitions and aspects of infinite graphs,
hyperbolic graphs, the structure tree theory, and dimension concepts of topological
and metric spaces.

Part 1 deals with hyperbolic graphs. After Chapter 3, in which we discuss sev-
eral known connections between hyperbolic graphs (together with their hyperbolic
boundary) and trees (together with their boundary) and which does not contain
new results, we show in Chapter 4 that every locally finite hyperbolic graph G

whose hyperbolic boundary has finite Assouad dimension has a rooted spanning
tree T with several properties:

• Every ray starting at the root is quasi-geodetic for some global constants.
• The main part of the hyperbolic graphs fits snugly around the described rays in

the sense that for some constant d every geodetic ray of the graph lies eventually
d-close to the tree.

• The identity map from T to G extends to a continuous map from T [ @T , the
tree with its boundary, to G[ @G, the graph with its hyperbolic boundary, such
that every element of @G has at least one but only boundedly many preimages
under this extension.

This result extends a result of Gromov [46] which says that from every hyper-
bolic graph with bounded degrees one can construct a tree outside the graph with a
continuous surjection from the ends of the tree onto the hyperbolic boundary such
that the surjection is finite-to-one.

We remark that an R-tree as in the result of Chapter 4 also exists in the more
general situation of proper hyperbolic geodetic spaces, see [52]. But to keep this
thesis graph theoretical, we write the chapter in the notations of graphs.

We continue in Part 2 with the investigation of graphs whose automorphism
groups act with certain additional properties on the boundary of the graphs. The
first chapter of Part 2 (Chapter 5) introduces to the whole topic and particularly to
a property, called the fixed set property, that reveals a relation between the group
action on the graph and that on the boundary of the graph. In that chapter we
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2 1. INTRODUCTION

summarize some known results for the better understanding of the new results in
Chapter 6, 7, and 8.

In Chapter 6, we prove that there is no locally finite planar hyperbolic graph
with precisely one end such that a subgroup of its automorphism group acts tran-
sitively on the graph and fixes a hyperbolic boundary point. This gives a partial
answer to a question of Kaimanovich and Woess [61].

We continue in Chapter 7 with characterizing connected graphs, not necessarily
locally finite, that have infinitely many ends and whose automorphism group has a
subgroup that acts transitively on the graph itself but fixes an end of a certain kind,
called a non-local end. These graphs are quasi-isometric to semi-regular trees as in
the case of locally finite graphs, see [80]. This answers a problem of Woess [101].

If we assume that the automorphism group of a connected graph with infinitely
many non-local ends acts transitively on these ends, we obtain in Chapter 8— also as
an answer to a problem of Woess [101]—that there is a metrically almost transitive
subgraph that is quasi-isometric to a semi-regular tree and whose deletion leaves a
rayless graph.

In Part 3, we look at graphs that satisfy various kinds of symmetry conditions.
These conditions lie somewhere between transitivity of the automorphism groups
on the vertices and homogeneity of the graphs. In the first chapter of Part 3
(Chapter 9) we shall discuss known results for some symmetry conditions: We
start with homogeneous graphs and then weaken the assumptions to obtain other
natural symmetry conditions. We also discuss the corresponding known results in
the case of directed graphs and how the new results of Chapter 10, 11, and 12
correspond to the known results.

The main result of Chapter 10 is the classification of the connected distance-
transitive graphs with more than one end. This is a generalization of the results
in [76, 81] to graphs with arbitrary degree.

In Chapter 11 we look at connected k-CS-transitive graphs and classify, for
k � 3, those that have at least two ends. Thereby, we do not only generalize a
result from Gray [42] from locally finite graphs to graphs with arbitrary degree but
also from the case k = 3 to arbitrary k � 3.

Finally, in Chapter 12, we study connected-homogeneous digraphs. The inves-
tigation of these digraphs was started by Gray and Möller [45] where they classified
the two-ended connected such digraphs and gave a list of examples with infinitely
many ends. We classify the connected such digraphs with more than one end and
arbitrary degree, and also the locally finite connected such digraphs with precisely
one end and the finite connected ones. This, then, completes the classification of the
connected-homogeneous digraphs, either finite or infinite, whose vertices have finite
degree. This is the only piece of this thesis in which we study finite (di-)graphs.

Let us say a word about the techniques we use for the proofs in several chapters
whose corresponding theorems for locally-finite graphs are all based on Dunwoody’s
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structure trees corresponding to finite edge-cuts that are invariant under the action
of the automorphism group of the graph. This structure tree theory is described in
the book of Dicks and Dunwoody [25], see also [31]. We refer to [83, 82, 94] for
introductions to this topic. Since those edge-cuts must be finite, these structure
trees can in general only be applied to locally finite graphs.

Recently, Dunwoody and Krön [32] developed a similar structure tree theory
based on vertex cuts, providing a similarly powerful tool for the investigation of
graphs that are not necessarily locally finite. We use this new theory in several of
our proofs.





CHAPTER 2

Definitions and preliminary results

In this chapter we give the main definitions that we use throughout the thesis.
Furthermore, we summarize some known results. In the last section of this chapter,
we define some (di-)graphs that play a role in the various classification results of
Part 3. Throughout this thesis we use the graph theoretic terms and notations from
[26] if not stated otherwise.

2.1. Ends of graphs

We introduce some notations for infinite graphs. A ray is a one-way infinite
path. Two rays in a graph G are equivalent if there is no finite vertex set S in
G such that the two rays lie eventually in distinct components of G � S. The
equivalence of rays is an equivalence relation whose classes are the (vertex) ends of
G. If we just talk of ends of graphs we always think of vertex ends. All other end
types—which we shall define in a moment—will be stated concretely.

By replacing the finite vertex set S in the definition of ends by a finite edge set
one obtains edge ends. Obviously for every graph there is a canonical map from its
ends to its edge ends which is surjective but in general not injective.

A metric ray is a ray such that no infinite subset of its vertices has finite
diameter. An end is global if every ray in that end is a metric ray. If conversely
there is no metric ray in an end this is a local end. If an end is not local, then it is
a non-local end. So an end is non-local if it contains a metric ray.

Two metric rays are metrically equivalent if for every vertex set S of finite
diameter both rays lie eventually in the same component of G�S. The equivalence
classes of metrically equivalent metric rays are the metric ends of a graph. Just as
the ends are a refinement of edge ends, the metric ends are a refinement of non-local
ends. A group acts metrically almost transitively on a graph G if there is an r 2 N
such that for every x 2 V G there is G(x, r) = G. See [62, 66, 67] for more details
on metric ends and metrically almost transitive graphs.

A vertex x 2 V G dominates an end ! if there is a ray R in ! and an infinite
set of (except for x) pairwise disjoint x-R-paths and an end ! is thin if there is an
n 2 N such that there are at most n disjoint rays in !.

The proof of the following lemma due to König can be found for example in
[26, Lemma 8.1.2].

5



6 2. DEFINITIONS AND PRELIMINARY RESULTS

Lemma 2.1. Let V0, V1, . . . be an infinite sequence of disjoint non-empty finite
sets, and let G be a graph with V G =

S
i2N Vi. Assume that every vertex v in a set

Vn with n � 1 has a neighbor f(v) in Vn�1. Then G contains a ray v0v1 . . . with
vn 2 Vn for all n. ⇤

2.2. Group action on graphs

A group � acts on a graph G if � acts on the set V G and if for every xy 2 EG

and for every ↵ 2 � the image x↵y↵ of xy is an edge in G again. Remark that we
denote with x↵ the image of x under ↵. If � acts transitively on V G the G is a
transitive graph.

Let � be a group acting on a digraph D and let U ✓ V D. We denote with �U

the (pointwise) stabilizer of U , that is the subgroup of � that fixes each element
of U . The same notion holds for an edge e 2 ED or a single vertex x 2 V D. If �
fixes the set U setwise, then we denote with �U all the automorphisms of U that
are obtained by restricting elements of � on U .

For the following well-known proposition see for example [99] or [69, 3.1.2].

Proposition 2.2. Every subgroup of Sn with n 2 N is equal to An or has an
index of at least n. ⇤

For infinite graphs, we have the following theorem which is well-known in the
locally finite case.

Theorem 2.3. [27, Corollary 4] Connected infinite transitive graphs have either
1, 2, or infinitely many ends. ⇤

But the case of precisely two ends only happens in locally finite graphs as the
next theorem shows.

Theorem 2.4. [27, Theorem 7] Every connected transitive graph with precisely
two ends is locally finite. ⇤

We call a graph end-transitive if its automorphism group acts transitively on
its ends.

An automorphism ↵ of a graph G is a translation if there is no finite vertex set
fixed by ↵. A �-congruence ⇡ is a �-invariant equivalence relation. Its congruence
classes are the equivalence classes of that relation.

2.3. Planar graphs

Planar graphs are graphs that have an embedding of the graph as a 1-complex
into the Euclidean plane. Such embeddings are also called planar embeddings.
Whitney [98] proved the following result for finite graphs. Later it was extended
by Imrich [57] and Thomassen [93] to infinite graphs.

Theorem 2.5. Planar 3-connected graphs have a unique plane embedding. ⇤

The next result is due to Babai and Watkins [7], see also [6, Lemma 2.4].
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Lemma 2.6. [7, Theorem 1] Let G be a locally finite connected transitive graph
that has precisely one end. Let d be the degree of any of its vertices. Then the graph
has connectivity at least 3(d + 1)/4. ⇤

For a planar graph G and a vertex x 2 V G, we consider the embedding of
the edges incident with x and define the spin of x to be the cyclic order of the set
{xy | y 2 N(x)} where xz is a successor of xy whenever the edge xz is the next one
after the edge xy in the clockwise order around x.

We deduce from Lemma 2.6 and Theorem 2.5 that every locally finite transitive
planar graph with precisely one end has a unique embedding in the Euclidean plane.
So we know that every vertex of a locally finite transitive planar graph with precisely
one end has either a fixed spin or its reversing spin.

An automorphism ↵ of a graph G that is uniquely embeddable into the Eu-
clidean plane is called spin-preserving if for a vertex x 2 V G the spin of x↵ is the
same as the image of the spin of x under ↵. If the spins are not the same, then the
spin of x↵ must be the reverse of the image of the spin of x under ↵ because of the
unique embedding of G. In this latter case, the automorphism is spin-reversing.

2.4. Digraphs

A digraph D = (V D,ED) consists of a non-empty set V D, its set of vertices,
and an asymmetric (i.e. irreflexive and anti-symmetric) binary relation ED over
V D, its set of edges.

We write xy for an edge (x, y) 2 ED and say that xy is directed from x to y.
For x 2 V D we define its out-neighborhood as N+(x) := {y 2 V D | xy 2 ED}, its
in-neighborhood as N�(x) := {z 2 V D | zx 2 ED} and finally its neighborhood as
N(x) := N+(x) [N�(x). Two vertices are called adjacent if one is in the other’s
neighborhood. For a vertex set X ✓ V D the neighborhood of X is defined as
N(X) :=

�S
x2X N(x)

�
\ X and N+(X), N�(X) are defined analogously. For all

x 2 V D we denote with d+(x), d�(x) the cardinality of N+(x), N�(x), respectively.
The degree d(x) is the cardinality of N(x). So we have d(x) = d+(x) + d�(x).

A (k)-arc is a directed path (of length k). An ancestor (descendant) of a
vertex x is any vertex y for which there exists an arc from y to x (from x to y).
The descendant-digraph (ancestor-digraphs) of x is the subdigraph desc(x) ✓ D

(the subdigraph anc(x) ✓ D) that is induced by the set of all its descendants (its
ancestors, respectively).

If x0x1 . . . xn is a sequence of vertices such that any two subsequent vertices
are adjacent then it is called a walk and a walk of pairwise distinct vertices is called
a path. A path that is also an arc is called a directed path. A digraph is called
connected if any two vertices are joined by a path.

A walk x0x1 . . . xn such that xi 2 N+(xi+1) , xi+1 2 N�(xi+2) is called
alternating. If e = xy and e0 = x0y0 are contained in a common alternating walk
then they are called reachable from each other. This clearly defines an equivalence
relation, the reachability relation, on ED which we denote by A, and for e 2 ED
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we refer to the equivalence class that contains e by A(e). We call the subdigraph
D[A(e)] induced by A(e) the reachability digraph of D that contains e.

The reachability digraph of an edge e is a bipartite reachability digraph if it is
bipartite, if one class of this bipartition has empty in-neighborhood in D[A(e)] and
if the other class has empty out-neighborhood.

Let ⇠ be an equivalence relation on a digraph D. With D⇠ we denote the
digraph whose vertex set is the set of equivalence classes and with edges XY when-
ever there are representatives x 2 X, y 2 Y such that xy 2 ED. This is not a
digraph in our restrictive meaning, because it may have loops or for an edge xy

there might also exist the edge yx. However, we just consider such equivalence re-
lations that makes D⇠ to a digraph, that means its adjacency relation is irreflexive
and anti-symmetric.

The ends of a digraph are the ends of the underlying undirected graph.

2.4.1. Group action on digraphs. A group acts on a digraph if it acts on
the underlying undirected graph and, furthermore, respects the directions of the
edges, that is, if xy is an edge and � a group element, then x�y� is also an edge.

In an edge-transitive digraph, that is a digraph such that its automorphism
group acts transitively on its edges, all reachability digraphs �e := D[A(e)] with
e 2 ED are isomorphic, so we may denote a representative of their isomorphism
type by �(D). Furthermore Cameron, Praeger and Wormald proved the following
proposition on the reachability relation in edge-transitive digraphs.

Proposition 2.7. [19, Proposition 1.1] Let D be a connected edge-transitive
digraph. Then �(D) is edge-transitive and connected. Further, either

(a) A is the universal relation on ED and �(D) = D, or
(b) �(D) is a bipartite reachability digraph. ⇤

2.5. Structure trees

In this section we introduce the terms of cuts and structure trees that were
developed in [32] and have their applications, apart from this thesis, in [64]. Com-
pared with Dunwoody and Krön [32] we use a di↵erent notation for the cut systems
in order to indicate the relation of cut systems with the well-known graph theoretic
concept of separations, see [26].

Let G be a connected graph and let A,B ✓ V (G) be two vertex sets. The
pair (A,B) is a separation of G if A [B = V (G) and E(G[A]) [E(G[B]) = E(G).
The order of a separation (A,B) is the cardinality of its separator A \ B and the
subgraphs G[A \ B] and G[B \ A] are the wings of (A,B). With (A,⇠) we refer
to the separation (A, (V (G) \ A) [N(V (G) \ A)). A cut is a separation (A,B) of
finite order with non-empty wings such that the wing G[A \ B] is connected and
such that no proper subset of A \ B separates the wings of (A,B). A cut system
of G is a non-empty set S of separations (A,B) of G satisfying the following three
properties.
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1. If (A,B) 2 S then there is an (X,Y ) 2 S with X ✓ B.
2. Let (A,B) 2 S and C be a component of G[B \ A]. If there is a separation

(X,Y ) 2 S with X \ Y ✓ C, then the separation (C [N(C),⇠) is also in S.
3. If (A,B) 2 S with wings X,Y and (A0, B0) 2 S with wings X 0, Y 0 then there

are components C in X \X 0 and D in Y \ Y 0 or components C in Y \X 0 and
D in X \ Y 0 such that both C and D are wings of separations in S.

Two separations (A0, A1), (B0, B1) 2 S are nested if there are i, j 2 {0, 1} such
that one wing of (Ai \ Bj ,⇠) does not contain any connected component C with
(C [N(C),⇠) 2 S and A1�i \B1�j contains (A0 \A1)[ (B0 \B1). A cut system
is nested if each two of its cuts are nested.

Remark 2.8. The following two assertions hold.

1. If, for two C-cuts (A0, A1), (B0, B1), the separator A0 \ A1 contains vertices of
both wings of (B0, B1), then the two cuts are not nested.

2. In any transitive graph G with an Aut(G)-invariant cut system C, any two nested
cuts (A0, A1) and (B0, B1) with (A0 \A1) [ (B0 \B1) ✓ A1�i \B1�j have the
property that Ai \Bj is empty by [32, Lemma 3.5].

A cut in a cut system S is minimal if its order in S is minimal. A minimal cut
system is a cut system all whose cuts are minimal and thus have the same order.

Let us describe two minimal cut systems one of which was introduced by Dun-
woody and Krön [32, Example 2.2]. Both will be used in our proofs.

Example 2.9. Let G be a connected infinite graph with at least two ends (two
non-local ends). Let n be the smallest cardinality of a finite vertex set X such that
there are at least two components in G�X that contain a ray (a metric ray) each.
Let S be the set of all cuts (A,B) with order n such that both G[A] and G[B]
contain a ray (a metric ray). Then S is a minimal cut system.

An S-separator is a vertex set S that is a separator of some separation in S.
Let W be the set of S-separators. An S-block is a maximal induced subgraph X

of G such that

(i) for every (A,B) 2 S there is V (X) ✓ A or V (X) ✓ B but not both;
(ii) there is some (A,B) 2 S with V (X) ✓ A and A \B ✓ V (X).

Let B be the set of S-blocks. For a nested minimal Aut(G)-invariant cut system
S let T be the graph with vertex set W [ B. Two vertices X,Y of T are adjacent
if and only if either X 2 W, Y 2 B, and X ✓ Y or X 2 B, Y 2 W, and Y ✓ X.
Then T = T (S) is called the structure tree of G and S.

Lemma 2.10. [32, Lemma 6.2] Let G be a connected graph, and let S be a
nested minimal cut system. Then the structure tree of G and S is a tree. ⇤

An S-slice is the induced subgraph G[Z] of a component Z of G� (A\B) with
(A,B) 2 S such that (Z [ (A \B),⇠) /2 S.
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A separation (A,B) 2 S separates two vertex sets, two S-blocks, two ends of G,
or an S-block and an end of G properly if the blocks intersect non-trivially with
distinct wings of (A,B), if each two rays of distinct ends lie eventually in distinct
wings of (A,B), or if each ray eventually lies in that (A,B)-wing that intersects with
the block trivially. If one separator S separates two vertices of another separator S0

the separators S and S0 cross. It is a consequence of Lemma 3.3 and Theorem 3.5
of [32] that two minimal separations are nested if and only if their corresponding
separators do not cross.

A cut system S of a connected graph G is basic if S is minimal, nested, Aut(G)-
invariant, if S is a subsystem of the minimal cut system given in Example 2.9 and
if all separators A \B with (A,B) 2 S belong to the same Aut(G)-orbit.

We state here that part of Theorem 7.2 of [32] that we shall use here.

Theorem 2.11. For every graph G with at least two ends (two non-local ends)
there is a basic cut system S of G. ⇤

A ray R corresponds to a vertex X of T if X is a block and R\X is infinite. A
ray R corresponds to an end ! of T if for any ray P in ! and for every S-separator
S on P all but finitely many vertices of R lie in the same component of G � S

as that S-block which is in T adjacent to S and which separates S from ! in G.
Obviously a ray of G corresponds either to a vertex of T or to an end of T . As all
rays in the same end have to correspond to the same vertex or end of T , we also
say that the end corresponds to that end or vertex of T .

For a cut (A,B) and a minimal cut system S let mS(A,B) denote the number
of distinct S-separators S such that there is one S-separation that is not nested
with (A,B) and that has S as its separation. By [32, Theorem 3.5, Lemma 4.1]
the value mS(A,B) is finite.

Lemma 2.12. Let G be a connected graph. Let C be a minimal cut system. Let
S1 and S2 be two basic subsystems of C. Suppose that there are separations of S1

and S2 that are not nested. Then there is a basic subsystem S of C such that S[S2 is
a nested cut system and mS1(A,B) < mS1(A0, B0) for all (A,B) 2 S, (A0, B0) 2 S2.

Proof. Let (A1, B1) 2 S1 such that (A1, B1) is not nested with all (A,B) 2 S2.
We choose (A2, B2) 2 S2 such that the intersection X of one wing of (A2, B2) with
A1\B1 is minimal but not empty and such that the S2-block containing X is in the
structure tree T2 adjacent to A2\B2. We may assume that X ✓ A2. Then there is
a component C of G�(A1\B1)�(A2\B2) such that X ✓ NC and (C[NC,⇠) is
a minimal cut. Let S be the set of all those cuts such that their separator is NC↵

for any ↵ 2 Aut(G). We just have to prove that S fulfills the claims of the lemma,
so we have to prove that S is a nested cut system, that S2 [ S is nested and that
mS1(A,B) < mS1(A0, B0) for all (A,B) 2 S, (A0, B0) 2 S2.

By the minimal choice of X it follows that S2 [ S is nested. So it remains
to prove the inequality and that S is nested. Let us first prove the inequality.
Since each S1-separation which is nested with (A2, B2) also has to be nested with



2.5. STRUCTURE TREES 11

(C [ NC,⇠) by the minimal choice of X, the inequality holds with  instead
of <, namely mS1(C [ NC,⇠)  mS1(A2, B2). But on the other hand there is
the S1-separation (A1, B1) that is nested with (C [ NC,⇠) but not nested with
(A2, B2) and hence the inequality is strict. Let us finally show that S is nested.
Let S := A \ B and let ↵ 2 Aut(G) with S↵ in the same component of G � S

in which X lies. By the choice of S and X we know that S↵ does not cross
A1 \B1. Thus there is a component D of G�NC such that S↵ ✓ D [ND. The
separator (A1 \ B1)↵ crosses S↵ and thus it has to lie in the same component of
G � (A \ B) as S↵ does. By a similar argument as before we know that S does
not separate X↵ from S↵ and thus both S↵ and X↵ do not intersect with the
component of G � (C [NC) that intersects with X non-trivially. Thus there are
two S-separations with corresponding separators NC and NC↵ that are nested and
as mentioned before this implies by arguments of [32] that NC and NC↵ do not
cross. Thus S is a nested cut system. ⇤

Lemma 2.13. [32, Lemma 4.1] For any k, every pair of vertices in a connected
graph is separated properly by only finitely many distinct separators of order k. ⇤

Lemma 2.14. Let G be a graph and let C be a nested cut system of G such that
no C-separator contains any edge. For any path P that has both its end vertices in
the same C-separator S, there is a C-block with maximal distance to S in T (C) that
contains edges of P . This C-block contains at least two edges of P .

Proof. Any two vertices that are not in a common C-block, are separated by
some C-separator. So we conclude that for each edge of G there is a unique C-block
that contains this edge, as it is not contained in any C-separator. The path P has
only finitely many edges, so there are just finitely many C-blocks that contain edges
of P and we may pick one, X say, with maximal distance to S in T (C). Let xy be
an edge on P that lies in X. Then either x or y does not lie in that C-separator
S0 that separates X from S and lies in X. We assume that this is y. Let z be the
other neighbor of x on P . The edge yz cannot lie further away from S than X in
the structure tree, but since y /2 S0, we have yz 2 EX. So X contains two edges
of P . ⇤

In the context of a digraph D all concepts introduced in this section are related
to the underlying undirected graph G of D except for one definition: We call a cut
system C for a digraph D basic if it has the following properties.

(i) C is non-empty, minimal, nested and Aut(D)-invariant.
(ii) Aut(D) acts transitively on S.
(iii) For each C-cut (A,B) both A and B contain an end of D and there is no

separation of smaller order that has this property.

Then Theorem 2.11 does not only hold for any graph but also for any digraph
by the results in [32]. We have to define the property of being basic di↵erently,
because we know in general only that we may consider Aut(D) as a subgroup
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of Aut(G), but we do not know whether it is a proper subgroup or not. Thus, our
cut system could have more than one Aut(D)-orbit of separators which would be
more di�cult to deal with.

2.6. Hyperbolic graphs

In this section we define hyperbolic graphs and various other related objects.
For a more detailed introduction to hyperbolicity, we refer to [1, 23, 40, 46, 87]
as well as [12, Chapter III.H] and [103, Chapter 22].

Let G = (V G,EG) be a graph. A geodesic is a path between two vertices x and
y with length d(x, y) and denoted by [x, y]. A triangle is a set of three vertices (not
necessarily distinct)—called corners of the triangle—together with paths between
each two of these vertices. These paths are called sides of the triangle. The triangle
is geodetic if all sides of the triangle are geodesics. We write [x, y, z] for a geodetic
triangle with corners x, y and z.

We are investigating G from a topological point of view, so that every edge of
G can be understood as an isometric image of the real interval [0, 1].

The graph G is called �-hyperbolic for a � � 0 if for every geodetic triangle
[x, y, z] each of its sides lies in a �-neighborhood of the other two sides and G is
called hyperbolic if there exists a � � 0 such that G is �-hyperbolic.

Let o be a vertex in G. The Gromov-product (with respect to its base-point o)
for two vertices x and y is (x, y)o := 1

2 (d(x, o)+d(y, o)�d(x, y)). If it is obvious by
the context that we use o as the base-point for the product, we simply write (x, y).
An easy proposition is due to Gromov.

Proposition 2.15. [46, 1.1B] Let G be a graph and o 2 V G. If

(x, y)o � min{(x, z)o, (y, z)o}� �

for all x, y, z 2 V G, then there is

(x, y)w � min{(x, z)w, (y, z)w}� 2�

for every w 2 V G. ⇤

Another definition of hyperbolicity uses the Gromov-product. So one might
expect that this definition depends on the vertex o, but Proposition 2.15 has shown
us that this is not the case. See for example [1, Proposition 2.1] for a proof of the
following proposition.

Proposition 2.16. A locally finite graph G is hyperbolic if and only if there
is a vertex o and some � 2 R�0 with (x, y)o � min{(x, z)o, (y, z)o} � � for all
x, y, z 2 V G. ⇤

Since we are looking at the hyperbolic boundary from distinct viewpoints, we
state here three di↵erent definitions of the hyperbolic boundary all of which are
equivalent. A geodetic ray is a ray ⇡ = x0x1 . . . with d(xi, xj) = |i � j| for all
i, j � 0, and a double ray . . . x�1x0x1 . . . is a geodetic double ray if d(xi, xj) = |i�j|
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for all i, j 2 Z. Two geodetic rays ⇡1,⇡2 are equivalent if for any sequence (xn)n2N
of vertices on ⇡1 we have lim infn!1 d(xn,⇡2)  M for an M < 1. A well-known
fact is the following proposition.

Proposition 2.17. [103, (22.12)] The equivalence of geodetic rays in hyperbolic
graphs is an equivalence relation. ⇤

Hence we are able to define the hyperbolic boundary of a hyperbolic graph:
A hyperbolic boundary point is an equivalence class of geodetic rays. Let @G be the
set of hyperbolic boundary points, and let bG be G [ @G.

We are also giving a second topological definition of the hyperbolic boundary:
A sequence (xi)i�0 converges to a vertex x if lim

i!1
(xi, x) = 0. A sequence (xi)i�0

converges to 1 if lim
i,j!1

(xi, xj) ! 1. Like above, it is independent of the choice

of o, so we just wrote (xi, xj) instead of (xi, xj)o. Two sequences (xi)i�0, (yj)j�0

are equivalent if lim
i,j!1

(xi, yj) = 1. In hyperbolic graphs this equivalence is indeed

an equivalent relation. The hyperbolic boundary can also be defined as equivalence
classes of this equivalence relation. A sequence (xi)i�0 tends to a boundary point
if it is in its equivalence class. In [40] the equivalence of these definitions is shown.

A third way to define the boundary is by defining a metric d" on G and then
defining bG as the completion of G induced by d". Let " > 0 with "0 := exp("�)�1 p

2� 1. Let
%"(x, y) := exp(�"(x, y)),

%"(x0, . . . , xn) :=
nX

i=1

%"(xi�1, xi)

and
dh(x, y) := inf{%"(c) | c chain between x and y}.

It is easy to check that d" is a metric on G.
An important theorem about the hyperbolic boundary is the following.

Theorem 2.18. [40, Proposition 7.2.9] If G is a locally finite hyperbolic graph,
then ( bG, d") is a compact metric space. ⇤

We will now define a topology on G, which is compatible with the topology
of bG which is induced by d". For two vertices and/or hyperbolic boundary points
a and b we define the Gromov-product (once more):

(a, b) := sup lim inf
i,j!1

(xi, yj)

where the supremum is taken over all sequences (xi)i�0 ! a and (yi)i�0 ! b.
Obviously it is just the same as the previous definition for vertices, so we were
allowed to use the same symbol. Let Nk(x) := {y 2 bG|(x, y) > k} for every x 2 @G

and every k 2 R�0 and let Br(x) = {y 2 V G|d(x, y) < r} for every x 2 V G and
r 2 R�0.



14 2. DEFINITIONS AND PRELIMINARY RESULTS

Proposition 2.19. [1, Proposition 4.8] Let G be a locally finite hyperbolic
graph. The union of the sets Br(x) for all x 2 V G and all r 2 R�0 and Nk(x) for
all x 2 @G and all k 2 R�0 form a basis for a topology on bG. ⇤

This topology is compatible with the metrics d", which makes the boundary to
a compact metric space by Proposition 2.20.

Proposition 2.20. [40, Proposition 7.3.10] Let G be a locally finite hyperbolic
graph. There exists a metric d" on bG such that ( bG, d") is a compact metric space
and such that the metric is compatible with the just defined topology in the sense
that

"0 · exp(�" · (⌘, ⌫))  d"(⌘, ⌫)  exp(�" · (⌘, ⌫))
for all ⌘, ⌫ 2 @G and for "0 = exp("�)� 1.

In addition every " with "0 
p

2� 1 has this property. ⇤

Proposition 2.20 is the reason why it is possible that we will use the metric
in some place, the topology in some other place, and sometimes use them both
together.

Proposition 2.21. [40, Proposition 7.5.17] Let G be a locally finite hyperbolic
graph. There exists a continuous surjection from the hyperbolic boundary of G to
its set of ends whose fibres are the connected components of @G. ⇤

We state some further propositions that we shall need later.

Proposition 2.22. [103, (22.11) and (22.15)] Let G be a locally finite hyper-
bolic graph with two distinct boundary points ⌘ and ⌫. Let o be a vertex in G,
(xi)i2N a geodetic ray converging to ⌘, and (yj)j2N a geodetic ray converging to ⌫.
Then the following two properties holds:

(i) There is a geodetic ray in G starting at o and having only finitely many vertices
di↵erent from (xi)i2N.

(ii) There is a geodetic double ray having only finitely many vertices di↵erent from
(xi)i2N and (yj)j2N. One side of the geodetic double ray converges to ⌘, the
other to ⌫. ⇤

Proposition 2.23. [103, Proposition 22.12] If ⇡ = x1x2 . . . and ⇡0 = y1y2 . . .

are equivalent geodetic rays, then there is a k 2 Z such that d(xn, yn�k)  2� for
all but finitely many n. ⇤

Let � > 1, c � 0. A (�, c)-quasi-isometry from a metric space X to another
metric space Y is a map f : X ! Y with

��1dX(x, y)� c  dY (f(x), f(y))  �dX(x, y) + c

for all x, y 2 X and with sup{dY (y, f(X)) | y 2 Y }  b. Then X is quasi-isometric
to Y .

A (double) ray R in G is (�, c)-quasi-geodetic if it is the image of a (�, c)-quasi-
isometry from Z�0 (Z, respectively) to R. Hence a (double) ray is geodetic, if it is
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a (1, 0)-quasi-geodetic (double) ray. If the constants �, c are not important then we
just speak of quasi-geodesics.

The next proposition shows that in every locally finite hyperbolic graph the
geodesics and quasi-geodesics lie close to each other, see also [1, Proposition 3.3],
[46, 7.2.A], [23, 3.1.3], and [40, 5.6, 5.11].

Proposition 2.24. [87, Theorem 2.31], [23, Théorème 3.1.4] Let G be a locally
finite �-hyperbolic graph. For all �1 � 1, �2 � 0 there is a constant  = (�, �1, �2)
such that for every two vertices x, y 2 V G every (�1, �2)-quasi-geodesic between
them lies in a -neighborhood around every geodesic between x and y and vice
versa.

Furthermore, this extends to (�1, �2)-quasi-geodetic and geodetic rays as well as
double rays. ⇤

The following is from [1, Proposition 3.2] (see also [46, 8.1.D] and [40, 8.21]).

Proposition 2.25. Let G be a locally finite transitive �-hyperbolic graph. Let
x 2 V G and ↵ 2 Aut(G) such that the orbit of x under ↵ is infinite. Then
the set {. . . , x↵�1

, x, x↵, . . .} lies on a (,�)-quasi-geodetic double ray for constants
 � 1,� � 0 that depend only on � and d(x, x↵). ⇤

Proposition 2.26. [103, (22.4)] Let G be a locally finite �-hyperbolic graph.
Then for all x, y, z 2 V G we have

(x, y)z  d(z, [x, y])  (x, y)z + 2�. ⇤

Combining Proposition 2.24 and [16, Lemma 2.2.2] we obtain the following
proposition.

Proposition 2.27. Let G be a locally finite �-hyperbolic graph, let ⌘, ⌫ 2 @G,
and let o 2 V G. For all geodetic double rays ⇡ from ⌘ to ⌫ we have

(⌘, ⌫)o  d(o,⇡)  (⌘, ⌫)o + 4�. ⇤

Proposition 2.28. Let G be a locally finite hyperbolic graph with a metric d"
as in Theorem 2.18 with " > 0 and "0 := exp("�)� 1 

p
2� 1. Let o 2 V G be the

base-point for the Gromov-product of G. Then, for every q > 0, there exists a � =
�(q, ") > 0 such that for all ⌘1, ⌘2, µ1, µ2 2 @X with 1

q  d"(⌘1, µ1)/d"(⌘2, µ2)  q

there is |d(o, [⌘1, µ1])� d(o, [⌘2, µ2])|  �.

Proof. By Theorem 2.18 there is

"0 exp(�"(⌘1, µ1))  d"(⌘1, µ1)  qd"(⌘2, µ2)  q exp(�"(⌘2, µ2)).

As a consequence we have by symmetry:

|(⌘1, µ1)� (⌘2, µ2)| 
1
"

ln(
q

"0
)

The claim follows immediately with Proposition 2.27. ⇤
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Let G be a hyperbolic graph and H a hyperbolic subgraph of G. If the identity
map ◆ : H ! G extends to a continuous map ◆̂ : bH ! bG then we say that the
canonical map @H ! @G exists and call the restriction of ◆̂ to @H the canonical
map @H ! @G.

2.7. Topology

In this section we introduce the Assouad dimension, which is the main dimen-
sion concept in Chapter 4, as well as the asymptotic dimension and the topolo-
gical dimension, and we compare these dimension concepts. For a more detailed
introduction to the Assouad dimension we refer to [5] and in particular to [75,
Appendix A].

Let X be a metric space. For ↵,� > 0 let S(↵,�) be the maximal cardinality
of a subset V of X such that each two distinct elements of V have distance at least
↵ and at most �. Let n be the infimum of all s � 0 such that there is a C � 0 with
S(↵,�)  C(�↵ )s for all 0 < ↵  �. Then n is called the Assouad dimension of the
metric space X (notation: dimA(X) = n).

A metric space X is doubling if there exists a  � 1 such that every ball of radius
r can be covered by at most 2 balls of radius at most r

2 . With dim2(X) we denote
the infimum of all these . A subset Y of X has diameter sup{d(x, y) | x, y 2 Y }
(notation: diam(Y )), and a set Y ✓ P(X) has diameter diam(Y) = sup{diam(Y ) |
Y 2 Y}. The radius of a subset Y of X is rad(Y ) := inf{sup{d(x, y) | x 2 Y } |
Y 2 Y } and the radius of a set Y ✓ P(X) is rad(Y) := sup{rad(Y ) | Y 2 Y}. For
every r � 0, a family B = (Bi)i2I of subsets of X has r-multiplicity at most n if
every subset of X with diameter at most r intersects with at most n members of
the family. A point x 2 X has r-multiplicity at most n in B if B̄r(x) intersects with
at most n members of the family B non-trivially.

Our main assumption is that the Assouad dimension of the hyperbolic boundary
of our hyperbolic space is finite. It is easier to use the doubling property instead.
The following theorem guarantees that we treat the same spaces.

Theorem 2.29. [75, Theorem A.3] Let X be a metric space. Then, X is
doubling if and only if it has finite Assouad dimension. ⇤

It is easy to adapt the proof of [73, Lemma 2.3] for Lemma 2.30, see [50,
Lemma 3.2] for details.

Lemma 2.30. Let X be a doubling metric space, let N = 2dim2(X), and let
r > 0. Then X has a covering B of closed balls of radius r such that B is the
disjoint union of at most N2 subsets Bi of B each of which has r-multiplicity at
most 1; so B has r-multiplicity at most N2.

Furthermore, it is possible to choose a given subset Y of X with d(x, y) > r

for all x, y 2 Y so that Y is a subset of the set of centers of the balls in B and
such that each two centers of these balls have distance at least r and each center
has 3r-multiplicity at most N2 in B. ⇤
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Let us briefly compare the Assouad dimension with another dimension concept.
A metric space X has asymptotic dimension n (notation: asdim(X) = n) if n is
the smallest natural number such that for every % > 0 there exists an open cover
U of X such that every x 2 X lies in at most n + 1 elements of U , such that
supU2U diam(U) < 1, and such that

inf
x2X

sup
U2U

d(x,X \ U) � %.

In the main theorems (Theorem 4.13 and Theorem 4.14) we are talking about
proper hyperbolic geodetic spaces whose hyperbolic boundary has finite Assoud di-
mension. Since the hyperbolic boundary is a doubling space, we conclude from [16,
Corollary 10.2.4] that the hyperbolic space itself has finite asymptotic dimension.
We refer to [16] for a broader overview of the distinct dimension concepts for hy-
perbolic spaces and to [8, 47] for more about the asymptotic dimension.

Let us define a third dimension, the topological dimension. A refinement U of
an open cover V of X is an open cover of X such that for every U 2 U there is a
V 2 V with U ✓ V . X has topological dimension at most n if every open cover has
a refinement such that each x 2 X lies in at most n+1 elements of the refinement,
and X has topological dimension n if it has topological dimension at most n but
not topological dimension at most n� 1. If there exists no n 2 N such that X has
topological dimension at most n then X has infinite topological dimension. Remark
that we always have dimX  dimA X by [75, Facts 3.3].

2.8. Some classes of graphs

A tree T is semi-regular if all the vertices in each set of its natural bipartition
have the same degree. Let V T = A[̇B be the partition. If all the vertices in A have
degree k and all the vertices in B have degree l, then we denote the tree with Tk,l.
If we consider directed trees we denote with Tk,l a tree whose underlying undirected
graph is a semi-regular tree and all whose edges are directed from the vertices in
the set A to the vertices in the set B. We also call this digraph a semi-regular tree.

With X,� we denote a graph with connectivity 1 such that every block, that
is a maximal 2-connected subgraph, is a complete graph on  vertices and every
vertex lies in � distinct blocks.

In the following we describe some classes of digraphs that occur during the
investigation of locally finite C-homogeneous digraphs (Chapter 12). In the context
of digraphs, we usually denote with Cm directed cycles of length m. But if it
is obvious from the context that we are considering a subdigraph of a bipartite
reachability digraph, then we also use Cm to denote a cycle in that reachability
digraph. Cycles of length 3 are triangles.

For two digraphs D,D0 we denote with D[D0] the lexicographic product of D

and D0, that is the digraph with vertex set V D ⇥ V D0 and edge set

{(x, y)(x0, y0) | xx0 2 ED or (x = x0 and yy0 2 ED0)}.
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The complete bipartite digraph is that bipartite digraph that contains all edges
from A to B for the bipartition A [ B. The (directed) complement of a perfect
matching CPk is the digraph obtained from the complete bipartite digraph where
a perfect matching between A and B is removed.

Let Yk be the digraph with vertex set V1[V2[V3 where the Vi denote pairwise
disjoint sets of the same cardinality k. There are no edges xy with xy 2 Vi for i =
1, 2, 3 and the subdigraphs D[Vi, Vi+1] (for i = 1, 2, 3 with V4 = V1) are isomorphic
to complements of perfect matchings such that all edges are directed from Vi to
Vi+1 and such that the tripartite complement of D is the disjoint union of copies
of C3, where the tripartite complement of D is the digraph

(V D, (
[

i=1,2,3

(Vi ⇥ Vi+1)) \ED).

The complete bipartite digraph K,� is the digraph with bipartition A[B such
that |A| = , |B| = � and all edges point from A to B, and the directed complement
of a perfect matching CP is the digraph obtained from K, by removing a perfect
matching.

We call a bipartite graph G with bipartition X [ Y generic bipartite if it has
the following property: For any finite disjoint subsets U and W of X (of Y ) there
is a vertex v in Y (in X) such that U ✓ N(v) and W \ N(v) = ;. Any generic
bipartite graph contains any countable bipartite graph as an induced subgraph,
and thus up to isomorphism there is a unique countable generic bipartite graph
(cp. [26, p. 213] and [35, p. 98]). A generic bipartite digraph is a digraph D whose
underlying undirected graph G is generic bipartite with bipartition A[B and such
that all edges of D are directed from A to B.

With H we denote the digraph depicted in Figure 1.

Figure 1. The digraph H



2.8. SOME CLASSES OF GRAPHS 19

A tournament is an orientated complete graph. We shall state Lachlan’s clas-
sification theorem of the homogeneous tournaments1, but first, we have to define a
countable tournament P to be the digraph with the rationals in the intervall [�⇡,⇡]
as vertex set and direct the edge from x to y if

x� y  ⇡ mod 2⇡

and from y to x otherwise. The generic countable tournament is the unique (cp.
[26, p. 213], and [35, p. 98]) countable homogeneous tournament that embeds all
finite tournaments.

Theorem 2.31 ([21, Theorem 3.6]). There are up to isomorphism only 5 count-
able homogeneous tournaments: the trivial tournament on one vertex, the directed
triangle, the generic tournament on ! vertices, the tournament that is isomorphic
to the rationals with the usual order, and the tournament P described above. ⇤

For a homogeneous tournament T let X�(T ) denote the digraph where each
vertex is a cut vertex and lies in � distinct copies of T .

Given an edge-transitive bipartite digraph � with bipartition A[B such that
every edge is directed from A to B we define DL(�) to be the unique connected
digraph such that each vertex separates the digraph, lies in exactly two copies of
�, and has both in- and out-neighbors (cp. [19, 45]).

Figure 2. The digraph M(3, 3)

Now, we define a class of digraphs with connectivity 2 and reachability digraph
CP. Given 2  m 2 N and a cardinal  � 3 consider the tree T,m and let
U [W be its natural bipartition such that the vertices in U have degree m. Now
subdivide each edge once and endow the neighborhood of each u 2 U with a cyclic
order. Then for each new vertex y let uy be its unique neighbor in U and denote by

1A tournament is homogeneous if every isomorphism between subtournaments extends to an

automorphism of the whole tournament. For a more detailed introduction to homogeneity, we

refer to Chapter 9.
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�(y) the successor of y in N(uy). Then for each w 2 W and each x 2 N(w) we add
an edge directed from x to all �(y) with y 2 N(w)�x. Finally we delete the edges
and vertices of the T,m to obtain the digraph M(,m). The locally finite subclass
of this class of digraphs coincides with those digraphs M(k, n) for k, n 2 N that are
described in [45, Section 5]. In Figure 2 the digraph M(3, 3) is shown: once with
its construction tree and once with its set of C-separators.

Figure 3. The digraph M 0(6)

Another class of digraphs with connectivity 2, but this time with reachability
digraph K2,2 will be defined in the following. For 2  m 2 N consider the tree
T2,2m and let U [ W be its natural bipartition such that the vertices in U have
degree 2m. Now subdivide every edge once and enumerate the neighborhood of
each u 2 U from 1 to 2m in such a way that the two neighbors of each w 2 W have
distinct parity. For each new vertex x let ux be its unique neighbor in U and define
�(x) to be the successor of x in the cyclic order of N(ux). For any w 2 W we have
a neighbor aw with even index, and a neighbor bw with odd index. Then we add
edges from both aw and �(aw) to both bw and �(bw). Finally we delete the T2,2m.
With M 0(2m) we denote the resulting digraph. Figure 3 shows the digraph M 0(6):



2.8. SOME CLASSES OF GRAPHS 21

on the left side with its construction tree and on the right side with the separators
of the two possible basic cut systems.





Part 1

Tree-likeness of hyperbolic graphs





CHAPTER 3

Trees and hyperbolic graphs

A spanning tree of a graph is called end-faithful if the tree contains exactly one
ray from each end, starting at the root. Halin [48] proved that every countable
graph has an end-faithful spanning tree. Examples for such trees are the normal
spanning trees (see [13, 58] and [26, Chapter 8]). So it is a natural question to
ask—if we replace the end-compactification of a graph by other compactifications
that refine the end-compactification—how we can expect a spanning tree to behave
with respect to the new compactification: Is it possible that the ends of a span-
ning tree represent the boundary points of this compactification in a one-to-one
correspondence?

In general, arbitrary hyperbolic graphs do not have spanning trees which are
faithful to hyperbolic boundary points instead of ends. An easy example is the
graph G of Figure 4. Its hyperbolic boundary A is homeomorphic to the real unit
interval. Now suppose there is a spanning tree T of G with precisely one ray from
the root to each boundary point of G. Then there is a vertex x that separates T

into at least two infinite components, call them C1, . . . , Cn. For each i let Ai ✓ A

be the set of boundary points to which there is a ray in Ci. As G is locally finite,
it is not hard to see that the Ai are closed in A, hence they have to intersect, since
A is connected and

S
Ai = A.

Figure 4. A hyperbolic graph with its boundary

On the other hand, it is easier to see that for a given hyperbolic graph G there
is not always a tree such that the end space of the tree is homeomorphic to the
hyperbolic boundary of G: In [15, Section 7] (see also [11, 33] or [16, Chapter 6])
it is shown that for every compact metric space X there is a locally finite hyperbolic
graph constructed so that its hyperbolic boundary is homeomorphic to X. As the
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end space of any tree is a totally disconnected topological space (see [59]) there
cannot be any spanning tree such that the induced map from the boundary of the
tree to the boundary of the graph is a homeomorphism.

In fact, we shall prove in Section 4.4 that there is a function f : N ! N such
that any spanning tree T of a locally finite hyperbolic graph G, for which the
canonical map @T ! @G exists, has a hyperbolic boundary point with at least f(n)
preimages, where n is the topological dimension of @G.

Whenever the identity of a hyperbolic graph G extends to a homeomorphism
from G [ @G to G with its ends, any normal spanning tree—or more generally
any end-faithful spanning tree—is faithful with respect to the hyperbolic boundary
points.

Hyperbolic graphs in which the notion of hyperbolic boundary points and ends
coincide are for example all locally finite graphs quasi-isometric to a tree (see [67])
or—more generally, compare with [67, Theorem 2.8]—locally finite graphs in which
any end is a thin end in the sense of [26, Chapter 8], as any end of a locally finite
hyperbolic graph that consists of more than one hyperbolic boundary point con-
sists of uncountably many hyperbolic boundary points since this set of hyperbolic
boundary points is a connected set [40, Proposition 7.5.17]. Thus in locally finite
hyperbolic graphs, the hyperbolic boundary is a refinement of the set of its ends
and it is furthermore a compact metric space [40, Proposition 7.2.9]. This is not
the case for arbitrary graphs: neither the hyperbolic boundary has to be compact
in hyperbolic graphs that are not locally finite nor it is a refinement of the set of
ends of such graphs. Because of this we restrict our point of view to locally finite
graphs.

Instead of spanning trees that are faithful to boundary points, we may perhaps
hope that we get spanning trees that have only a finite number of distinct paths
from the root to each boundary point such that the set of these numbers is bounded.
This is indeed true if the boundary has finite Assouad dimension (Theorem 4.14).

The most important examples of locally finite hyperbolic graphs whose hyper-
bolic boundaries have finite Assouad dimension are graphs with bounded degree (see
[10, Theorem 9.2]). These are in particular all Cayley graphs of finitely generated
groups with respect to a finite set of generators.

There are various other results that investigate the relation between trees and
the hyperbolic boundary of locally finite hyperbolic graphs. Several ideas for con-
structions of trees that capture the nature of the hyperbolic boundary of locally
finite hyperbolic graphs can already be found in Gromov’s article [46, Sections 7.6,
8.5.B, and 8.5.C]. They have been elaborated on in [24, Chapter 5]. For each of
these trees there is a continuous map from their own boundary onto that of the
graph. If the hyperbolic graph has bounded degree, then some of these maps are
finite-to-one. However, these trees are not necessarily subtrees of the hyperbolic
graph.
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On the other hand, there are results that construct for a given hyperbolic space
(not only for locally finite graphs) an R-tree whose local structure resembles the
local structure of the hyperbolic space. The best known among these are results
attributed to Gromov (see [23, Chapitre 8] and [40, Section 2.2]) that construct
for a finite subset of the completion of a �-hyperbolic space an R-tree in the space
whose completion contains the given set and such that all of its geodesics between
elements of the finite set are quasi-geodesics in the hyperbolic space for constants
that depend only on the size of the set and on �. There is also a result by Benjamini
and Schramm [9, Theorem 1.5] for locally finite hyperbolic graphs which states
that there exists a subtree with exponential growth such that the embedding is a
bilipschitz map.

In the Chapter 4, we combine these two approaches. Inside every locally finite
hyperbolic graph G whose boundary has finite Assouad dimension we construct a
rooted spanning tree T such that
• the rays from the root are all quasi-geodetic rays (for the same global constants)

and
• a continuous finite-to-one map from the boundary of the tree onto the one of the

hyperbolic space exists where the bound only depends on the Assouad dimension
of the hyperbolic boundary.

If the hyperbolic graph is visual—that is roughly speaking that every vertex has
bounded distance to a geodetic double ray (see Section 4.2 for more details)—then
every vertex of the graph has distance at most some constant  from some ray of T

that starts at the root (Theorem 4.13). If we consider an arbitrary locally finite
hyperbolic graph, then a  exists with the property that every geodesic outside a
-ball around the rays of T that starts at the root has finite length (Theorem 4.14).

Remark that the results of Chapter 4 do not only hold in the case of locally
finite hyperbolic graphs but also in the case of proper hyperbolic geodetic spaces
(see [50] and in particular [52] for details).

There are also di↵erent approaches exhibiting the tree-likeness of hyperbolic
spaces than constructing R-trees include quasi-isometric embeddings of visual hy-
perbolic spaces into the product of R-trees, see Buyalo et al. [15], or the sub-cones
at infinity, see [40, Proposition 2.1.11] and [88, Lemme 5.6].





CHAPTER 4

Spanning trees of hyperbolic graphs

In this chapter, we prove the graph theoretic version of a theorem of [52]
which is a strengthened form of a theorem in [50]. In the first part of this chapter
(Section 4.1 to Section 4.3) we show that for any locally finite graph G, there exists
a spanning tree T such that the canonical map @T ! @G exists, is onto and for
each ⌘ 2 @G, the number of its preimages are bounded in terms of the Assouad
dimension of the hyperbolic boundary. Furthermore, the spanning tree will have
the additional property that it represents the hyperbolic graphs itself in a good way.
There will be constants c1 � 1, c2 � 0 such that every ray in the spanning tree
is eventually a (c1, c2)-quasi-geodetic ray. With these two properties, the spanning
tree satisfies the two distinct approaches of showing the tree-likeness of hyperbolic
graphs that we discussed in Chapter 3.

In the second part (Section 4.4) we show that for any locally finite hyperbolic
graph G there is a function f : N ! N depending only on the topological dimension
of @G such that for any spanning tree T of G the canonical map @T ! @G exists
and such that there is a boundary point of the graph with at least f(dim(@G))
many preimages und the canonical map.

4.1. Construction of the spanning tree

In this section we construct a rooted spanning tree T inside a locally finite
hyperbolic graph G whose hyperbolic boundary has finite Assouad dimension and
whose hyperbolic constant is not 0.

Let dh = d" be a metric such that " satisfies the assumptions as in Theorem 2.18
and hence such that ( bG, dh) is a compact metric space. By [10, Sections 6 and 9] the
property of G having finite Assouad dimension does not depend on the particular
choice of ". That means if @G has finite Assouad dimension for one metric d", then
this holds for all these metrics. That is the reason why we are able just to say that
@G has finite Assouad dimension. By Theorem 2.29, @G is a doubling metric space.
So let N = 2dim2(@G).

The rooted tree T that we shall construct will have the following properties.

(1) Every ray in T converges to a point in the hyperbolic boundary of G;
(2) for every boundary point ⌘ of G there is a ray in T converging to ⌘;
(3) for every boundary point ⌘ of G there are at most N2+log2(8N2) distinct rays

in T that start at the root of T and converge to ⌘.
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We construct the rooted tree T recursively. So let r 2 V G be the base-point of
the Gromov-product which we used for the definition of the metric d". The vertex
r will be the root of T . For the construction of T we construct a strictly descending
sequence ("j)j2N in R>0, two sequences (Sj)j2N, (Yj)j2N of subsets of @G, a sequence
(Uj)j2N of open covers of @G, a sequence (Bj)j2N of closed covers of @G, and a
sequence (Tj)j2N of subtrees of G. Our final tree T will be the union of all the Tj .
The other sequences will help us in the construction of the trees Tj and they will
satisfy the assertions (a) to (k) for every j.

(a) "j = a
8N2 with a = "j�1

4·16 , so "j = "j�1
512N2 ;

(b) there is Sj�1 ✓ Yj ✓ Sj ;
(c) dh(⌘, µ) � "j for all ⌘ 6= µ 2 Sj ;
(d) the set Sj has "j�1

16 -multiplicity at most N log2(8N);
(e) dh(⌘, µ) � "j�1

4·16 for all ⌘ 6= µ 2 Yj ;
(f) The open cover Uj consists of precisely the open "j-balls around the elements

of Sj ;
(g) the set Bj consists of all closed balls of radius "j�1

4·16 around the elements of Yj

and it has "j�1
4·16 -multiplicity at most N2;

(h) every ⌘ 2 Yj has (3 · "j�1
4·16 )-multiplicity at most N2 in Bj ;

(i) Tj�1 ✓ Tj ;
(j) every ray in Tj converges to an element of Sj and to each one converges precisely

one ray that starts at the root;
(k) every ray in Tj is eventually geodetic, in particular, there is a constant c de-

pending only on "j such that every ray in Tj \ B̄c(x) is a geodetic ray.

Before we start the recursion step, we first define the elements of all sequences
for j = 0. Let µ0 2 @G, S0 = Y0 = {µ0} and "0 = sup{dh(µ0, ⌘) | ⌘ 2 @G}—recall
that @G is bounded by Theorem 2.18. Let B0 = U0 = @G and let T0 be a geodetic
ray from r to µ0 which exists by Proposition 2.22. Then all properties are satisfied
for j = 0.

For the recursion step we set ✏j as in (a). Lemma 2.30 shows that there is a
closed covering Bj of @G with balls of radius "j�1

4·16 such that this covering has "j�1
4·16 -

multiplicity at most N2 and such that the set Yj of centers of these balls contains
Sj�1 and such that every ⌘ 2 Yj has (3 · "j�1

4·16 )-multiplicity at most N2 in Bj . Then
(e), (g), (h), and the first part of (b) hold.

Let Sj be a subset of @G with Yj ✓ Sj such that dh(µ, ⌫) � "j for all µ, ⌫ 2 Sj ,
such that Sj has "j�1

16 -multiplicity at most N log2(8N), and such that Uj := {B"j (µ) |
µ 2 Sj} is an open cover of @G. This set Sj exists by applying the doubling
definition logN (N log2(8N)) = log2(8N) times to the sets in Bj and it is finite because
@G is doubling. As a consequence we have (c), (d), (f), and the remaining part of
(b). The only element of any of the sequences that remains to be constructed is
the subtree Tj .
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We construct the subtree Tj recursively. Let T 0,1
j = Tj�1. We enumerate

the set Sj \ Sj�1 in the following way. Let µ1
1, µ

1
2, . . . be the elements with 8"j�1-

multiplicity 1 in Bj�1, let µ2
1, µ

2
2, . . . be the elements with (2 · 8"j�1)-multiplicity at

most 2 in Bj�1, and so on. As the set Bj�1 has "j�2
4·16 -multiplicity at most N2 and

8N2"j�1 = "j�2
4·16  rad(Bj�1), there are no µi

k with i > N2 by (g).
The tree T i,k

j will be the union of the tree T i�1,k
j and an eventually geodetic

ray from T i�1,k
j to the hyperbolic boundary point µi

k, where we denote with T 0,k
j

the union of all T a,k�1
j . So let µi

k 2 Sj \ Sj�1 and assume that we have already
constructed the subtree T i�1,k

j . There is a µ 2 Sj�1 with dh(µi
k, µ)  "j�1. Let R

be a geodetic double ray from µi
k to µ. Let Q denote the largest distance from r to

any geodetic double ray between two boundary points of distance at most "j�1 and
at least "j and let q denote the smallest distance of from r to such a double ray.
Then we know that there is � � Q� q for the constant � from Proposition 2.28.

Let us first consider the case that there is a common vertex of R and T i�1,k
j

that has distance at most Q + 5� to r. Then there is a first common vertex x of R

and T i�1,k
j such that we have V (Rx)\V T i�1,k

j = {x} for Rx, the subray of R from
x to µi

k. In this case we just add the subray Rx to the boundary point µi
k to the

tree T i�1,k
j to obtain the tree T i,k

j . By the choice of x, T i,k
j is indeed a tree. In

preparation of the proof of Lemma 4.8 we denote in this case with ⇡R the vertex x

and for Claim 4.1 we set xP := x. If x lies during the construction on a geodetic
double ray P , then we say that we have connected µi

k to that limit point ⌘ of P that
has smaller distance to µi

k. If x lies on some ⇡P for a double ray P , then we have
connected µi

k either to the boundary point ⌘ we constructed a new ray to with P

or inductively to one of the possible boundary points we connected ⌘ to, depending
which one has the smallest distance to µi

k. Since the hyperbolic boundary has the
doubling property, the described relation is well-defined. If the hyperbolic boundary
point ⌘ to which µi

k is connected lies in Sj�1, then µi
k is eventually connected to ⌘.

If this is not the case, then µi
k is eventually connected to that hyperbolic boundary

point to which ⌘ is eventually connected.
Now we look at the case that R is totally distinct from T i�1,k

j in the ball with
center r and radius Q + 5�. There is a geodetic ray P in T i�1,k

j converging to µ

whose first vertex xP has distance Q + 5� to r. Then d(o, xP )  Q + 5�. We
consider a geodesic ⇡̃R from R to P that has length at most � with the additional
property that for a vertex z on R \ BQ(r) we have that dR[⇡R(z, xP ) is minimal.
This exists because every vertex y on P with d(r, y) = Q + 3� is �-close to a vertex
on R. As it lies in the ball with center r and radius Q + 6�, there is a smallest
connected subpath ⇡R of ⇡̃R that contains a vertex of R and a vertex of T i�1,k

j . Let
xR denote the intersection point of ⇡R and R. Then we add the subray of R from
⇡R to µi

k together with ⇡R to T i�1,k
j to obtain the new tree T i,k

j . The property for
µi

k of being connected is defined analog to the first case.
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Let Tj :=
S

i,k T i,k
j . Since the union of a finite sequence of trees T i,k

j with
T i�1,k

j ✓ T i,k
j is a tree again, we know that Tj is a tree. We remark that the tree

Tj satisfies the properties (i), (j), and (k) for c = Q.

We just have defined all sequences as claimed. Set

T 0 :=
[
j2N

Tj .

We want to show that T 0 is a tree. As each of the trees Tj is connected and
Tj ✓ Tj+1, we know that T 0 is connected. So we just have to show that T does not
contain any cycle. As a cycle is a finite sequence of vertices such that each vertex
is adjacent to its succeeding vertex and the last is adjacent to the first vertex, such
a cycle has to lie in a tree Tj which is impossible. Hence, T 0 is a tree.

The tree T 0 is not a spanning tree so far: we still have to add all the vertices
in G � T 0 with appropriate paths to T 0 to obtain another tree T that will be a
spanning tree of G. Thereafter, we have to prove the assertions (1) to (3).

Let us add all vertices of G � T 0 to T 0 recursively to get a new tree T which
will be a spanning tree of G. In order not to increase the number of rays to each
boundary point, we connect the new vertices without creating any new ray. This
can be done as follows. First we can easily extend the tree by adding all finite
components of G� T 0 to T 0. Then we add every vertex with distance d(r,G� T 0)
to T 0 by a path lying outside Bd(r,G�T 0)(r). There might be vertices for which there
exist no such path. We do not add these. Let T 01 be the new tree. If there is a vertex
in G � T 01 with distance d(r,G � T 01) that does not lie in any finite component of
G�T 01, then there is a path from such a vertex to T 01�Bd(r,G�T 0)(r) that intersects
with T 01 trivially except for its endvertex, because the hyperbolic boundary is a
refinement of the ends in the locally finite case. This path has a last vertex with
distance d(r,G� T 01) to r. But this is a contradiction, since this vertex had to be
added with a path to T 0. So all the vertices in G � T 01 with distance d(r,G � T 01)
lie in finite components of G � T 01. For the following step we keep in mind the
largest distance d1 from r to a vertex lying in T 01 � T 0. In the step of recursion we
add all finite components of G � T 0i . Then we add all paths from vertices x with
d(r, x) = di�1 + 1 to T 0i that are lying completely outside Bd1(r). Once more there
might be vertices x with d(r, x) = di�1 + 1 that cannot be connected to T 0i in such
a way. These will be treated at the beginning of the next step of the recursion as
before.

Let T =
S

i2N T 0i . Obviously T is a spanning tree of G and in T �T 0 there is no
ray. Thus to prove the assertions (1) to (3) for T , it su�ces to prove them for T 0.

In order to prove the assertions (1) to (3) we shall prove several claims in which
we use the notation from the construction step (j, k, i).

Claim 4.1. There is dT i,k
j

(R, xP )  �.
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Proof of Claim 4.1. By induction, we know that the corresponding state-
ment holds for all previous trees. If ⇡R does not meet T i�1,k

j except for xP , then
the assertion holds trivially, so we may assume that ⇡R meets some other R0 or
⇡R0 (these correspond to R or ⇡R in a previous step). Suppose first, that it meets
some ⇡R0 . Then this ⇡R0 has to have distance at most � to xP , because otherwise
the corresponding vertex xP 0 lies at distance at most 2� from xP and thus for the
two hyperbolic boundary points to which P and P 0 converge, ⇠ and ⇠0, respectively,
any geodetic double ray between them lies in a 3�-neighborhood of P [⇡R[⇡R0[P 0,
so at least Q + � away from r and hence we have dh(⇠, ⇠0) < "j which is impossible
as soon as ⇠ 6= ⇠0. Let us now suppose that ⇡R meets some R0. Then we have chosen
⇡R0 so that every vertex on it has distance at most � to xP in the tree by the same
contradiction as above. By the minimality of dR0[⇡R0 (z

0, xP ) for the vertex z0 that
corresponds to z for R0 instead of R, we know that the claim must hold. ⇤

Claim 4.2. Let µn
k and µn

l be two elements of Sj \ Sj�1 with dh(µn
k , µn

l ) 
8"j�1 for an n  N2. Then for any B 2 Bj�1 with dh(µn

k , B)  n8"j�1 there is
dh(µn

l , B)  n8"j�1.

Proof of Claim 4.2. The ((n�1)8"j�1)-multiplicity of µn
k and the one of µn

l

in Bj�1 has to be n. Thus for every hyperbolic boundary point ⌘ in Yj�1 with
distance at most n8"j�1 to µn

k we have dh(⌘, µn
k )  (n � 1)8"j�1 and hence also

dh(⌘, µn
l )  n8"j�1. ⇤

Claim 4.3. Let µk
i+1 be connected to µ 2 Sj. Then dh(µ, µk

i+1)  8"j�1. If
µk

i+1 is eventually connected to ⌘ 2 Sj�1 in Tj, then

dh(⌘, µk
i+1)  8N2"j�1 + rad(Bj�1) = 16N2"j�1.

Furthermore, ⌘ lies in some B 2 Bj�1 with dh(µk
i+1, B)  8N2"j�1.

Proof of Claim 4.3. Let us first prove dh(µk
i+1, µ)  8"j�1. An immediate

consequence of Claim 4.1 is, if we inserted a non-trivial geodesic ⇡R, that then the
boundary point we connected µk

i+1 to has distance at most "j�1 to µk
i+1.

So we assume in the following that ⇡R is only one vertex. Then R meets some
other double ray R0 or a geodesic ⇡R0 where R0 and ⇡R0 are as in the proof of
Claim 4.1. If R meets some other double ray R0, then µ is the limit point of R0

and any geodetic double ray [µk
i+1, µ] lies in a �-neighborhood of R [ R0, so it has

distance at least q � � to r. Then we have with

�0 := exp(6"�)  (
p

2)6 = 8

for any µ0 2 @X with "j  dh(µk
i+1, µ

0)  "j�1:

dh(µi
k, µ)  exp(�"(µi

k, µ))
 exp(�"(µi

k, µ0) + 5"�)
 �0

"0 exp(�"(µi
k, µ0))

 8dh(µi
k, µ0)

 8"j�1
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Now we assume the last case, that is, R meets some ⇡R0 . Then any vertex on R\⇡R0

has distance at most � to xP 0 , where xP 0 denotes the vertex for R0 that xP denotes
for R. Let P 0 be the ray for R0 that is P for R. We conclude that there is
a hyperbolic boundary point µ0 such that [µk

i+1, µ
0] lies in a 2�-neighborhood of

R [ ⇡R0 [ P 0. This gives us the following inequality for any ⌫ 2 @X with "j 
dh(µk

i+1, ⌫)  "j�1:

dh(µi
k, µ)  exp(�"(µi

k, µ))
 exp(�"(µi

k, ⌫) + 5"�)
 �0

"0 exp(�"(µi
k, ⌫))

 8dh(µi
k, ⌫)

 8"j�1

Let m be minimal such that the ((m� 1) · 8"j�1)-multiplicity of µ is not m� 1
but such that the (m · 8"j�1)-multiplicity of µ is m. If m = 1, then the two
boundary points µk

i+1 and µ lie in the same ball B 2 Bj�1. We conclude that all
three hyperbolic boundary points µk

i+1, µ, and ⌘ lie in a common ball B 2 Bj�1

and hence that
dh(⌘, µk

i+1)  rad(Bj�1)  8N2"j�1.

Let us now assume that m 6= 1. We may assume that µ 6= ⌘, that is µ 2 Sj \ Sj�1.
By induction we know that ⌘ lies in one of the elements of Bj�1, say in B, that is
responsible for the (n · 8"j�1)-multiplicity of at most n of µ where n denotes the
corresponding value for µ that is m for µk

i+1. As µk
i+1 is connected to µ, we have

n  m. Thus dh(µk
i+1, B)  m · 8"j�1 and hence there is

dh(µk
i+1, ⌘)  m · 8"j�1 + rad(Bj�1)  m · 8"j�1 + 8N2"j�1.

Since every element of Sj \ Sj�1 has (8N2"j�1)-multiplicity at most N2 in Bj�1,
we have dh(µk

i+1, ⌘)  16N2"j�1. ⇤

By the construction of the trees Tj , we have the following property.

(⇤) In every step and for every closed ball B 2 Bk a boundary point in B can
only be eventually connected to elements of at most N2 di↵erent balls in Bk.
Furthermore, there are at most N log2(8N2) distinct boundary points in B that
are eventually connected to elements of the same ball of Bk.

Now we are ready to prove the assertions (1) to (3) for the tree T 0. For a closed
ball B 2 Bk let B0 be the union of B and all other (at most N2) closed balls in Bk

with distance at most 8N2"k to B.
Because of (j) we just have prove that any ray that we created without our

knowledge in the limit step converges to some hyperbolic boundary point. Let ⇡
be such a ray in T 0. That is, there is an infinite subset I ✓ N such that, for every
i 2 I, we have ⇡ \ Ti 6= ⇡ \ Ti+1. Since bG is compact, the ray ⇡ has at least one
limit point ⌘ in @G. Thus we have to prove that there exists no second limit point.
Let Bk 2 Bk be one of the closed balls in step k which contains ⌘. Any second
boundary point must lie—like ⌘ does—in

T
k2N B0

k by Claim 8.17. Since
T

k2N B0
k
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is a set with at most one element, ⇡ has precisely one accumulation point. Thus,
we have proved (1).

For the proof of (2), let ⌘ 2 @G. In every construction step k there is at least
one closed ball Bk 2 Bk with ⌘ 2 Bk, because Bk is a cover of @G. Hence there
is in each step a boundary point ⌘k 2 Sk \ Bk with dh(⌘k, ⌘)  "k such that Tk

contains a ray to ⌘k. Let ⇡k be a ray from r to ⌘k in Tk. For every % 2 N there
is a path in Tk \ B̄%(r) that is contained in infinitely many of the ⇡k, because G

is locally finite. Thus there is a ray ⇡ in G such that every vertex on ⇡ lies on
infinitely many of the rays ⇡k. Because of Claim 4.3 and the choice of the rays
⇡k, the hyperbolic boundary point ⌘ has to be an accumulation point of ⇡. As (1)
holds, ⇡ has precisely one accumulation point, ⌘, and thus ⇡ converges to ⌘.

For every B 2 Bk in the step k there are at most N2 closed balls in the step
k � 1 such that a boundary point in (B \ Sk) \ Sk�1 is eventually connected to a
hyperbolic boundary point of such a ball. Furthermore, for each of these balls there
are at most N log2(8N2) many hyperbolic boundary points to which our new ones
are eventually connected. Thus we know that the number of rays to one boundary
point is bounded by N2 · N log2(8N2) and hence bounded by a function depending
only on dim2(@G). Thus, we have also proved the remaining assertion (3).

4.2. Visual hyperbolic graphs

As in [15], we call a hyperbolic graph G visual if for some o 2 V G there is a
D > 0 such that for every x 2 V G there is an ⌘ 2 @G with

d(o, x)  (x, ⌘)o + D.

Remark that the property for hyperbolic spaces to be visual is independent of the
choice of o.

An observation is that the definition of visual hyperbolic graphs is equivalent
to the following. For some (and hence every) o 2 V G there is a D0 > 0 such that
for every x 2 V G there is an ⌘ 2 @G such that any geodesic between o and x lies
in a D0-neighborhood of a geodetic ray from o to ⌘.

Remark that by [16, Corollary 1.3.5.] hyperbolicity is preserved by quasi-isome-
tries and it is not hard to see that the same holds for visual hyperbolicity.

4.2.1. Hyperbolic approximations of metric spaces. In [16], see also
[11, 15, 33], the authors construct for every metric space X a hyperbolic graph
Y whose hyperbolic boundary is homeomorphic to X. The hyperbolic graph Y is
called a hyperbolic approximation of X. That Y is indeed a hyperbolic graph is
shown in [16, Proposition 6.2.10]. If we assume that the space X is compact, then
the hyperbolic approximation is a locally finite graph (compare [16, Exercise 6.4.4]).
Furthermore one can see from the construction that Y is visual hyperbolic, since any
vertex of Y lies on an infinite geodetic ray that starts at the root of the hyperbolic
approximation.
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Proposition 4.4. [16, Proposition 6.2.10] A hyperbolic approximation Y of
any metric space X is a visual hyperbolic graph with @Y ⇠= X. ⇤

If we restrict the metric space X to be doubling, then the degrees of all the
vertices in a hyperbolic approximation of X are uniformly bounded which is shown
in [16, Proposition 8.3.3]. We combine this result with Proposition 4.4 and obtain
the following proposition.

Proposition 4.5. For any doubling metric space X, its hyperbolic approxima-
tion Y is a locally finite visual hyperbolic graph with @Y ⇠= X and with bounded
degree. ⇤

4.2.2. Rough similarities. We cite a result by Buyalo and Schroeder [16].
In order to do that we have to make a further definition.

Let G,H be two graphs. If there are a map f : V G ! V H and constants
k,� > 0 such that

|�dX(x, y)� dY (f(x), f(y))|  k

holds for all x, y 2 V G and supy2V H dY (y, f(V G))  k, then G is (�, k)-roughly
similar to H, or just roughly similar to H, and we call f a (�, k)-rough similarity,
or just a rough similarity.

In particular, every graph H that is roughly similar to a graph G is also quasi-
isometric to G. As (visual) hyperbolicity is preserved by quasi-isometries, it is also
preserved by rough similarities. The next theorem guarantees that every hyperbolic
graph contains a visual hyperbolic graph with the same hyperbolic boundary.

Theorem 4.6. [16, Corollary 7.1.5.] Every visual hyperbolic graph G is roughly
similar to a subgraph of a hyperbolic graph H with the same hyperbolic boundary,
@G = @H. ⇤

We deduce the following corollary from the previous theorem.

Corollary 4.7. Let G be a locally finite hyperbolic graph whose hyperbolic
boundary is doubling. Let �1 � 1, �2 � 0 be constants. Then there is a subgraph H

of G such that the following statements hold for H.
(1) H is a proper visual hyperbolic geodetic space;
(2) every (�1, �2)-quasi-geodetic ray of G lies eventually in H;
(3) the identity ◆ : H ! G extends to a homeomorphism ◆̂ : bH ! bG such that

◆̂(@H) = @G.

Proof. Let Z be a visual hyperbolic locally finite graph that is a hyperbolic
approximation of @G. Let Z0 be a graph of G that is (�, k)-roughly similar to Z

for some constants � � 1, k � 0. This subgraph exists by Theorem 4.6. Let H

be the subgraph of G that is induced by Z0 and all vertices with distance at most
(�, �1, �2)+2(�,�, k) to any vertex of Z0 for the constants (�, �1, �2),(�,�, k) of
Proposition 2.24. As G is locally finite, the same holds for Z0 and H. As Z is visual
hyperbolic and this is a property that is preserved by quasi-isometries, assertion
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(1) holds for Z0 and thus also for H as the identity from Z0 to H is a quasi-
isometry by the choice of H. The assertion (2) holds because of Proposition 2.24
and the last one, (3), is obvious, because quasi-isometries between locally finite
hyperbolic graphs can be extended to quasi-isometries between their hyperbolic
compactifications. ⇤

4.3. Tree-likeness of hyperbolic graphs

In this section we shall prove that every ray in the tree, that was constructed
in Section 4.1 and that starts at the root, is a quasi-geodetic ray for some global
constants.

Lemma 4.8. Let G be a locally finite hyperbolic graph whose hyperbolic boundary
has finite Assouad dimension and let T be the spanning tree with root r that was
constructed in Section 4.1. Then there exist constants �1 � 1, �2 � 0 such that
every ray in T starting at the root is a (�1, �2)-quasi-geodetic ray in G.

Proof. We use all the assumptions and notations as in the construction step j

of Section 4.1. By Proposition 2.28 there is a constant � depending only on the quo-
tient "j

"j�1
and not depending on the particular j such that for every four boundary

points ⌘1, ⌘2, ⌘3, ⌘4 with

"j�1 � dh(⌘1, ⌘2), dh(⌘3, ⌘4) � "j

there is

|d(r, [⌘1, ⌘2])� d(r, [⌘3, ⌘4])|  �.

Recall that � � Q � q with Q, q as defined in Section 4.1. In the first step of
the proof we shall prove that for every two vertices w, y with y 2 T i,k

j \ T i�1,k
j ,

w 2 T i,k
j \ [r, y]T there is

dY (w, y)  d(w, y) + (M + n)(75� + 4�)

with Y := T i,k
j for an n < M := N2+log2(8N2) that represents the number how

often we have already enlarged the tree Tj�1 by additional rays whose intersection
with [r, y]T is not empty. As we have proved, n is bounded by M and since we add
just in this step a ray, we have n < M .

Let y 2 Y and let R be the geodetic double ray, as in the recursion step and let
P be that geodetic ray with P ✓ R that we added together with ⇡R to T i�1,k

j to
obtain T i,k

j . Let x be the unique vertex in T i�1,k
j \ ⇡R, let x0 be the unique vertex

in ⇡R \ P , and let a be a vertex on R with minimal distance to r. By the choice
of ⇡R we have d(x, x0)  � as we already saw in Section 4.1.

Let ⌘ := µi
k and let µ be the other limit point of R. Let b 2 R with d(b, [r, ⌘])  �

and d(b, [r, µ])  �.

Claim 4.9. d(a, b)  4�.
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Proof of Claim 4.9. Let c 2 [r, ⌘] and c0 2 [r, µ] each with minimal distance
to b. By the choice of b we have d(b, c), d(b, c0)  �.

Because of the hyperbolicity of G the geodetic double ray R is contained in the
�-neighborhood of the subset Z := [⌘, c][ [c, b][ [b, c0][ [c0, µ] of G. In particular we
have d(a,Z)  �. Thus, there is a vertex on Z with distance at most d(r, a)+� to r.
Let a0 2 Z with d(a, a0)  �. Then there is d(r, a0)  d(r, a) + �. By symmetry
we may assume that a0 2 [⌘, c] [ [c, b]. If a0 2 [c, b], then we have d(a0, c)  �.
Otherwise, since c is the vertex on [r, ⌫] \ Z with minimal distance to r, and since
d(r, c), d(r, c0) � d(r, a)� �, we have d(a0, c)  2�. The inequality

d(a, b)  d(a, a0) + d(a0, c) + d(c, b)  � + 2� + � = 4�

proves Claim 4.9. ⇤

For any another vertex ba on R with distance d(r, a) to r we conclude from
Claim 4.9 that d(a,ba)  8�.

Claim 4.10. d(a, x0)  � + 15�.

Proof of Claim 4.10. There is a unique vertex x00 with d(r, x00) = d(r, a)��
that lies on [r, x0]. In particular we have d(x0, x00)  � + 6�. Since G is hyperbolic,
there is a vertex on [r, a] [ [a, x0] with distance at most � to x00. If this vertex lies
on [r, a], then d(x00, a)  3�, and if it lies on [a, x0], then it has the same distance
to r as a and hence distance at most 8� to a. Thus d(x00, a)  9�. Hence we proved
Claim 4.10. ⇤

Let aw be a vertex on R with d(w, aw) = d(w,R).

Claim 4.11. d(w, y) � d(w, aw) + d(aw, y)� 6�.

Proof of Claim 4.11. Let y0 a vertex on [w, y] with distance at most � to
both [w, aw] and [aw, y]. Let y1 be such a vertex on [w, aw] and y2 such a vertex
on [aw, y]. Then d(w, y2) � d(w, aw) and hence d(y1, aw)  2�. This immediately
implies d(w, y0) � d(w, aw)� 3� and also d(y, y0) + 3� � d(aw, y). Hence we proved
Claim 4.11 ⇤

Claim 4.12. d(a, aw)  19� + �.

Proof of Claim 4.12. Since G is a hyperbolic graph, we conclude that [a, aw]
lies in a 2�-neighborhood of [a, r] [ [r, w] [ [w, aw]. But as d(r, a) = d(r,R) and
d(w, aw) = d(w,R), a subpath of length at most 4� of [a, aw] lies in the 2�-
neighborhood of [r, a] and a subpath of length at most 4� lies in the 2�-neighborhood
of [w, aw]. The vertex w lies in [r, y] \ T i�1,k

j and hence d(r, w)  d(r, a) + � + 5�.
So there is a subpath of length at most 11� + � of [a, aw] in a 2�-neighborhood
of [r, w]. Thus, d(a, aw) is at most 19� + �. This proves Claim 4.12. ⇤
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Let a0w be a vertex on P with minimal distance to w. By analog arguments as
in Claim 4.10 we have d(aw, a0w)  � + 15�. Thus, we conclude

dY (w, y) = dY (w, a0w) + dY (a0w, y)
 dY (w, x) + d(x, x0) + d(x0, a) + d(a, aw) + d(aw, a0w)

+d(a0w, y)
 dY (w, x) + � + � + 15� + � + 19� + d(aw, y)
 dY (w, x) + 34� + 2� + d(aw, y)
 d(w, x) + ((j � (j0 + 1))M + n)(↵1� + ↵2�)

+34� + 2� + d(aw, y)
 d(w, aw) + d(aw, a) + d(a, x) + d(aw, y) + 34� + 2�

((j � (j0 + 1))M + n)(↵1� + ↵2�)
 d(w, aw) + d(aw, y) + 19� + � + � + 16� + 34� + 2�

((j � (j0 + 1))M + n)(↵1� + ↵2�)
 d(w, y) + 6� + 69� + 4� + ((j � (j0 + 1))M + n)(↵1� + ↵2�)
 d(w, y) + ((j � (j0 + 1))M + (n + 1))(↵1� + ↵2�)

with ↵1 = 75 and ↵2 = 4. And in particular we have

dY (w, y)  d(w, y) + ((j � (j0 + 1))M + (n + 1))(75� + 4�).

Let ⇡ be a ray in T that starts at r. Since every step a↵ects at most its
previous and its successive step directly, there are constants c1, c2 (independent
from the choice of ⇡) such that ⇡ is a (c1, c2)-quasi-geodetic ray. For example, we
may choose c1 = (M + 1) · (75� + 4�) and c2 = 0. ⇤

This lemma enables us to prove the main results of this part of the thesis. We
shall prove them in two di↵erent cases. First, we prove the result for locally finite
visual hyperbolic graphs and then for arbitrary locally finite hyperbolic graphs.

4.3.1. The case: visual hyperbolic graphs. Visual hyperbolic graphs seem
to have a treelike-structure, because there is a maximal distance from each point
to any ray that starts in one particular vertex. This in fact is the main reason why
spanning trees similar to those constructed in Section 4.1 point out the tree-likeness
of locally finite visual hyperbolic graphs. This is specified in Theorem 4.13.

Theorem 4.13. Let G be a locally finite visual hyperbolic graph whose hyper-
bolic boundary has finite Assouad dimension. Then there is a rooted spanning tree
T in G such that the canonical map � from @T to @G exists and has the following
properties.

(i) It is surjective;
(ii) there is a constant M < 1 depending only on the Assouad dimension of @G

such that ��1(⌘) has at most M elements for each ⌘ 2 @G;
(iii) there is a constant � < 1 depending only on � and on the Assouad dimension

of @G such that every vertex of G has distance at most � to a ray in T that
starts at the root of T .
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Proof. Let T be the spanning tree of G constructed in Section 4.1 and let r

be its root. A direct consequence of the assertions (1) to (3) in Section 4.1 is, that
T has the properties (i) and (ii). For the remainder of this proof we remember from
Lemma 4.8 that there exist constants c1, c2 such that each ray in T that starts at
the root is a (c1, c2)-quasi-geodetic ray. Because G is visual hyperbolic, there is a
D > 0 such that for every x 2 V G there is an ⌘ 2 @G with d(x,⇡)  D for all
geodetic rays ⇡ from r to ⌘. Let ⇡x be a vertex on ⇡ with d(x,⇡x)  D. In T there
is a ray ⇡T from r converging to ⌘. We know from Proposition 2.24 that there is
a vertex xT on ⇡T with d(⇡x, xT )   for a constant  that depends only on �,
c1, and c2. Hence we have d(x, xT )   + D and we have proved the remaining
assertion (iii). ⇤

4.3.2. The case: hyperbolic graphs. The final aim of this section is to
demonstrate the tree-likeness of locally finite hyperbolic graphs in terms of spanning
trees. For that we combine the result for the locally finite visual hyperbolic graphs
with the theorems from Section 4.2.

Before we can state the result, we have to make a further definition. A subset
X of the vertex set of a hyperbolic graph G has finite geodetic out-spread in G if
every geodesic in G�X has finite length.

Theorem 4.14. Let G be a locally finite hyperbolic graph whose hyperbolic
boundary has finite Assouad dimension. Then there is a rooted spanning tree T

of G such that the canonical map � from @T to @G exists and has the following
properties.

(i) It is surjective;
(ii) there is a constant M < 1 depending only on the Assouad dimension of @G

such that ��1(⌘) has at most M elements for each ⌘ 2 @G.

Furthermore, there is a constant � such that, for the subtree T of T that consists
of all rays of T starting at the root, B̄�(T ) has finite geodetic out-spread in G.

Proof. By Corollary 4.7, there is a locally finite visual hyperbolic subgraph H

of G which has the property that every geodesic in G�H has finite length, so H has
finite geodetic out-spread in G. In H there is a spanning tree T 0 as in Theorem 4.13.
For this tree the canonical map @T 0 ! @G exists and is surjective and continuous
by property (i) of Theorem 4.13. Furthermore, (ii) also holds because it holds for T 0

and H. Now, we can add all the vertices in G�H with appropriate paths to T 0 as
in Section 4.1 to obtain a spanning tree T of G all whose rays lie eventually in T 0.
Thus, the spanning tree T has the properties (i) and (ii).

The remaining part is a consequence of the fact that H has already finite geo-
detic out-spread in G, so for the tree T obtained from T 0 by taking all rays starting
at the root, we conclude that B̄�0(T ) (with the constant �0 from Theorem 4.13)
has finite geodetic out-spread in G, because G�H ◆ G� B̄�(T ). ⇤
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4.4. Spanning trees and the topological dimension of the boundary

Before we compare the topological dimension of the hyperbolic boundary of
a locally finite hyperbolic graph with any spanning tree of the graph, we prove a
lemma on quotient spaces of totally disconnected compact metric spaces.

Lemma 4.15. Let X be a compact metric space such that there exists a totally
disconnected compact metric space Y and an equivalence relation ⇠ on Y with
at most M < 1 elements in each equivalence class such that X and Y/ ⇠ are
homeomorphic. Then X has topological dimension at most M � 1.

Proof. Let U be a finite critical open cover of X. Let U 0 be that open cover
of Y that is induced by U , that is a U 2 U corresponds to precisely one U 0 2 U 0
and y 2 U 0 if and only if [y] 2 U (where we assume that X = Y/ ⇠). As Y has
topological dimension 0, there is a finite open cover V 0 of U 0 with pairwise disjoint
elements, since it is a well-know fact, that any totally disconnected compact metric
space has topological dimension 0. For any V 0 2 V 0 let V be the set of all [y] with
y 2 V 0. Let V be the set of all such sets V for V 0 2 V 0. Any V is an open set
and thus V is an open cover of X. By the construction V is also a refinement of U
and has multiplicity at most M . Thus the topological dimension of X is at most
M � 1. ⇤

Now we can easily deduce the main result of this section from Lemma 4.15.

Theorem 4.16. Let G be a locally finite hyperbolic graph and let T be a span-
ning tree of G such that the canonical map from @T to @G exists and is surjective
and such that there is an M < 1 such that any boundary point of G has at most
M preimages. Then the topological dimension of @G is at most M � 1.

Proof. Since @T and @G are compact metric spaces and @T is totally discon-
nected, the theorem is a direct consequence of Lemma 4.15. ⇤

4.5. Remarks on trees in hyperbolic graphs

Our two main results of this chapter (Theorem 4.14 and Theorem 4.16) depend
on distinct dimension concepts. We know that dim(X)  dimA(X) for any metric
space X and that there are compact metric spaces X with dim(X) < dimA(X)
(that are the fractals, compare with the introduction of [75]) In particular, there
are compact metric spaces with infinite Assouad dimension but finite topological
dimension. This is for example the closure of H2 equipped with the hyperbolic
metric. This is because on the one hand, the topological dimension of H2, and thus
also the one of its closure, is 2 and on the other hand the Assouad dimension of H2

is 1 (this is proved in [75, Example 3.5.2.]) and the one of its closure is the same
(see [75, Theorem A.5.(2)]).

Because of this di↵erent behavior of the two dimensions for some compact
metric spaces, it would be nice if there is one particular dimension such that we have
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the two following properties for locally finite hyperbolic graphs G whose hyperbolic
boundary has finite dimension.
• There is a spanning tree such that Theorem 4.14 holds for this dimension instead

of the Assouad dimension.
• For every spanning tree T there is a function f : N ! N such that whenever the

canonical map @T ! @G exists and the dimension of the hyperbolic boundary
is n, then there is a hyperbolic boundary point of G with at least f(n) many
preimages under the canonical map.
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CHAPTER 5

The fixed set property

In this part of the thesis we discuss several aspects of the so-called fixed set
property. It is a property that has been of interest not only for trees with their ends
[85, 95] but also for locally finite graphs with their end-compactification [82, 100],
for arbitrary infinite graphs with their ends [60, 65] and even for proper metric
spaces with an appropriate compactification, see [102]. Let us define this property:
A group � has the fixed set property if there is a graph G with boundary @G such
that � acts on G [ @G and such that one of the following assertions holds.
(a) There is a finite vertex set of G fixed by �.
(b) There is a unique element of @G fixed by �.
(c) There is a unique pair of elements of @G invariant under � that are the direc-

tions of a hyperbolic element and its inverse.
In analogy to the statements (a), (b) and (c), we define distinct classes of

elements of the automorphism group of a graph G, where @G is again an appropriate
boundary for G.

(i) An automorphism is called elliptic if it fixes a finite set of vertices.
(ii) An automorphism ↵ is called hyperbolic if it is not elliptic and fixes precisely

two boundary points ⌘, ⇠ and if (x↵
n
)n2N converges to ⌘ and (x↵

�n
)n2N con-

verges to ⇠ for every x 2 V G.
(iii) An automorphism ↵ is called parabolic if it is not elliptic and fixes precisely

one boundary point ⌘ and if (x↵
n
)n2N and (x↵

�n
)n2N both converge to ⌘ for

every x 2 V G.
If ↵ is a hyperbolic element, then we call the boundary point to which all the
sequences (x↵

n
), x 2 V G, converge the direction of ↵.

The following theorem holds for the ends of G as boundary and also in the
case that G is a locally finite hyperbolic graph for the hyperbolic boundary as @G.
Woess [102] o↵ers a proof in the hyperbolic case. The case for arbitrary graphs is
due to Jung [60, Corollary 1.3 and Theorem 1.4].

Theorem 5.1. Let G be a graph with boundary @G and let � act on G. Then
either one of (a), (b), (c) holds or there are two hyperbolic elements that generate
a free subgroup of �. ⇤

Considering just single elements instead of the whole automorphism group, in
all above described cases for G and @G we have also the following theorem, see
[49, 95, 102].
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Theorem 5.2. Let G be a graph with boundary @G and let � act on G. Then
each element of � is either elliptic, hyperbolic, or parabolic. ⇤

The fixed set property will be discussed in three di↵erent situations. In Chap-
ter 6, we investigate the case that G is a locally finite hyperbolic graph and for
a subgroup � of Aut(G) that acts transitively on G, the statement (b) holds as
in [39]. The case that G has more than one end turns out to be already solved
[80], so we just have to look at locally finite one-ended hyperbolic graphs. It is a
problem of Kaimanovich and Woess [61] whether such a graph exists. We make
some progress by showing that no planar such graphs exists (Theorem 6.3).

In Chapter 7, we generalize the mentioned result by Möller [80] by charac-
terizing the infinitely-ended graph with arbitrary degree and with a subgroup of
their automorphism group that acts transitively on the graph and satisfies the
assertion (b). We show that they are—in analogy to the locally finite case—quasi-
isometric to semi-regular trees (Theorem 7.1), see also [53].

The situation in Chapter 8 is a di↵erent one compared with the other two. We
suppose—just like in [53]—that for an infinitely-ended graph (again with arbitrary
degree) its automorphism group satisfies neither (b) nor (c). Particularly, we as-
sume the automorphism group to act transitively on the ends of the graph. Then
we conclude that either a generalization of (a) holds, that is that a vertex set of
finite diameter is invariant under the automorphism group, or that the graph is
again similar to a semi-regular tree (Theorem 8.1).



CHAPTER 6

Fixed set property in hyperbolic graphs

In this chapter we describe our partial solution [39] to the following problem
of Kaimanovich and Woess:

Problem. [61, Section 6.4] Does there exist a one-ended locally finite hyper-
bolic graph and a group acting transitively on the graph and fixing precisely one
hyperbolic boundary point?

The assumption having just one end seems to be a huge restriction. But the
stabilizer of the hyperbolic boundary point also stabilizes the end that contains the
hyperbolic boundary point. Such graphs with more than one end have infinitely
many or precisely two ends, see Theorem 2.3. Locally finite graphs with infinitely
many ends and with an end whose stabilizer acts transitively on the vertices of
the graph are characterized in [80] before the above question arose. It was shown
that they are quasi-isometric to trees (see Chapter 7 for more details). So, by
Theorem 2.3, the only other case is that the graph has precisely two ends. But it is
well-know that two-ended transitive graphs are quasi-isometric to the double ray.
Hence, the only case that has to be discussed is the one-ended case as it is posed
in the problem.

In this chapter we give some further results towards a general solution of the
above problem. The first known result regarding the situation of that problem can
be found in [102, Section 4.D]. It is shown there that, for a locally finite Cayley
graph of a finitely generated hyperbolic group, the group itself does not have the
property (b) on its Cayley graph.

We shall prove that every planar locally finite hyperbolic graph answers Ques-
tion 6 in the negative. Before we directly attack the question in the situation of
planar graphs, we prove a general lemma, which might help to find a solution in
the general case for a negative answer to the question. But, so far, it still remains
open.

Lemma 6.1. Let G be a locally finite hyperbolic graph. Then Aut(G) contains
no parabolic element.

Proof. Suppose that Aut(G) contains a parabolic element ↵. Then there is an
! 2 @G such that for any x 2 V G the sequences (x↵

i
)i2N and (x↵

�i
)i2N both con-

verges to ! and they lie on a (c1, c2)-quasi-geodetic double ray by Proposition 2.25
for some c1 � 1, c2 � 0. This double ray lies in a (�, c1, c2)-neighborhood around
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a geodetic double ray for the constant (�, c1, c2) as in Proposition 2.24. Since any
hyperbolic boundary point is the equivalence class of geodetic rays, no geodetic
double ray can have both of its sides converging to the same hyperbolic boundary
point. Thus, we conclude that no parabolic element of Aut(G) exists. ⇤

Lemma 6.2. Let G be a locally finite one-ended �-hyperbolic graph and � be a
group acting transitively on G such that � fixes a hyperbolic boundary point ! of G.
Then the following statements hold.

(i) For every two vertices x, y 2 V G with d(x, y) > 2� that lie on a common
geodetic double ray between ! and another hyperbolic boundary point, there
exists a hyperbolic element h in � with xh = y.

(ii) There exists a non-trivial elliptic element in � that fixes a vertex of G.
(iii) There exist two non-trivial distinct elliptic elements in � whose product is

also non-trivial and elliptic and such that all these three automorphisms fix a
common vertex of G.

Proof. To prove (i) let x, y lie on a common geodetic double ray ⇡ as in the
assertion with d(x, y) = 2�+ d for a d > 0 and let ⇡0 be the subray of ⇡ that starts
at y and converges to !. As � acts transitively on G, there is an automorphism
↵ 2 � with x↵ = y. We deduce from Theorem 5.2 and Lemma 6.1 that ↵ is either
a hyperbolic or an elliptic element. So we just have to exclude the case that ↵ is an
elliptic element. Let us suppose the contrary, that is, that ↵ is an elliptic element.
Then the orbit of x under ↵ is finite. Let n > 0 be minimal with x↵

n+1
= x. We

consider the rays ⇡↵
i

0 with i = 0, . . . , n. Each of these rays converges to ! and
contains the vertices x↵

i+1
and x↵

i+2
. For x↵

i
, there is a vertex zi on ⇡↵

i+1

0 with
d(x↵

i
, zi)  �, as we are �-hyperbolic. Because of d(x↵

i
, x↵

i+1
) = 2� + d we have

d(x↵
i+1

, zi) � �+ d. Furthermore, zi does not lie on x↵
i+2
⇡↵

i+2

0 . Inductively, x↵
i+1

lies in an (n�)-neighborhood of a vertex on ⇡↵
i

0 whose distance on that ray is at
least n(� + d) > n�, a contradiction. Hence, ↵ has to be a hyperbolic element.

For the proof of (ii), let ↵ be a hyperbolic element in �. Then ↵ fixes ! and
precisely one further boundary point ⌘0. We assume that the direction of ↵ is ⌘0.
For any x0 2 V G, there are constants c1 � 1, c2 � 0 such that the vertices x↵

i

0 ,
i 2 Z, lie on a (c1, c2)-quasi-geodetic double ray ⇡ by Proposition 2.25. Remark
that c1 and c2 depend only on �, and d(x0, x↵0 ). If x0 lies on a geodetic double ray
⇡0 between ! and ⌘0, then we may choose the two constants independently from x0.
Let  = (�, c1, c2) be the constant from Proposition 2.24, that is, every (c1, c2)-
quasi-geodesic lies in a -neighborhood of a geodesic with the same endpoints and
vice versa.

Let x1 2 V G with d(x1,⇡0) > 2 and let �1 2 � with x�10 = x1. Then ⇡1 := ⇡�10

cannot lie 2-close to a geodetic double ray between ! and ⌘. Thus, we have
⌘1 := ⌘�10 6= ⌘0. Since ↵ is a hyperbolic element, so is ↵1 := ��1↵�. Recursively,
we find a sequence (xi)i2N of vertices in G, a sequence (⇡i)i2N of (c1, c2)-quasi-
geodetic double rays, a sequence (⌘i)i2N of hyperbolic boundary points, and a
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sequence (↵i)i2N of hyperbolic elements of � such that the orbit of xi under ↵i lies
on ⇡i, such that the subrays of ⇡i converge either to ! or to ⌘i, and such that xi

has distance more than 2 to all ⇡j with j < i.
Consider an infinite sequence (Bi)i2N of balls of radius 2 around elements of ⇡0

that converge to !. Because � acts transitively on V G, there is a finite number n

such that each of these balls consists of n vertices. Hence there is a ball Bm such
that some vertex b 2 Bm lies on two distinct double rays ⇡i,⇡j (with i < j) and
such that it has the property b↵

�1
i = b↵

�1
j and such that b and xi, b and xj lie in the

same ↵i-orbit, the same ↵j-orbit, respectively. Let us look at the automorphism
↵�1

i ↵j . This automorphism obviously fixes b, so it is an elliptic element and it is
non-trivial, because ↵i 6= ↵j .

It remains to prove (iii). We continue with the same notation as in the proof
of (ii). Let � := ↵�1

i ↵j be the elliptic element we constructed in the proof of (ii).
Then, for each k 2 N, �k := ↵k�↵�k is an elliptic element that is not trivial but
acts trivially on b↵�k. Each such elliptic element has to act on the set of (c1, c2)-
quasi-geodetic rays from b↵�k to !. Let us consider the sequence of balls (Dk)k2N
with center b↵�k and radius 2. As in the proof of (ii), there is an m 2 Z such that
two distinct �k, �l, with k 6= l, both fix a vertex y 2 Bm. Then ��1

k �l also fixes y

and it is again non-trivial because �k 6= �l. So ��1
k �l satisfies the assertion (iii). ⇤

Theorem 6.3. There exists no planar locally finite one-ended hyperbolic graph
G and a subgroup � of the automorphism group of G such that � acts transitively
on G and fixes a hyperbolic boundary point ! of G.

Proof. Let us suppose that there is a planar locally finite one-ended hyper-
bolic graph and a subgroup � of Aut(G) acting transitively on G and fixing a
hyperbolic boundary point !. Let � be the hyperbolicity constant of G and let d

be the degree of any vertex of G. Then we have d � 3 and, thus, so we know from
Lemma 2.6 and Theorem 2.5 that G has a unique planar embedding. Hence, every
automorphism of the graph can be extended to an automorphism of the plane and
we have the notions of spin-preserving and spin-reversing automorphisms. Let uvw

be a subpath of a path P . We say that a vertex x 2 N(v) \ {u,w} lies to the right
of P if in the spin of v, we have vx between vw and vu. If x does not lie to the
right of P then it lies to the left of P .

There is a non-trivial elliptic element ' 2 � by Lemma 6.2. Let us assume that
its homeomorphic extension to the plane is a rotation, that is, it is a spin-preserving
automorphism of the graph. Let y be a vertex with y' 6= y. As ' is elliptic, there
is a minimal n 2 N such that y'

n
= y. For all i = 1, . . . , n, let gi be a geodesic

from yi�1 := y'
i�1

to yi such that g'i = gi+1 and let ⇡i be a geodetic ray from y'
i

converging to ! such that ⇡'i = ⇡i+1. Then C := g0 . . . gn�1 is a cycle of length
n · l(g). We distinguish between two cases: Either ⇡i and ⇡i+1 intersect infinitely
many often or in at most finitely many vertices. If they have at most finitely many
common vertices, then we may choose a vertex y0 on ⇡0 instead of y such that the
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corresponding rays yi⇡i and yi+1⇡i+1 have no common vertex. So we assume that
this holds for y.

For every vertex z0 on ⇡0 with distance larger than l(g1) + � to y0 there is a
vertex z1 on ⇡1 with distance at most � to z0. We fix a geodesic between z0 and
z1 whose intersection with ⇡0, ⇡1, respectively, is a connected subpath. Then we
may assume that the geodesics from all these vertices to ⇡1 lie eventually on the
same side of ⇡0 (that is its first vertex not on ⇡0 lies either to the right or to the
left and for all the vertices it is the same), because otherwise we may assume that
infinitely many of these geodesics lie eventually to the right and infinitely many lie
eventually to the left of ⇡0. This implies that all the rays of G converges to ! or that
G has at least two ends each of which is a contradiction by assumption and because
any transitive locally finite hyperbolic graph has at least two hyperbolic boundary
points. We may assume that all the above described geodesics lie eventually to the
right of ⇡0. Let V0 be a subset of V G consisting of all the vertices from the paths
⇡0, ⇡1, g0 and from all the paths from ⇡0 whose first vertex lie to the right of ⇡0

and that has only vertices not in ⇡0 [ ⇡1 [ g0 except for its first vertex. Then any
ray in G[V0] has to converge to !. Similarly we find V1, . . . , Vn�1, always taking the
vertices to the right of ⇡i to obtain Vi, because ↵ acts on the plane as a rotation.
We conclude that any other hyperbolic boundary point is separated by C from !

which is impossible, since G has at most one end.
Thus, the only case left is that ⇡0 and ⇡1 have infinitely many common vertices.

By Proposition 2.23 there is a k 2 N such that for all but finitely many vertices x

on ⇡0 we have d(x, x')  k + 2�. Let us first suppose that there are also infinitely
many vertices in ⇡0� ⇡1. Let (xi)i2N be a sequence of pairwise distinct vertices on
⇡0 \ ⇡1 such that the predecessor of xi on ⇡0 lies not in ⇡1 and such that ⇡1 comes
at xi from the same side to ⇡0, say from the right. Then there is an M 2 N such
that we have for all i � M that xi⇡1xi'⇡2 . . . x'

n�1

i ⇡0xi is a cycle separating C

from !. Since G has precisely one end, this contradicts the transitivity of G as all
these cycles have length at most 2n(k + 2�), as d(xi, x

'n�1

i )  n(k + 2�), and we
find a sequence of these cycle that are pairwise disjoint.

Thus, there are only finitely many vertices in ⇡0 � ⇡1 and we may assume by
replacing y by another suitable vertex on ⇡0, that all the vertices of ⇡0 lie on ⇡1 or
vice versa. But then either

⇡n = y0⇡nyn�1 . . . y1⇡1y0⇡0

or
⇡0 = y0⇡0y1⇡1 . . . yn�1⇡n�1y0⇡n

is no geodetic ray, contrary to the assumption. ⇤



CHAPTER 7

Fixed set property

in graphs with infinitely many ends

In [101], Woess posed the problem whether there is a classification of the locally
finite connected graphs with infinitely many ends such that the stabilizer of one
end acts transitively on the vertices of the graph. He conjectured that such graphs
are quasi-isometric to trees, which was subsequently proved by Möller [80]. This
was generalized by Krön [63] to graphs of arbitrary cardinality with infinitely many
edge ends. We prove here the corresponding theorem from [53] for vertex ends:

Theorem 7.1. Let G be a connected graph with infinitely many ends and with
automorphism group � such that for some end ! of G its stabilizer �! acts transi-
tively on the vertices of G. Then G is quasi-isometric to a semi-regular tree with
minimum degree 2. Furthermore, every non-local end of G is a thin global end of G.

A further result of Möller [80] is that in graphs such that the stabilizer of an
end acts transitively on the vertices this stabilizer also acts transitively on the other
ends. In graphs that are not necessarily locally finite this is not the case. But every
orbit of the ends (other than the fixed end) is dense in the end space:

Theorem 7.2. Let G be a connected graph with infinitely many ends and with
automorphism group �. If �! for some end ! acts transitively on V G, then for any
end !0 6= ! the �!-orbit of !0 is dense in the set of all ends of G.

We mention here that—with the above notions—on one side the regular trees
are examples of graphs with �! 6= �, but on the other hand Soardi and Woess gave
an example [92, Example 2] of a graph with �! = � for some end !.

7.1. The proofs of Theorems 7.1 and 7.2

For the Lemmas 7.3 to 7.7, let G be a connected graph with infinitely many
non-local ends such that the stabilizer of some end ! acts transitively on the vertices
of G. Let � := Aut(G), let S be a �!-invariant, not necessarily �-invariant, basic
cut system such that every S-separation separates ends of G, and let T be the
structure tree of G and S. We remark that the end ! has to be a global end since
otherwise it would be dominated by some vertex x and thus by every vertex as �!
acts transitively on the vertices of G.

Lemma 7.3. The end ! of G corresponds to an end of T and not to a vertex
of T .
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Proof. Let us suppose that ! corresponds to a block vertex X of T . Let
x 2 A \B for some separation (A,B) 2 S with A \B ✓ X. Let y be some vertex
of G not in A \B which is separated by A \B from !. Since �! acts transitively
on V G, there is some ↵ 2 �! with y↵ = x. Then (A\B)↵ is a separator separating
x = y↵ from !, a contradiction to the choice of A\B and x. Hence ! corresponds
to an end of T . ⇤

Lemma 7.4. The diameters of all S-blocks are globally bounded. Furthermore
each vertex of an S-block X has distance at most 1 to that separator that separates
X from !.

Proof. Let X be some S-block and let (A,B) be a separation in S with
A \ B ✓ X such that A \ B separates X from !. We will prove that any vertex
x 2 X \ (A \B) has distance 1 to A \B.

Suppose d(x,A \B) = 2. Let y be a vertex in X with d(y,A \B) = 1. There
is some ↵ 2 �! with y↵ = x. Then (A \ B)↵

�1
is a separator with distance 1 to

x such that x and ! are separated by (A \ B)↵
�1

. By the choice of x and (A,B)
this is a contradiction. Thus we know that diam(X)  diam(A \B) + 2. Since all
S-separations have the same order, the claim follows. ⇤

A vertex x in G determines an S-block (with respect to the end !) if for the
unique S-separator S that separates X from ! and is contained in X there is x /2 S

and no S-separator separates x from S.

Lemma 7.5. For every S-block X there is a vertex x which determines the block
X (with respect to the end !). Additionally for every vertex x there is a unique S-
separator S separating x from ! with x /2 S, and such that no S-separator separates
x from S.

Proof. These are direct consequences of Section 7 from [32]. ⇤

Lemma 7.6. The group �! acts transitively on the S-blocks.

Proof. Let X and Y be S-blocks. By Lemma 7.5 there are vertices x 2 X

and y 2 Y such that x and ! determine X and y and ! determine Y . Let ↵ 2 �!
with x↵ = y. Then X↵ = Y . ⇤

Let us define the tree order on the vertices of T with respect to the end !T
of T that corresponds to !: x  y if and only if x separates y from !T . Let X,Y

be the blocks or separators corresponding to x, y, respectively. Then x  y if and
only if X separates Y from ! in G. As for rooted trees let bxc denote all vertices
y in T with y � x.

Lemma 7.7. Any global end of G corresponds to an end of T and vice versa.

Proof. By Lemma 7.4 any global end !0 of G corresponds to an end of T .
Suppose that there is some end of T whose corresponding end !0 in G is not a
global end. Then the end !0 must be dominated by some vertex. Let S1, S2, . . .
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be a sequence of separators such that Si separates Si�1 from Si+1, S1 separates S2

from !, and every Si separates !0 from !. Then there is no infinite pairwise disjoint
subsequence of the Si and hence there is some vertex x contained in infinitely many
Si. We may assume that x 2 Si for all i 2 N and that S1 is an S-separator that
contains x and that is minimal in the tree order with this property. Let S := S1.
Since �! acts transitively on S, the stabilizer of S in �! acts transitively on the
vertices in bSc with equal distance to S. There is a ray in bSc such that every
vertex contains x. Thus every vertex in bSc contains an element of S. Hence for
every ray in bSc that starts in S the intersection of all vertices on that ray is not
empty and thus contains an element of S. As �! acts transitively on V G, every
vertex y that is separated from ! by S lies in the intersection of the vertices of a
ray of T . Hence all S-separators S0 2 bSc with d(S, S0) � 2i have to contain a
vertex from the finite set[

{S 2 bSc | d(S, S) < 2i} \
[
{S 2 bSc | d(S, S) < 2(i� 1)}.

But then all S-separators S0 with d(S, S0) � 2|S| have to contain more than |S|
vertices which is impossible. ⇤

Let us now prove Theorem 7.2.

Proof of Theorem 7.2. Let S be a basic cut system and let T be the struc-
ture tree of G and S. By the Lemmas 7.3 and 7.7 all non-local ends are global
ends and also |S|-thin ends for all S-separators S. Thus it su�ces to prove the
denseness condition for G. We will first prove this condition for T . Let us identify
the unique end in T that corresponds to the end ! of G with !. Let e!, b! be any
two distinct ends of T that are both di↵erent from !. We have to show that in any
open neighborhood of e! there is some �!-image of b!. It su�ces to show this for
any neighborhood of the form btc for some t 2 V T .

Let x be a vertex on the unique double ray in T between e! and b! such that x

is minimal in the tree order. As �! acts on V T with precisely two orbits, there is
an automorphism g 2 �! such that either xg = t or d(xg, t) = 1 and xg 2 btc. Since
g fixes !, the end b!g has to lie in btc. As any open neighborhood of ! contains
an end of T that is di↵erent to !, any neighborhood of ! contains some b!g with
g 2 �!. Thus b!�! is dense in the set of non-local ends.

Let e! be a local end of G. As for every S-separators S the group �! acts
transitively on those S-separators that have distance 2 in T to S and that are
separated from ! by S, each ray R in e! meets at least infinitely many of those
S-separators. There is a block vertex X 2 V T such that e! corresponds to X.
Then X must have infinitely many neighbors in T and also in G. As b!�! is dense
in ⌦T , for each finite vertex set S of G there is an end b!g with g 2 � that is not
separated from X by S and thus that is also not separated from b!.

Now let b! be a local end of G. By Lemma 7.7 there is an S-block X such that
b! corresponds to X. Let first e! be a global end of G. Then for each S-separator S

there is an Xg with g 2 �! in the same component of G�S in which e! lies. So let
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e! be a local end of G. Analog to b!, there is an S-block Y such that e! corresponds
to the T -vertex Y . Since �! acts transitively on the S-blocks, every finite vertex
set can separate Y only from finitely many Xg with g 2 �! and thus e! lies in the
closure of b!. ⇤

The following theorem immediately implies Theorem 7.1.

Theorem 7.8. Let G be a connected graph with infinitely many ends such
that for some end ! of G the stabilizer of ! in the automorphism group � of G

acts transitively on the vertices of G. Then G is quasi-isometric to any structure
tree of G and a basic cut system of G which is a semi-regular tree with minimum
degree 2. Furthermore, every non-local end of G is a thin global end of G.

Proof. Let S be a basic cut system and let T be the structure tree of G and
S. By Lemma 7.6 the tree T is a semi-regular tree and by Lemma 7.4 all vertices
of T have bounded diameter in G and thus the claim holds. ⇤



CHAPTER 8

End-transitive graphs

In [101], Woess asked for a classification of locally finite connected graphs with
infinitely many ends and with an end-transitive automorphism group. Möller [79]
and Nevo [86] independently described these graphs. The essence of their work
is that they are quasi-isometric to semi-regular trees. In this chapter we prove a
theorem of [53] which is a generalization of the results of Möller and Nevo to graphs
that are not necessarily locally finite. Before we state the theorem let us briefly
define an abbreviation: For a graph G, a vertex x 2 V G, and R 2 N let G(x,R)
denote the union of the balls BR(x'), where ' ranges over all automorphisms of G.

Theorem 8.1. Let G be a connected graph with infinitely many ends such that
G is end-transitive. Either Aut(G) fixes a vertex set of finite diameter or there is
for every x 2 V G an R 2 N such that G(x,R) is quasi-isometric to a tree and
G�G(x,R) does not contain a ray.

The assumptions of Theorem 8.1 (infinitely many ends, end-transitivity, no ver-
tex set of finite diameter fixed by the automorphism group) are necessary. When-
ever we omit one of them, the conclusion of Theorem 8.1 fails.

Throughout the remainder of this chapter we shall prove Theorem 8.1 with the
aid of the theory of structure trees, see Section 2.5, and we shall discuss the general
situation in this setting, for example that the structure tree of a basic cut system
is essentially unique (Section 8.3).

8.1. Structure trees and semi-regular trees

In this section we prove that every structure tree with regard to a basic cut
system of any connected graph whose automorphism group acts transitively on the
non-local ends and fixes no vertex set of finite diameter is a semi-regular tree or a
subdivided semi-regular tree.

Although the proof of the following lemma is similar to arguments in [86, 92]
we proof it here because of the last part claimed.

Lemma 8.2. Let T be a tree and �  Aut(T ) such that � acts transitively on
one set A of the natural bipartition A [B of V T . Then for every path x0 . . . x4 of
length 4 between two vertices of A there is an automorphism g 2 � such that g is a
translation on T and either xg

0 = x2 or xg
0 = x4.

Proof. There is an automorphism g 2 � with xg
0 = x2. If xg

1 6= x1 then g is a
translation as claimed. So let us assume that xg

1 = x1. There is an automorphism

55



56 8. END-TRANSITIVE GRAPHS

h 2 � with xh
0 = x4. If xh

2 6= x2 then h is a translation as claimed. Thus let us
assume that xh

2 = x2. Let f := gh. Then xf
0 = x2 and xf

1 6= x1. Hence f is a
translation and the lemma is proved. ⇤

Lemma 8.3. Let G be a connected graph with infinitely many non-local ends
such that � := Aut(G) acts transitively on the non-local ends of G. Let S be a basic
cut system such that each S-separation separates metric rays. If � fixes no vertex
set of finite diameter, then no end of T , the structure tree of G and S, corresponds
to a local end of G.

Proof. We first remark that for every n 2 N there is a pair of S-separators
with distance at least n as otherwise the union of all S-separators is a vertex set
of finite diameter. Let us suppose that there is an end of T that corresponds to a
local end of G. Then there is a ray in T and a vertex x of G such that x lies in all
the vertices of that ray as otherwise there are infinitely many disjoint S-separators
on that ray and thus the end of T corresponds to a non-local end of G. Similar
to Lemma 8.2 there is an ↵ 2 �x, the stabilizer of x in �, that acts on T like a
translation and thus x lies in all vertices of the uniquely determined ↵-invariant
double ray R. If T has just two ends, then all separators lie on R and thus the
intersection of all the separators is non-empty, of finite diameter, and �-invariant,
but no such vertex set exists by the assumptions. Hence we know that T has
infinitely many ends.

Let S0, S1, S2 be three distinct S-separators such that S0 and S1 lie on R, such
that S2 is disjoint from S0 [ S1, and such that

dT (S0, S1) + dT (S1, S2) = dT (S0, S2).

By a similar argument as in the proof of Lemma 8.2 there is an automorphism �

of G that acts on T like a translation either with S�2 = S1 or with S�2 = S0. Hence
there is a double ray P in T and an m 2 N such that each vertex of G lies in at
most m vertices of P . The ends of G which contain subrays of P have to correspond
to non-local ends of G.

By using the double rays P � and R� for some � 2 �, it is not hard to construct
a ray Q such that the S-separators on infinitely many subpaths of length more
than m do not intersect trivially but such that every vertex of G lies in only finitely
many S-separators on Q. Thus the end that contains Q corresponds to a non-local
end of G. But this end cannot be mapped by an automorphism of G onto an end
that contains a subray of P . We conclude that no local end of G can correspond
to an end of T . ⇤

By changing the cut system to a cut system S such that every wing of every
separation just contains a ray we obtain the following corollary of the proof of
Lemma 8.3.

Corollary 8.4. Let G be a connected graph with infinitely many local ends
such that � := Aut(G) acts transitively on the ends of G. Let S be a basic cut
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system such that each S-separation separates rays. Then either � fixes no vertex
set of finite diameter or T , the structure tree of G and S, does not contain any
ray. ⇤

By the next lemma we show that every structure tree of a basic cut system
that contains a ray is essentially a semi-regular tree.

Lemma 8.5. Let G be a connected graph with infinitely many non-local ends
such that � = Aut(G) acts transitively on the non-local ends of G and fixes no
vertex set of finite diameter. Let S be a basic cut system of G such that each S-
separation separates non-local ends and let T be the structure tree of G and S. If
T contains some ray, then the set of S-blocks consists of at most two �-orbits.

In particular then there are two di↵erent cases: either � has precisely two orbits
on V T , or the separator vertices in T have degree 2 and there are precisely three
�-orbits on V T .

Proof. Let us first suppose that every S-separator lies in at most 2 S-blocks.
Then there are at most two �-orbits on S. Thus there are at most two �-orbits on
the set of S-blocks.

Let us now suppose that every S-separator lies in at least 3 distinct S-blocks.
If there are at least two �-orbits on the set of S-blocks, we can construct two rays
R and P such that the ends !R and !P defined by R and P , respectively, are not
in the same �-orbit: There is a ray R such that every fourth vertex lies in some
�-orbit X of S-blocks which is avoided completely by a second ray P . As the ends
!R and !P of T corresponds uniquely to some non-local ends b!R and b!P of G by
Lemma 8.3 and � acts transitively on the non-local ends of G, there is some ↵ with
b!↵R = b!P and thus !↵R = !P . As T is a tree, there has to be some vertex in X on
P , in particular every fourth vertex of P must be an element of X . Since this is
not the case, we get a contradiction. ⇤

Lemma 8.6. Let G be a connected graph with infinitely many non-local ends
such that � = Aut(G) acts transitively on the non-local ends of G. If there is no
vertex set of finite diameter invariant under �, then the structure tree T of G and
any basic cut system S has infinitely many ends.

Proof. We just have to prove that T has some end !. If this is the case,
then we know that the non-local end b! of G corresponding to ! has infinitely many
images under � and thus also ! must have infinitely many images under � as any
end of T corresponds to precisely one non-local end of G.

So let us suppose that T has no end. As � acts transitively on the separator
vertices of T , the diameter of T is at most 4. If the diameter is 2, then there is a
unique S-separator S in G and thus S is a vertex set of finite diameter invariant
under � in contradiction to our assumption. Hence we know that T has diameter
4. Our aim is to show that also in this case the vertex set of all those vertices that
lie in any S-separator is a vertex set of finite diameter.
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Let X be that S-block that is in T adjacent to all separator vertices. We
will prove that X contains some non-local end of G. If this is the case, then
the assumptions, that G contains infinitely many non-local ends and that � acts
transitively on those ends, implies that all non-local ends must lie in X since X is
fixed by the whole automorphism group of T . But as the separations are chosen so
that in both wings there are non-local ends, there is some vertex in T di↵erent to
X that contains a non-local end of G, a contradiction.

Since � fixes no vertex set of finite diameter, for every S-separator S and every
r 2 N there is an S-separator S0 with dX(S, S0) = d(S, S0) � r. Let us say that a
component C of X �Br(S) has the property (⇤) if

(⇤) the S-separators in C have unbounded distances to S.

In a first step we show that for any r > 0 there is a component C of X�Br(S) with
property (⇤). So let us assume that there is an r > 0 such that in each component
of X�Br(S) all S-separators have bounded distance to S. Let S0 be an S-separator
with d(S, S0) � 2r. Then X � Br(S0) contains a component C with the property
(⇤) with respect to S0 instead of S, a contradiction to S0 = S↵ for some ↵ 2 �.
Thus for every r > 0 there is a component C of X �Br(S) with property (⇤).

If on the other hand there is an r > 0 such that two components C1, C2 of
X�Br(S) have the property (⇤), we construct a metric ray in X and thereby show
that X has to contain a non-local end. Let S0 be an S-separator. Assuming that
we have already chosen S-separators Sj and components Cj of X � Br(Sj) with
Cj ✓ Cj�1 for j < i, let Si be an S-separator in Ci�1 with d(Si,X � Ci�1) > r.
Then there are at least two components of X �Br(Si) with (⇤). One of those has
to lie completely in Ci�1. Let Ci be that component. Fix some vertex xi 2 Si and
let Ri be a path from xi�1 to xi. Then there is a ray R in the union of all the Ri.
This ray has to be a metric ray as there are only finitely many vertices on the Ri

that have distance smaller than nr for all n 2 N. Thus X contains some non-local
end.

Let us finally suppose that for all r > 0 there is precisely one component Cr of
X � Br(S) with (⇤). Then Cr+1 ✓ Cr for all r. Let Si be some S-separator with
d(S, Si) > i, and let xi be some vertex of Si and Ri some path from xi to xi+1.
Then there is a ray R in the union of all the paths Ri. Again R has to be a metric
ray and thus X contains a non-local end of G.

So in all cases we either got directly a contradiction or some non-local end
in X which also leads to a contradiction as indicated before. Thus the lemma is
proved. ⇤

By replacing the cut system we used for Lemma 8.6 by a cut system such that
each separation separates local ends we obtain the following corollary.

Corollary 8.7. If G is a connected graph with infinitely many local ends such
that the automorphism group � of G acts transitively on the ends of G, then either
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� fixes a vertex set of finite diameter or any structure tree of G and of a basic cut
system S such that each S-separation separates ends of G has a ray. ⇤

A direct consequence of the Corollaries 8.4 and 8.7 is the following theorem.

Theorem 8.8. Let G be a connected graph with infinitely many ends such that
its automorphism group acts transitively on the ends of the graph. If all ends are
local ends, then there is a vertex set of finite diameter that is fixed by Aut(G). ⇤

Motivated by the fact that for any graph G with the assumptions on its non-
local ends as in this section we have that its structure tree is either a semi-regular
tree or a subdivided semi-regular tree, we show in Section 8.3 that the semi-regular
tree is uniquely determined up to subdivision for each such graph.

8.2. Metric ends of end-transitive graphs

In this section we will show that for every connected graph with infinitely many
non-local ends such that no vertex set of finite diameter is fixed by its automorphism
group it is equivalent that its automorphism group acts transitively on the non-local
ends or on the metric ends of the graph. Furthermore if the automorphism group
of such a graph G is transitive on the non-local ends or on the metric ends, then
all non-local ends of G are thin global ends of G.

Throughout this section let G be a connected graph with infinitely many non-
local ends such that its automorphism group � acts transitively on the non-local
ends of G and such that no vertex set of finite diameter is fixed by �. Furthermore
let S be a basic cut system such that each S-separation separates non-local ends,
and let T be the structure tree of G and S.

Lemma 8.9. Any thin global end of G corresponds to an end of T and vice
versa. In particular all non-local ends are global ends.

Proof. By Lemma 8.6 the structure tree T has infinitely many ends. We will
show that there is a sequence of separations (Ai, Bi) 2 S such that Ai ✓ Ai+1 and
Ai \ Bi+1 = ; for all i 2 N. Suppose that this is not the case. If any two distinct
S-separators are not disjoint, then the set of all those vertices that lie in any S-
separator is a vertex set of finite diameter, its diameter is bounded by 2·diam(S) for
any S-separator S. Thus we may assume that there are two disjoint S-separators
S1, S2. Let S3 be another S-separator such that dT (S1, S2) = dT (S2, S3) and
d(S1, S3) = 2 · dT (S1, S2). By a similar argument to the one of Lemma 8.2 there is
an automorphism g 2 � that acts on T like a translation with Sg

1 = S2 or Sg
1 = S3.

Thus the sequence (Sgi

1 )i2N is a sequence of pairwise disjoint S-separators such that
each element of that sequence separates its predecessor from its successor. ⇤

We can reformulate the statement of Lemma 8.9 for the following corollary.

Corollary 8.10. Let G be a connected graph with infinitely many non-local
ends such that � := Aut(G) acts transitively on the non-local ends of G and fixes
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no vertex set of finite diameter. An end of G is dominated if and only if it is a
local end. ⇤

Theorem 8.11. Let G be a connected graph with infinitely many non-local
ends and let � := Aut(G). � fixes no vertex set of finite diameter. Then � acts
transitively on the non-local ends of G if and only if � acts transitively on the metric
ends of G.

Proof. Let S be a basic cut system and let T be the structure tree of G and
S. Every global end of G must be a metric end since by the transitivity of � on the
S-separators the ray of T it corresponds to has to define precisely one metric end.
By Lemma 8.9 � acts transitively on the metric ends of G. On the other hand for
every metric end there is a unique non-local end it corresponds to. Since � acts
transitively on the metric ends, � also has to be transitive on the non-local ends,
as for every non-local end of G there is at least one metric end corresponding to
it. ⇤

The following lemma can be found in [89, Corollary 2.5].

Lemma 8.12. For every connected graph G with a separation (A,B) of G such
that A \B is finite and with an automorphism ↵ 2 Aut(G) with A↵ ✓ A \B there
is some power of ↵ that fixes a geodetic double ray with one end in A and one end
in B. ⇤

8.3. Uniqueness of the structure tree

Our aim is to show that the structure of the tree T is essentially independent of
the choice of S. But Example 8.13 shows that in general it is not unique. The graph
of the example has two di↵erent structure trees one of which is the subdivision of
the other tree. But in Theorem 8.14 we show that this is always the only ambiguity
that could occur.

Example 8.13. Let T be a subdivision of a semi-regular tree T 0 that is not
regular. We suppose that V T 0 ✓ V T and that 2dT 0(x, y) = dT (x, y) for all x, y 2
V T 0. Let A [B = V T 0 be be the natural bipartition of T 0 and let C = V T \ V T 0.
Then all the sets A,B,C are Aut(T )-invariant. Let A = {{a} | a 2 A} and let B
and C be the corresponding sets for the sets B and C. Let SA,SB,SC be Aut(T )-
invariant cut systems such that the corresponding sets of separators are A, B, C,
respectively. Then the structure trees TA and TB are isomorphic to T 0 and the
structure tree TC is isomorphic to T . Thus not all structure trees are isomorphic.

Theorem 8.14. Let G be a connected graph with infinitely many non-local ends
such that the automorphism group � of G acts transitively on the non-local ends
of G and fixes no vertex set of finite diameter. Then the structure trees for any two
basic cut systems S1,S2 such that each Si-separation for i = 1, 2 separates non-local
ends are either the same or one is the subdivision of the other.
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We will prove the theorem by a series of claims.

Claim 8.15. It is su�cient to prove the theorem for any two cut systems such
that their union is a nested cut system.

Proof. Let S1,S2 be two distinct basic cut systems such that their union is not
a nested cut system. By Lemma 2.12 there is a nested cut system S which is nested
with S2 and such that mS1(A,B) < mS1(A0, B0) for all (A,B) 2 S, (A0, B0) 2 S2.
By induction on the value mS1(A,B) the structure trees for S and S1 as well as
the structure trees for S and S2 are essentially the same, that means either they
are isomorphic or one is the subdivision of the other, and by Lemma 8.5 we also
know that the claim holds for the structure trees of S1 and of S2. ⇤

So let S := S1 [ S2 be a nested cut system and let T , T1, T2 be the structure
trees of G and S,S1,S2, respectively.

Claim 8.16. For each two S1-separators with distance 2 in T1 there are at most
two S2-separators separating them.

Proof. Suppose that this is not the case. Let A,A0 be two S1-separators with
distance 2 in T1 and let B1, B2, B3 be three S2-separators such that each of them
separates A and A0. By Lemma 8.2 there is a translation ↵ 2 � such that one of
B1, B2, B3 is mapped by ↵ onto another one of those three separators. Furthermore
↵ fixes the S1-block X between A and A0. Thus there is an end of T2, namely both
ends fixed by ↵—compare that by Lemma 8.12 there are precisely two such ends—,
and hence a corresponding global end in G by Lemma 8.9 that lies in X. This is a
contradiction to the same lemma, as all non-local ends of G corresponds to ends of
the structure trees T1 and T2. ⇤

So there are at most two S2-separators B1 and B2 separating A and A0.

Claim 8.17. If there are two S2-separators B1 and B2 separating A and A0,
then there are two orbits on the S2-blocks of G in one of which all S2-blocks contain
S1-separators and in one of which no S2-block contains any S1-separator.

Proof. Let us suppose that this is not the case. It is not possible that there
are several distinct �-orbits on the S2-blocks that contain S1-separators as � acts
transitively on the S1-separators. Furthermore there cannot be distinct �-orbits on
the S2-blocks that do not contain any S1-separator by the transitivity of � on the
S1-separators and by Claim 8.16.

Let Y1B1Y2B2 be a path in T2. Then there is an ↵ 2 � such that Y ↵
1 = Y2. If

↵ does not act like a translation on T2, then B↵
1 = B1 and B↵�1

2 ✓ Y1 and thus
there are the three S2-separators B↵�1

2 , B1, B2 separating two S1-separators with
distance 2 in T1 or there is again a non-local end in X. This contradicts Claim 8.16
or Lemma 8.9 and thus ↵ is a translation. Hence there is a unique double ray R in T2

invariant under ↵. Let !1,!2 be the ends that are defined by R. By Lemma 8.9
there are two non-local ends of G corresponding to !1 and !2 and thus there is
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� 2 � with !�1 = !2. Then there are two infinite subrays R1 and R2 of R such that
R�

1 = R2. The automorphism � has to map S2-separators onto S2-separators and
S2-blocks onto S2-blocks. So let R1 = x0x1 . . . and R2 = y0y1 . . . such that x0 and
y0 are S2-blocks and x�i = yi. We show that the double ray R has an orientation
in T and thus the ends defined by R cannot be mapped onto each other by some
� 2 �: For each xi with odd i there is another S2-separator in xi�1 but not in xi+1

that is separated from xi by no S1-separator. Conversely for each yi with odd i

there is another S2-separator in yi+1 but not in yi�1 that is separated from yi by
no S1-separator. Thus the ends !1 and !2 do not lie in the same �-orbit. This
proves that no ↵ with Y ↵

1 = Y2 exists. ⇤

We separate the remaining part of the proof of Theorem 8.14 into three cases:
In the first one there are two �-orbits on the Si-blocks for i = 1, 2, in the second
case there is just one �-orbit on the S1-blocks but two on the S2-blocks, and in the
third case there is just one �-orbit on the Si-blocks, for i = 1, 2. In each case we
show the conclusion of Theorem 8.14 which we denote by (⇤).

Let Gi, i = 1, 2, be the set of all S-blocks such that each element only contains
Si-separators, and let G3 be the set of all other S-blocks which contain both S1-
and S2-separators.

Claim 8.18. If there are two �-orbits on the S1-blocks and on the S2-blocks,
then (⇤) holds.

Proof. All S-separators must have degree 2 in T and there are at least three
�-orbits on the S-blocks. Hence we know that G3 6= ;.

The elements of G3 must have degree 2 in T as otherwise there would be three
Si-separators (i = 1 or 2) between two Sj-separators of distance 2 in Tj , i 6= j, a
contradiction to Claim 8.16. Let X1,X2 be S1-blocks of distinct �-orbits, let Y1, Y2

be distinct S2-blocks of distinct �-orbits, and let Z1 2 G1, Z2 2 G2. Then there is
w.l.o.g. dT1(X1) = dT (Z1) = dT2(Y1) and dT1(X2) = dT (Z2) = dT2(Y2) and thus
(⇤) holds. ⇤

Claim 8.19. If � acts transitively on the S1-blocks but if there are two �-orbits
on the S2-blocks, then (⇤) holds.

Proof. In this case there is G1 = ; and G2,G3 6= ;. All elements of G2 must
have degree 2 in T and thus for every S1-separator S there is dT1(S) = dT2(X1) for
one (and hence every) S2-block X1 containing an S1-separator and for every S1-
block Y there is dT1(Y ) = dT2(X2) for one (and hence every) S2-block containing
no S1-separator. Thus the claim follows. ⇤

Claim 8.20. If � acts transitively on both the S1- and the S2-blocks, then (⇤)
holds.

Proof. In this case there is G1 = G2 = ; and for all Sj-separators Sj and all
Sj-blocks Xj the equality dTj (Sj) = dTi(Xi) with i 6= j holds by Claim 8.17. ⇤
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This was the last one of the three cases by Lemma 8.5 and thus Theorem 8.14
is proved.

8.4. End-transitive graphs

Throughout this section let G be a connected graph with infinitely many non-
local ends on which � := Aut(G) acts transitively. Furthermore � fixes no vertex
set of G of finite diameter. Let S be a basic cut system and let T be the structure
tree of G and S.

Lemma 8.21. The distances between any two S-separators in a common S-block
are bounded.

Proof. We have to show that there is a constant m < 1 such that for all two
S-separators S1, S2 in a common S-block X there is d(S1, S2)  m.

By Lemma 8.2 there is a translation in G such that on the double ray Q defined
by that translation the distance between any two S-separators with distance 2 in T
has at most two distinct values. Let us suppose that no such m as conjectured exists.
Then there is a ray R in T such that there is a sequence (Si)i2N of separators on R

with d(Si, S0i) > i where S0i is that S-separator on R following on Si. But the two
described ends, one defined by R and the other one defined by some translation,
cannot be mapped onto each other. This is a contradiction and thus the lemma is
proved. ⇤

Lemma 8.22. There is an M < 1 such that for each vertex x of G and for
each ray R in T there are at most M S-blocks in R which contain x.

Proof. Suppose the claim does not hold. We construct a sequence (Pi)i2N of
finite paths with Pi ✓ Pi+1 such that there is a subpath of length i of Pi such that
the intersection of the blocks and separators on that subpath is not empty. Then for
every finite path Pi of length at least i with end vertex X in T there is an infinite
component C of T �Pi that is adjacent to X and in which there is a ray containing
2i + 2 separator vertices with a non-trivial intersection as � acts transitively on
the separator vertices of T . The elements of that non-trivial intersection might
intersect trivially with any separator of the path Pi. We may extend Pi and get
a finite path Pi+1 such that there is a sequence of at least i + 1 separator vertices
containing a vertex yi+1 2 V G. By recursion we get a ray R =

S
i2N Pi in T such

that for each i 2 N there is a sequence of length i of separator vertices on R that
intersect non-trivially.

By Lemma 8.9 there is a global end ! of G defined by R. By Lemma 8.2 there
is an automorphism of G that acts on T like a translation. The unique double ray
of T fixed by that automorphism has an infinite subray R0. Let !0 be the end of G

defined by R0. Since � acts transitively on the non-local ends, there is some g 2 �
with !g = !0. But then we may assume that Rg has only finitely many vertices
not contained in R0 and thus we may also assume that Rg ✓ R0.
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If we finally show that on R0 any vertex of G lies in only m separator vertices
of R0 for a constant m, then we get a contradiction and this would prove the lemma.
But if there is a sequence (xi)i2N such that xi lies in at least i separators on R0,
then each separator must contain infinitely many vertices, as the translation maps
any separator at most 2 separators apart, in contradiction to the definition of the
S-separators. ⇤

Lemma 8.23. Let G be quasi-isometric to a semi-regular tree T . Then the set
of all S-blocks and all S-slices has bounded diameter.

Proof. Suppose the lemma is false. Let us first assume that the set of all
S-blocks has bounded diameter. By Lemma 8.5 there is an S-block X that has
no finite diameter. Then with Lemma 8.21 there is a sequence (xi)i2N in X such
that min{d(xi, S) | S S-separator} � i for all i 2 N. Let x be a vertex in S for
an S-separator S ✓ X and let t 2 V T be the vertex with x' = t for the quasi-
isometry ' : G ! T . Let (ti)i2N be a sequence in V T with x'i = ti. This sequence
has an infinite subsequence (ti)i2I with I ✓ N of pairwise distinct elements. By
Lemma 8.21 there is d(x, y) < M for some constant M < 1 and all y 2 S0 for some
S-separator S0 in X. Thus there is an r 2 N such that Br(t) contains the images
of all the vertices y 2 S0 for all S-separators S0 ✓ X. Then there is a component
C of T �Br(t) that contains at least one vertex ti. Since T is a semi-regular tree,
C contains a ray R. Let R0 be a set of vertices in X such that there is an r0 2 N
with R ✓ Br0((R0)'). As G is quasi-isometric to T , there is at least one non-local
end of G defined by R0 and this has to lie in X, a contradiction to Lemma 8.9.

So let us assume that the S-slices have unbounded diameter. Let S be an S-
separator and let Y be the set of all those slices which are components of G � S.
Then X :=

S
Y contains no metric ray as otherwise there would be a non-local end

in X but all such ends corresponds to ends of T by Lemma 8.9. Thus there is no
ray of T whose preimages lie in X by a similar argument as in the first case. Hence
X has only finite diameter. ⇤

Lemma 8.24. Assume that there is some � � 0 such that any vertex of G lies
at distance at most � to the union of all geodetic double rays. Then the set of all
S-blocks and all S-slices has bounded diameter.

Proof. By Lemmas 8.2 and 8.12 the intersection of each S-separator with all
geodetic double rays is not empty. As all S-separators have the same diameter
and the distances between any two S-separators in the same S-block are bounded
by Lemma 8.21, there is an upper bound on the distance from each vertex in any
S-block to any S-separator. Additionally the distance from each vertex of any
S-slice to any S-separator is bounded by � + s where m denotes the diameter of
any S-separator. ⇤

All the previously proved lemmas enable us to prove Theorem 8.25.
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Theorem 8.25. Let G be a connected graph with infinitely many non-local
ends such that � := Aut(G) acts transitively on the non-local ends. Either � fixes
a vertex set of finite diameter or the following assertions hold:
(a) For every x 2 V G there is an r 2 N such that G(x, r) covers all geodetic double

rays of G.
(b) For every x 2 V G there is an R 2 N such that the graph G�G(x,R) contains

no metric ray of G.
(c) The following statements are equivalent:

(i) There is an r 2 N such that every vertex is r-close to some geodetic double
ray;

(ii) � acts metrically almost transitively on G;
(iii) there is a �-congruence ⇡ such that a vertex set of finite diameter meets

every congruence class of ⇡;
(iv) G is quasi-isometric to any structure tree of G and a basic cut system

of G;
(v) G is quasi-isometric to a semi-regular tree with minimum degree 2.

(d) All of the properties of part (c) hold for the subgraph G(x,R) of property (b).

Proof. Let S be a basic cut system and let T be the structure tree of G and S.
Let m be the constant of Lemma 8.21 and let s be the diameter of any S-separator.
Let B be the (2m+2s)-ball around an arbitrary S-separator S. Then B covers the
intersection of each geodetic double ray in G with every S-block X with S ✓ X

and B covers also the intersection of each geodetic double ray with every S-slice Y

such that Y is a component of G�S. So if we set d as the minimum over all d(x, S)
for S-separators S, then the statement of part (a) holds for r := 2m + 2s + d.

If we set R := 2m+2s+d (where d denotes the same value as before), then any
R-ball around x covers all S-separators and since no metric ray lies in any S-block
by Lemma 8.9 and by definition no metric ray lies in any S-slice. Thus we just
proved part (b).

The assertion (d) is an immediate consequence of (b) and (c) as the graph
G(x,R) of (b) is by construction a metrically almost transitive graph. So we just
have to prove the equivalences of (c). The equivalence of (i) and (ii) follows with
Lemma 8.12 and Lemma 8.21 from the definition of metrically almost transitive
graphs. The equivalence of (ii) and (iii) is just the definition of metrically almost
transitive graphs.

By the Lemmas 8.22 and 8.24 the condition (i) of this theorem immediately
implies (iv). So let us assume that (iv) holds, that is G is quasi-isometric to T .
Then there is some constant k such that every vertex of G lies at distance at most k

to some S-separator. By Lemma 8.12 each S-separator meets some geodetic double
ray of G and thus if the S-separators have diameter s, then every vertex of G lies
at most s + k apart from any geodetic double ray.

As the last part of the proof of Theorem 8.25 we show the equivalence of (iv)
and (v). If G is quasi-isometric to a semi-regular tree, then the Lemmas 8.22 and
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8.23 imply that G is quasi-isometric to any structure tree of G and a basic cut
system of G. So let us assume that G is quasi-isometric to a structure tree T with
respect to a basic cut system of G. By Lemma 8.5 the structure tree T is quasi-
isometric to a semi-regular tree and thus G is also quasi-isometric to a semi-regular
tree. ⇤

If we just require � to act transitively on the ends of G instead of the non-local
ends of G, we get Theorem 8.1 as a corollary of Theorem 8.25.

We finish this chapter with an observation: Let G be a graph as in Theorem 8.1
and let H be any rayless graph. If we add to each vertex y 2 V G a copy Hy of H

with an additional edge, then for the constructed graph G0 there is a component of
G�G(x,R) (where x and R are as in the theorem) that is isometric to H. So any
rayless graph can occur as a component of G�G(x,R).
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Transitive group actions on graphs





CHAPTER 9

Transitivity in graphs

In this chapter we shall describe various kinds of transitivity and homogeneity
for graphs and digraphs. First we discuss them in the situation of graphs, and then
we extend our discussion to digraphs and look at di↵erent situations that occur by
orientating the edges. For example, whether for every homogeneous graph there is
an orientation of its edges such that the resulting digraph is also homogeneous.

We have a rather weak form of symmetry obtained by the automorphism group
of a graph if the group acts transitively on the vertices of the graph, hence, if the
graph is transitive. This is a very rich class, as it contains all Cayley graphs. On the
other side of symmetry, that of homogeneous graphs is very strong, that is every
isomorphism between two finite induced subgraphs extends to an automorphism
of the graph. Whereas there is no problem to classify the countable homogeneous
graph—these are the C5, the line graph of K3,3, countably many copies of a complete
graph, a generic Kn-free graph or the generic graph, see [22, 34, 37, 72, 90]—, the
condition of transitivity is too weak to obtain a classification of such graphs.

That is the reason, why we look at kinds of symmetry that are stronger than
transitivity but not as strong as homogeneity. There is the natural question of
how much we can weaken the assumptions of homogeneity still being able to give
a classification of such graphs.

One way to weaken homogeneity is the k-homogeneity, that is, to assume only
isomorphisms between induced subgraphs on at most k vertices to extend to an
automorphism of the graph. So 1-homogeneity is the same as transitivity and k-
homogeneity for all k 2 N is the same as homogeneity. There are not many results
in this direction, for example the classification of the finite 2-homogeneous graphs
is a consequence of [74]. We can also consider a homogeneity notion between
homogeneity and k-homogeneity, the k-homogeneity, that is that the graph is l-
homogeneous for all l  k. There is a result due to Droste and Macpherson [30] that
says that for every k there are uncountably many countable graphs that are k-
homogeneous but not (k +1)-homogeneous. Another result is due to Cameron [17]
who proved that5-homogeneous graphs with diameter 2 are already homogeneous.

A di↵erent way of weakening the notion of homogeneity is to suppose that for
two finite induced isomorphic subgraphs there is an isomorphism that extends to an
automorphism of the whole graph. This is the notion of set-homogeneity. In fact,
for finite graphs, the notion of homogeneity and set-homogeneity coincides [90].
But for infinite graphs, the class of set-homogeneous graphs is larger than the class
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of homogeneous graphs, see [28, 29]. A question posed in [29] seems to be still
open: Do there exist further countable set-homogeneous graphs except for the two
described in [29] that are not homogeneous? As for homogeneity, we can consider k-
set-homogeneity (also called k-S-transitivity in Chapter 11) and k-set-homogeneity
to obtain a kind of symmetry between set-homogeneity and transitivity.

Another symmetry condition is to require the automorphism group of a graph G

to act transitively on the set {(x, y) 2 V G⇥V G | d(x, y) = i} for some i 2 N. If this
holds for all i  k for a fixed k 2 N then we say that G is k-distance-transitive, and
if it holds for all i 2 N then G is called distance-transitive. The classification of the
distance-transitive graphs is close to be finished in the finite case (see [14, 18, 96]),
but the infinite (countable) case is far from being solved. A good survey of the topic
of distance-transitive graphs can be found in [18]. One result we have to mention
is the classification of the connected locally finite distance-transitive graphs due to
Macpherson [76]. He proved that these are precisely the graphs Xk,l for finite k, l.
Later, Möller [81] proved that we can relax the assumptions to 2-distance-transitive
and require the graph to have at least two ends, to obtain the same class of graphs.
We shall generalize their result in Chapter 10, see in particular Theorem 10.1, to
arbitrary graphs with at least two ends, that is, also in this case we just obtain the
graphs X,�, only for arbitrary cardinals  and � this time.

Instead of mapping any two vertices with the same distance onto any other two
such vertices, we can assume that the same holds for any two paths of length k.
For a given k 2 N, a graph is k-(arc)-transitive if its automorphism group acts
transitively on all paths of length k and arc-transitive if it is k-transitive for all
k 2 N. As infinite k-transitive graphs cannot have cycles of length at most k,
the only connected arc-transitive graphs are the r-regular trees for an arbitrary
cardinal r � 2. If we consider—as a relaxation as in the case of the distance-
transitive graphs—just the locally finite 2-transitive graphs with at least two ends,
then Thomassen and Woess [94] proved that the connected such graphs are precisely
the r-regular trees for finite r � 2. We generalize their result in Chapter 10 to
graphs of arbitrary degree and obtain also just the regular trees as such graphs.

If we return to the definition of homogeneity and ask the finite induced sub-
graphs to be connected then we obtain the notion of connected-homogeneous graphs,
or C-homogeneous graphs for short. The finite and countably infinite such graphs
are classified, see [34, 38, 43, 56, 97]. In Chapter 11 we classify the connected
C-homomgeneous graphs with more than one end. This class coincides again with
the class of the distance-transitive graphs with at least two ends. Our result in
Chapter 11 also states that these graphs are precisely the connected C-transitive
graphs, that are those where we replace the assumption that every automorphism
between two finite induced connected subgraphs extends to an automorphism of
the graph by the assumption that there is an isomorphism between these graphs
that extends to an automorphism.
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We can also require that, for any two isomorphic induced connected subgraphs
on k vertices, every isomorphism extends to an automorphism of the graph. Then
we obtain the notion of k-CS-homogeneous graphs. Graphs with the property that,
for any two isomorphic induced connected subgraphs on k vertices, there is an au-
tomorphism of the graph mapping one of these subgraphs onto the other are called
k-CS-transitive. Gray [42] classified the connected locally finite 3-CS-transitive and
also the connected locally 3-CS-homogeneous graphs with at least two ends. We
generalize his result in Chapter 11 not only to graphs with arbitrary degree, but
also to arbitrary k � 3, that is, we classify for every k 2 N�3 the connected k-CS-
transitive graphs with at least two ends and obtain as a corollary the classification
of the connected k-CS-homogeneous graphs with at least two ends.

When we consider digraphs instead of graphs, mostly the same notion of the
distinct kinds of symmetry applies. This holds in particular for the notions of
(k-)homogeneity, (k-)set-homogeneity, and (k-)C-homogeneity. But instead of k-
transitivity we have k-arc-transitivity, that is, the automorphism group of the
digraph acts transitively on the arcs of length k. We call a digraph highly-arc-
transitive if it is k-arc-transitive for every k 2 N.

Although the definitions of the kinds of symmetry do not di↵er much from
the undirected case, the class of digraphs for each of these conditions is in most
situations harder to determine and, particularly, the arc-transitive graphs—a class
that consists only of the regular trees—has a directed counterpart which is far from
being understood, see [2, 3, 4, 19, 36, 45, 77, 78, 84, 91].

The countable homogeneous digraphs are classified in [20, 21, 22, 70, 71].
This class contains the homogeneous tournaments, see [21, 71] and compare The-
orem 2.31. The finite such digraphs are the C4, K̄n, C3[K̄n], K̄n[C3], and H (recall
that we defined the particular digraph H in section 2.8). Here, three typical things
happen when we consider digraphs instead of graphs:

1. There are homogeneous graphs that are the underlying undirected graphs of
homogeneous digraphs, for example K3 and C3.

2. There are homogeneous graphs with no orientation of their edges such that these
orientations make them a homogeneous digraph. An examples is the graph K4,
because there is no homogeneous tournament on four vertices.

3. There are homogeneous digraphs whose underlying undirected graphs are not
homogeneous. For this situation, the digraph H is an example.

Similar situations occur for the other kinds of symmetry.
For graphs, the notions of set-homogeneous and homogeneous graphs coincides,

but for digraphs this is not the case. But by the classification of the finite set-
homogeneous digraphs [44], there is just one digraph that is set-homogeneous but
not homogeneous: the directed cycle C5.

Considering C-homogeneous digraphs, the only known result is due to Gray and
Möller [45]. They classified the infinite connected two-ended digraphs and o↵ered
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a list of examples for the connected locally finite C-homogeneous digraphs with
infinitely many ends. In Chapter 12 we prove that their list is complete. Further-
more, we classify the finite as well as infinite locally finite connected C-homogeneous
digraphs with at most one end. Thereby, we complete the classification of the (con-
nected) locally finite C-homogeneous digraphs. It remains to classify all countable
such digraphs, although it would mean to extend Cherlin’s classification of the
countable homogeneous digraphs, see [22].



CHAPTER 10

Distance-transitive graphs

In this chapter, we prove a theorem of [55], that is, we classify the connected
(2-)distance-transitive graphs with at least two ends. Thereby, we generalize the
classification results of Macpherson [76] and Möller [81] as discussed in Chapter 9.

Thereafter, we obtain the classification of the connected 2-transitive graphs
with more than one end as a corollary.

Theorem 10.1. Let G be a connected infinite graph with more than one end.
The following properties are equivalent:

(i) G is distance-transitive;
(ii) G is 2-distance-transitive;
(iii) G ⇠= X,� for some cardinals  and � with ,� � 2.

Proof. Since the graphs X,� are distance transitive, it su�ces to prove that
every connected 2-distance transitive graph with at least two ends is some X,�

(with ,� � 2). So let G be a connected 2-distance-transitive graph with more
than one end. Let S be a minimal cut system of G such that the structure tree of
G and S is basic. Then S is a nested cut system—in particular for every separation
(A,B) 2 S and every automorphism ↵ of G, the cuts (A,B), (A↵, B↵) are nested—
and both wings of any cut in S contain a ray.

Claim 10.2. All S-blocks are complete.

Proof of Claim 10.2. Let (A,B) 2 S, and let a 2 A \ B and b 2 B \ A be
vertices with distance 2 in G. Suppose that some S-block X is not complete. Let
x, y be two non-adjacent vertices in X, and let P be a shortest x–y path in G. Let
T 0 be the minimal subtree of T containing X such that its vertices cover P . All
leaves of T 0 are S-blocks. Let Y be a leaf of T 0 di↵erent from X, if available, and
Y = X otherwise. Then there are two vertices a0, b0 2 Y with distance 2 in G. As G

is 2-distance-transitive there is an automorphism ↵ of G with a↵ = a0 and b↵ = b0.
Then Y meets both wings of (A↵, B↵)—namely a↵, b↵ 2 Y —which contradicts the
fact that Y is an S-block. ⇤

Claim 10.3. Any two S-separators are equal or disjoint.

Proof of Claim 10.3. Let S, S0 be any two distinct S-separators, (A,B) 2 S,
and ↵ 2 Aut(G) such that S = A \ B and S↵ = S0. As (A,B) and (A↵, B↵) are
nested we may assume (by symmetry) that A \ A↵ ✓ B \B↵, and that there is a
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vertex v 2 A \A↵—S \ S0 = ; otherwise. As (A,B) is a cut of minimal order and
all blocks are complete there are vertices x 2 A↵ \ S↵ and y 2 A \ S with distance
two. There is a vertex x0 2 S↵ \ S, since S 6= S↵ and both separators have the
same (finite) order. As yx0 /2 E(G) and x, y0 are adjacent to v at a time, they have
distance 2. Thus there is an automorphism � of G with x� = x0 and y� = y. This
is a contradiction according to Lemma 2.13 as there are more cuts in S—all of the
same size—separating x from y than x0 from y. ⇤

Let us show that all S-separators have order 1. Suppose not, then there are at
least two vertices in some S-separator S and, as all S-blocks are complete, there is
an edge e in G[S]. On the other hand, there is an edge e0 that has precisely one
of its end vertices in S. Since G is 2-distance-transitive, it is 1-distance-transitive
and thus there is an automorphism of G that maps e to e0. This is a contradiction,
as the S-separators intersect trivially.

As G is 1-distance-transitive any two blocks have the same order and every
vertex lies in the same number of blocks. The size of an S-block is at least 2, since
there are edges in G. Every S-separator lies in at least two di↵erent S-blocks, as
there are at least two di↵erent ends in G. Thus G is isomorphic to X,� for some
cardinals ,� � 2. ⇤

Corollary 10.4. Let G be an infinite connected graph with more than one
end. Then G is 2-transitive if and only if it is a �-regular tree for some cardinal
� � 2.

Proof. A 2-transitive graph with at least two ends is also 2-distance-transitive
and hence an X,� with ,� � 2. If  � 3 there is a path of length 2 in every block
whose (adjacent) endvertices can be mapped onto vertices with distance 2. This is
a contradiction and hence  = 2. The graphs X2,� with � � 2 are precisely the
�-regular trees. ⇤



CHAPTER 11

k-CS-transitive graphs

This chapter deals with the classification of the k-CS-transitive graphs, a result
in [55]. We prove the following theorem. To state it, we should define a class of
graphs Ek,m,n first, but we refer to Section 11.1 instead.

Theorem 11.1. Let k � 3. A connected graph with more than one end is
k-CS-transitive if and only if it is isomorphic to one of the following graphs:

(1) X,�(K1) with arbitrary  and �;
(2) X2,�(Kn) with arbitrary � and n < k

2 + 1;
(3) X,2(Km) with arbitrary  and m < k

3 + 1;
(4) X2,2(E) with E 2 Ek,m,n, m  k � 2 and n  k�|E|

2 + 1;
(5) Y with arbitrary  (if k is odd);
(6) Z2,2(Km,Kn) with 2m + n  k + 1 (if k is even);
(7) Z,�(K1,Kn) with n < k, arbitrary ,� with  = 2 or � = 2 (if k is even);
(8) Z2,2(K1, E) with E 2 Ek,m,n, m  k � 2, n  k

2 + 1 (if k is even).

Since neither Y for  � 3, nor Z,�(H1,H2) for any distinct graphs H1, H2

or distinct cardinals ,� are k-homogeneous, but any k-CS-transitive X,�(H)
is k-homogeneous for homogeneous finite graphs H, Theorem 11.1 allows us to
extend Gray’s classification of the 3-CS-homogeneous graphs to arbitrary k-CS-
homogeneous with at least two ends, as follows:

Corollary 11.2. Let k � 3. A connected graph with more than one end is k-
CS-homogeneous if and only if it is isomorphic to X,�(H) for one of the following
values of ,� and H:

(1) arbitrary  and � and H = K1;
(2)  = 2, arbitrary �, n < k

2 and H = Kn;
(3) arbitrary , � = 2, m < k

3 and H = Km;
(4)  = 2 = �, H 2 Ek,m,n for m  k � 2 and n  k�|E|

2 + 1. ⇤

Gray and Macpherson [43] classified the countable C-homogeneous graphs with
at least two ends, as those described in our Theorem 10.1. As a further corollary
of Theorem 11.1 we can extend their classification to arbitrary graphs with more
than one end.

Corollary 11.3. For connected graphs with at least two ends the notions of
being distance-transitive, C-transitive, or C-homogeneous coincide. ⇤
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11.1. The local structure for some finite subgraphs

In some k-CS-transitive graphs the finite homogeneous graphs play a role as
building blocks. Enomoto [34] gave a combinatorially characterization of these
homogeneous graphs. We apply a corollary of his result [34, Theorem 1] in our
proofs.

For a subgraph X of a graph G let �(X) =
T

x2V (X) N(x), which is the set of all
vertices in G that are adjacent to all the vertices in X. A graph G is combinatorially
homogeneous if |�(X)| = |�(X 0)| for any two isomorphic subgraphs X and X 0.
Furthermore, a graph G is l-S-transitive if for every two isomorphic subgraphs of
order l there is an automorphism of G mapping one onto the other.

Enomoto [34] showed that the finite combinatorially homogeneous graphs are
precisely the finite homogeneous graphs.

Theorem 11.4 ([34, Theorem 1]). Let G be a finite graph. The following prop-
erties of G are equivalent.
(1) G is homogeneous;
(2) G is combinatorially homogeneous;
(3) G is isomorphic to

(a) a disjoint union of isomorphic complete graphs,
(b) a complete t-partite graph Kt

r with r vertices in each partition class and
with 2  t, r,

(c) C5, or
(d) L(K3,3) (the line graph of K3,3). ⇤

Whenever we need finite homogeneous graphs as building blocks for k-CS-
transitive graphs we use Corollary 11.5 to handle them.

Corollary 11.5. Let k � 3, m  k � 2, and n  k
2 be integers. Let G be a

finite graph with maximum degree m that is neither complete nor the complement
of a complete graph. If G is l-S-transitive for all l  k � 1, any induced subgraph
of G on n vertices is connected, and two non-adjacent vertices do not have k � 2
common neighbors, then G is (combinatorially) homogeneous and isomorphic to
(a) t disjoint Kr with 2  t, 1  r � 1  m, and tr  n� 1,
(b) Kt

r with 2  t, 2  r  n� 1, and (t� 1)r  min{m,k � 3},
(c) C5 with 2  m and 4  n, or
(d) L(K3,3) with 4  m and 6  n.

Proof. Theorem 11.4 provides that, ignoring the boundaries, there are no
other cases as (a) to (d). The specific boundaries for each case can be checked easily.
For example, in case (b) the ‘k�3’ in the inequality (t�1)r  min{m,k�3} ensures
that Kt

r does not contain two non-adjacent vertices with k � 2 common neigbours
if m = k � 2 = (t� 1)r. ⇤

Let Ek,m,n be the class of all those graphs that satisfy the assumptions of
Corollary 11.5 with the values k,m and n.
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11.2. The k-CS-transitivity for special graphs

In this section we show that any graph G from Theorem 11.1 is indeed k-CS-
transitive for the specific values of k. The general idea behind the following proofs
is that any connected induced subgraph of G on k vertices contains an anchor like
part.

To clarify, let G be a graph and let X be a connected induced subgraph of G.
A subgraph A of X is an anchor of X in G if for every induced subgraph Y in G

isomorphic to X there is some isomorphism � from X to Y such that the restricted
map �|A extends to an automorphism of G that maps X to Y .

Remark 11.6. If every induced connected subgraph of order k of some graph
G contains an anchor, then G is k-CS-transitive.

The anchors we commonly use are either induced paths of length 3 or smallest
separators.

The building blocks of X,�(H) and Z,�(H1,H2) are the isomorphic copies
of H, H1, and H2 that are used for the construction of these graphs.

Lemma 11.7. Let G and k belong to one of the classes (1) to (8) of Theo-
rem 11.1. If some connected induced subgraph X of G on k vertices has diame-
ter 1—i. e. X is complete, then it itself is an anchor.

Proof. The only graphs from Theorem 11.1 that may contain complete graphs
on k vertices are isomorphic to some X2,�(Kn), X,�(K1), Y, Z,2(K1,Km), or
Z2,�(K1,Km).
• In X2,�(Kn) any complete graph on k vertices consists of precisely two building

blocks or precisely two building blocks without one vertex depending on the
parity of k.

• In X,�(K1) and Y any complete graph on k (� 3) vertices lies completely in
some K.

• In Z,2(K1,Km) and Z2,�(K1,Km) any complete graph on k vertices consists of
precisely two adjacent building blocks.

In all these cases every isomorphism between complete subgraphs on k vertices that
respects the building blocks (or any Kk if G ⇠= Y) extends to some automorphism
of the whole graph. ⇤

Lemma 11.8. Let G and k belong to one of the classes (1) to (8) of Theo-
rem 11.1. If some connected induced subgraph X of G on k vertices has diameter 2,
then it contains an anchor.

Proof. Let X be a connected induced subgraph of G on k vertices with
diameter 2. If G ⇠= Y then X is isomorphic to some Kk�1 with one edge at-
tached. This edge is an anchor. Thus we may assume that G 6⇠= Y.

Since all building blocks are homogeneous we may assume that X meets at least
two building blocks. If X meets precisely two building blocks, then G ⇠= Z2,2(K1, E)
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for some graph E 2 Ek,m,n with m  k� 2 and n  k
2 +1 or G ⇠= X2,2(E) for some

graph E 2 Ek,k�2,n with m  2 and n  k�|E|
2 + 1, by cardinality means. In the

first case there is one vertex v with k � 1 neighbors (the building block K1) which
is an anchor, since the maximum degree of E is at most m  k � 2 and X � v is
connected. In the second case E ⇠= C5 or E ⇠= L(K3,3), again by cardinality. If
E ⇠= C5, then k = 10 and X itself is an anchor. If E ⇠= L(K3,3), then 15  k  18.
Both of the maximal subgraphs of X that lie completely in one of the building
blocks are anchors, since L(K3,3) is 4-connected and at most three vertices (for
k = 15) of these two building blocks do not lie in X.

We may assume that X meets at least three building blocks. Let B be the
building block that touches all vertices of X, which exists by the small diameter
of X. If a separator in X does not contain every vertex of X \ B, then it must
contain at least all the vertices in X \ B. In all possible cases |X \ B| is smaller
than |X \ B| and X \ B is indeed the unique smallest separator. Thus for every
isomorphic induced copy Y of X in G precisely the vertices of X\B are mapped to
the smallest separator S in Y . We may assume that Y meets three building blocks,
as it contains an anchor otherwise. Since S is a smallest separator, S = Y \D for
the unique building block D of G that touches all vertices of Y . Since the building
blocks are homogeneous and B is mapped to D by some automorphism of G, every
isomorphism from X to Y extends to an automorphism of G. In particular X \B

is an anchor. ⇤

Lemma 11.9. Let G and k belong to one of the classes (1) to (8) of Theo-
rem 11.1. If some connected induced subgraph X of G on k vertices has diameter
at least three, then it contains an anchor.

Proof. If G ⇠= Y, then every minimal separator is a single vertex and an
anchor.

For the other cases, let X be some connected induced subgraph of G on k

vertices with diameter at least three, and let P be an (induced) path of length 3
in X that meets four building blocks of G. Such a path exists since there is no
building block B such that X \B contains an induced path of length 3 whose end
vertices have distance 3 in X.

Let � : X ! Y be some isomorphism for an induced subgraph Y of G. We
further require that v and v� for each vertex v 2 P belong to building blocks in the
same orbit of the automorphism group of G. This is a legitimate request, since the
number of vertices in P is even, and if P embeds into P � uniquely, then there are
stars or triangles in X and Y that force P and P � to be aligned or P is a path of
length k � 1 and thus it itself is an anchor.

Let us recursively construct an automorphism of G that maps X to Y . Let ↵0

be an automorphism of G with ↵0|P = � such that vertices in the (homogeneous)
building blocks containing P are mapped to Y if and only if they lie in X.



11.3. THE GLOBAL STRUCTURE OF k-CS-TRANSITIVE GRAPHS 79

To define the automorphism ↵l of G for l � 1 let ↵i be defined for i < l. First,
let W be the set of vertices in G with distance at most l� 1 to the building blocks
that contain P . The graphs X and Y induce graphs X1, . . . ,Xn and Y1, . . . , Yn

with X�
j = Yj for all 1  j  n in the components of G � W and G � W↵l�1 ,

respectively. Let ↵l be an automorphism of G with w↵l := w↵l�1 for w 2 W , that
maps the component of G � W containing Xj to the component of G � W↵l�1

containing Yj for all j  n such that the vertices of X adjacent to W are mapped
precisely to those vertices of Y adjacent to W↵l�1 . Since the diameter of X is less
than k, the automorphism ↵k of G maps X onto Y . ⇤

These three lemmas show that in all cases there are anchors as needed and,
thus, every graph in Theorem 11.1 is k-CS-transitive for the specific value of k.

11.3. The global structure of k-CS-transitive graphs

The following two lemmas can be shown for k  2 easily. As the lemmas with
k  2 do not play any role in the proof of Theorem 11.1, we do not provide the
corresponding proofs for smaller k.

Lemma 11.10. If G is a connected k-CS-transitive graph with at least two ends
and k � 3, then every basic structure tree of G has no leaves.

Proof. Let S be a minimal cut system of G such that the structure tree T
of G and S is basic. Suppose that T contains a leaf. Let X be some S-block
representing a leaf in T , and let (A,B) 2 S be a separation with X ✓ A and
A\B ✓ X. Then A\B is the only S-separator in X and X = A. Since there is a
ray in G[A], the block X is infinite. There is no vertex in X that has distance k +1
to B, as an induced path starting in A\B could be mapped into X \(A\B) and as
this would contradict the fact that A\B is the only S-separator in X. Thus there
are vertices of infinite degree in X. Let the vertex x 2 X have infinite degree and
minimal distance to B with this property. Let N be the infinite set of neighbors of
x with d(v,B) > d(x,B) for all v 2 N . Then there is a K@0 or its complement in
G[N ]. As k � 2 independent vertices in N together with x and one neigbour of x

that is neither contained in N nor adjacent to any vertex in N induce a subgraph
that could be mapped onto a subgraph induced by k � 1 independent vertices in
N and x, there has to be a K@0 in G[N ]. This yields to a contradiction, too. Let
H be a complete graph on k vertices in G[N ], and let v 2 V (H). Then there is
no automorphism of G that maps H � v + x to H, which is a contradiction to the
k-CS-transitivity of G. ⇤

Lemma 11.11. For k � 3, every connected k-CS-transitive graph G with at
least two ends has infinite diameter.

Proof. Let S be a minimal cut system of G such that the structure tree T
of G and S is basic. Then there is a double ray R in T as there is no leaf in T by
Lemma 11.10. This ray hits infinitely many di↵erent (finite) S-separators. Suppose
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that there is a vertex x in G that lies in infinitely many of these separators. Since
x has neighbors in infinitely many S-blocks on R, this results in two induced stars
with k � 1 leaves in G whose corresponding S-blocks (regarded as vertices in T )
induce vertex sets with di↵erent diameter in T . This is a contradiction according
to Lemma 2.13, since the leaves of these two stars that are furthest away in T are
separated by a di↵erent number of separators of the same (finite) order. Thus we
conclude that there are infinitely many pairwise disjoint S-separators on R. Two
S-separators S1, S2 that have n disjoint S-separators on their S1–S2 path in T have
distance at least n in G. ⇤

The separators come in very handy. With an application of Menger’s Theorem
one may construct order of the separators many disjoint rays in G following any
ray in a basic structure tree of G. Every such ray in G induces a (connected) path
in every block and contains at most one vertex from each separator. This implies
that every vertex lies in some block.

Lemma 11.12. Let k � 3, let G be a connected k-CS-transitive graph with at
least two ends and let S be a minimal cut system of G such that the structure tree
of G and S is basic. Let S be an S-separator. If every s 2 S has for every S-
block X containing S an adjacent vertex in X \ S, then S is disjoint to any other
S-separator S0.

Proof. Suppose that distinct S-separators S, S0 contain a common vertex s

and for every S-block X containing S there is an edge between s and X \ S. Let
(A,B), (A0, B0) 2 S be cuts with separators S and S0, respectively. We may assume
that S0 ✓ B and S ✓ B0 since S is nested.

There is an induced path P of length k � 2 ending in s whose other vertices
lie in A \ B. By assumption s has at least two neighbors x and y such that x

lies in B0 \ A0 and y lies in A0 \ A. The paths Px and Py of length k � 1 can be
mapped onto each other with an automorphism of G by the k-CS-transitivity of G.
But the endvertices of Px and of Py are separated properly by a di↵erent number
of S-separators, since any S-separator separating the endvertices of Py properly
separates also the endvertices of Px properly as S is nested, and on the other hand
the separator S0 separates only the endvertices of Px properly. This contradicts
the choice of x and y. ⇤

Let k � 3, let G be a connected k-CS-transitive graph with at least two ends,
and let S be a minimal cut system of G such that the basic structure tree of G and
S is basic. There are two profoundly di↵erent cases. In the first case the graph is
covered with S-separators while in the second case there are vertices in G that do
not belong to any S-separator.

Before we begin investigating these cases we need some definitions. For an
S-block X we define the open (S-)block

X̊ := X \
[
{A \B | (A,B) 2 S}.
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A k-spoon is an induced subgraph of G that consists of a triangle and a path starting
in one of its triangel vertices with all in all precisely k vertices. A spoon H pokes
in an S-block X, an S-separator S, or two S-separators S, S0 if its degree 2 vertices
of the triangle are contained in X̊, S, or one in S and one in S0, respectively. A
k-fork is another induced subgraph of G that consists of its prongs, a pair of two
non-adjacent vertices, and of its handle, a path such that both prongs are adjacent
to the same endvertex of the handle, and has k vertices. A fork H pokes in an
S-block X, an S-separator S, two S-blocks X,Y , or two S-separators S, S0 if its
prongs are contained in X̊, in S, meet X̊ and Y̊ , or meet S and S0, respectively.

11.3.1. Empty open blocks. This is the slightly simpler case. If k is odd
this is the only possible case as we will show in Lemma 11.18.

Lemma 11.13. Let k � 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a minimal cut system such that the structure tree of
G and S is basic and such that for some S-block X its open block X̊ is empty. If
S, S0 are distinct S-separators that both lie in X, then ss0 2 E(G) for all s 2 S and
s0 2 S0 \ S, and any two distinct S-separators in X are disjoint.

Proof. In the case that all vertices lie in S-separators, there is a path of
arbitrary length (following a path in the structure tree of G and S) such that any
two vertices with distance 2 or greater do not lie in the same S-block. There is
also an induced s–s0 path P whose inner vertices do not meet the component C

of G� S0 that contains S \ S0. If the length of P is less than k � 1 we elongate P

from s into C. Thus there is an induced subpath P 0 of P of length k � 1. By the
k-CS-transitivity any two vertices of distance at least two on P 0 and hence also on
P lie in di↵erent blocks. This implies d(s, s0) < 2. With Lemma 11.12 it follows
that any two distinct S-separators in X are disjoint. ⇤

Lemma 11.14. Let k � 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a minimal cut system such that the structure tree
of G and S is basic. If every open S-block is empty, then any two S-blocks are
isomorphic, or k is odd and there is a cardinal  such that G ⇠= Y.

Proof. Suppose that there are two S-blocks X and Y that are not isomorphic.
Since there is an automorphism ↵ of G with X \ Y ↵ 6= ;, we may assume that
X \ Y 6= ;. If X \ Y contains two distinct vertices, there is either a k-fork with
both prongs in X and one k-fork with both prongs in Y , or there is a k-spoon
with its triangle—the subgraph isomorphic to a K3—in X and one k-spoon with
its triangle in Y . This contradicts the k-CS-transitivity of G. Thus the S-blocks
intersect in at most one vertex, and every S-block is complete by Lemma 11.13. If
there are two S-blocks with more than 2 vertices each, then for both these S-blocks
there is a k-spoon poking it, which implies that they are Aut(G)-isomorphic. As
every S-block contains an edge we know that there are precisely two di↵erent kinds
of S-blocks: one S-block is isomorphic to a K2 and another one is isomorphic to a
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K for some  � 3. This yields to the Y. No Y with  � 3 is k-CS-transitive for
even k since there is a path of length k � 1 with both outermost edges in S-blocks
isomorphic to a K2 and there is a path of length k�1 with both outermost edges in
S-blocks isomorphic to a K with  � 3. There is no automorphism of G mapping
the first onto the second path. This completes the proof. ⇤

Lemma 11.15. Let k � 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a minimal cut system such that the structure tree of G

and S is basic and every open S-block is empty. If any two S-blocks are isomorphic,
then there are precisely two S-separators per S-block and every S-separator lies in
precisely two S-blocks, or there are cardinals ,� � 3 and integers 2  m < k

3 + 1
and 2  n < k

2 + 1 such that G ⇠= X2,�(Km) or G ⇠= X,2(Kn) or G ⇠= X,�(K1).

Proof. We already know that G ⇠= X,�(H) for some finite graph H and we
may assume that  > 2 or � > 2. If there are edges in H and � � 3 then there
are two kinds of k-spoons: one with its triangle meeting 3 S-separators and one
meeting precisely two S-separators. If there are two non-adjacent vertices in H and
 � 3 then there are two kinds of k-forks: one pokes in a single separator and one
pokes in two di↵erent separators. Thus there is G ⇠= X2,�(Km), G ⇠= X,2(Kn), or
G ⇠= X,�(K1) with m,n � 2. It remains to show that m  k

3 and n  k
2 . Suppose

that m � k
3 + 1 and let S1, S2 be S-separators in di↵erent S-blocks both adjacent

to some S-separator S0. Let Ai ✓ Si for i = 0, 1, 2 with |A0| = |A1| = k
3 + 1 and

|A2| = k
3 � 2. Let Bi ✓ Si for i = 0, 1, 2 with |Bi| = k

3 + 1 � i. Then there is no
automorphism of G from G[

S
Ai] to G[

S
Bi] although both induced subgraphs are

isomorphic. Thus there is m < k
3 + 1.

Suppose n � k
2 +1. Let S0, S1 be two adjacent S-separators. Let Ai ✓ Si with

|A0| = k
2 + 1 and |A1| = k

2 � 1, and let Bi ✓ Si with |Bi| = k
2 . Then there is no

automorphism of G from the complete graph on k vertices G[
S

Ai] to the complete
graph on k vertices G[

S
Bi]. Thus n < k

2 + 1 follows. ⇤

Lemma 11.16. Let k � 3, let G be a connected k-CS-transitive graph with at
least two ends, and let S be a minimal cut system such that the structure tree of
G and S is basic, every open S-block is empty and all S-blocks are isomorphic. If
every S-block contains precisely two S-separators and every S-separator is contained
in precisely two S-blocks, then G ⇠= X2,2(E) with E 2 Ek,m,n, m  k � 2, and
n � k�|E|

2 + 1, E ⇠= Km with 1  m < k
3 + 1, or E ⇠= Kn with 1  n < k

2 + 1.

Proof. As the open S-blocks are empty it is obvious that G ⇠= X2,2(E) for
some finite graph E. If E is a complete graph or the complement of a complete
graph, then the same proof as in Lemma 11.15 shows that 1  m < k

3 +1 if E ⇠= Km

or 1  n < k
2 + 1 if E ⇠= Kn. By Theorem 11.5 it su�ces to show that (a) E is

l-S-transitive for all l  k�1, (b) �(E)  k�2, (c) any vertex set of order k�|E|
2 +1

in E is connected, and (d) no two non-adjacent vertices of E have k � 2 common
neighbors.
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(a) Let A,B ✓ S be isomorphic graphs with at most k � 1 vertices for some
S-separator S (⇠= E). Then there is a common neighbor v of these vertices in
an adjacent S-separator. Adding a path of suitable length that starts in v and
that is only in v adjacent to S, one gets two connected subgraphs of order k

and an automorphism of G mapping one to the other. If |A| 6= 1, then this
automorphism must map the vertices of A onto vertices of S and hence onto
B. If |A| = 1, let S0 be an S-separator such that some induced path of length
k � 1 starting in A ends in S0. Let ','0 be the isomorphisms from E to S, S0,
respectively. Let A0 ✓ S0 be (A'�1

)'
0
. Then we may assume that the path

ends in A0. Thus there has to be an automorphism of G mapping A to B or A0

to B.
(b) Let S (⇠= E) be an S-separator. Suppose there is a vertex v of degree at least

k � 1 in G[S]. Let A ✓ S contain v and k � 1 of its neigbours. Let w be
some vertex from an S-separator that is adjacent to S. Then G[A� v + w] is
isomorphic to G[A] but there is no automorphism of G mapping the one onto
the other. Thus no vertex in S has degree k � 1 or greater.

(c) Finally, suppose there is a vertex set X ✓ V (E) of order at least k�|E|
2 + 1

that is not connected. Let S, S0, S00 be three distinct S-separators such that
S0 is adjacent to the other two. Let A ✓ S,A00 ✓ S00 be copies of X in S

and S00 that contain the components C,D ✓ A and C00,D00 ✓ A00, respectively.
Let c 2 C and c00 2 C00 be two vertices such that C � c and C00 � c00 are
isomorphic. Let d 2 D be any vertex. Then the graphs G[A[ S0 [A00]� {c, d}
and G[A [ S0 [ A00] � {c00, d} are isomorphic but there is no G-automorphism
mapping one to the other. There are k or k + 1 vertices in these subgraphs,
depending on the parity of |E|. Since the argument stays valid even if we ignore
one of the vertices in S0 there is such a CS-transitivity contradicting graph with
precisely k vertices.

(d) Suppose that there are two non-adjacent vertices x, y in some S-separator S0 (⇠=
E) with k�2 common neighbors and let N ✓ S0 be k�2 of these neighbors. Let
S, S00 be distinct S-separators adjacent to S0 and let s 2 S and s00 2 S00. Then
G[N + x + y] and G[N + s + s00] are isomorphic, but there is no automorphism
of G mapping one onto the other. ⇤

As a corollary of Lemma 11.14, Lemma 11.15, and Lemma 11.16 we may finish
the first case.

Theorem 11.17. Let k � 3, let G be a connected k-CS-transitive graph with
at least two ends, and let S be a minimal cut system of G such that the structure
tree of G and S is basic and every open block is empty. Then there are cardinals
,� � 2 and integers m,n such that G is isomorphic to one of the following graphs:

(1) X,�(K1),
(2) X,2(Kn) with n < k

2 + 1,
(3) X2,�(Km) with m < k

3 + 1,
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(4) X2,2(E) with E 2 Ek,m,n, m  k � 2 and n  k�|E|
2 + 1,

(5) Y (if k is odd). ⇤

11.3.2. A non-empty open block. Let us discuss the connected k-CS-
transitive graphs with at least two ends for k � 3 such that no orbit of any smallest
S-separator, that separates ends, covers the whole graph. In other words, there is
a non-empty open S-block. As mentioned before this case restricts k to be even.

Lemma 11.18. Let k � 3 and G be a connected k-CS-transitive graph with at
least two ends and let S be a minimal cut system such that the structure tree of G

and S is basic. If some open S-block is non-empty, then k is even.

Proof. Recall that there is an induced ray and a path with k vertices whose
middle vertex lies in some S-separator if k is odd. We may map the path anywhere
into the ray and, thus, we know that there are k succeeding vertices on the ray
that belong to an S-separator. Since the diameter is infinite, in every vertex starts
an induced path of length k � 1 and, thus, every vertex lies on a path all whose
vertices lie in some S-separator. Thus, if k is odd, then every vertex lies in some
S-separator. ⇤

Lemma 11.19. Let k � 3 and let G be a connected k-CS-transitive graph with
at least two ends and let S be a minimal cut system such that the structure tree of
G and S is basic and some open S-block is not empty. If vertices s, s0 2 G belong
to di↵erent S-separators then s and s0 are not adjacent.

Proof. Suppose s and s0 are adjacent. Then there is some induced path P

of length k � 1 in G such that the innermost (k is even) edge is ss0. Mapping this
path with the edge ss0 to successive edges on an induced ray, we obtain a ray all
whose edges have end vertices only in S-separators. This is a contradiction since
in every vertex starts an induced path of length k � 1 and at least one vertex lies
in an open S-block. ⇤

Lemma 11.20. Let k � 3 and let G be a connected k-CS-transitive graph with
at least two ends and let S be a minimal cut system such that the structure tree of
G and S is basic and some open S-block is not empty. If vertices s, x 2 G lie in
the same S-block with s in some S-separator and x not, then s and x are adjacent.
Furthermore, any two distinct S-separators are disjoint.

Proof. There is a path of arbitrary length such that any two vertices with
distance at least 3 on the path do not lie in the same S-block and every other vertex
on this path lies in an S-separator. As there is some induced path between s and
x which can be extended if necessary to an induced path of length k � 1, we know
that d(x, s) < 3. Since x does not lie in any S-separator and every path enters
and leaves S-blocks through S-separators d(x, s) < 2 holds. By Lemma 11.12 and
Lemma 11.13 we may conclude that distinct S-separators are disjoint. ⇤
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The final step to show that these k-CS-transitive graphs with non-empty open
blocks resemble some Z,�(H1,H2) is, that their automorphism group acts transi-
tively on its open blocks.

Lemma 11.21. Let k � 3 and let G be a connected k-CS-transitive graph with
at least two ends and let S be a minimal cut system such that the structure tree of
G and S is basic and some open S-block is not empty. The automorphism group of
G acts transitively on the open S-blocks.

Proof. Since T has no leaves, every induced path in G of length 2 through
some S-block X can be elongated to an induced path P of length k � 1 such that
the innermost edge (k is even) of P lies in no other S-block than X. A similar path
P 0 can be found for any other S-block X 0 and hence there is an automorphism ↵

of G with P↵ = P 0 and thus also X↵ = X 0. ⇤

Thus every connected k-CS-transitive graph for k � 3 with more than one end
and some non-empty open block is isomorphic to Z,�(H1,H2) for some graphs H1

and H2. It remains to specify the building blocks and possible values for  and �

of these graphs.

Lemma 11.22. Let k � 3 and let G ⇠= Z,�(H1,H2) be a k-CS-transitive graph
and let S be a minimal cut system such that the structure tree of G and S is basic
and some open S-block is not empty. The following holds:

(i) At least one of  or � is 2.
(ii) If Hi contains two non-adjacent vertices, then Hj (j 6= i) is complete and

 = � = 2.
(iii) If Hi contains an edge, then Hj (i 6= j) contains no edge.

Proof. Recall that H1 6⇠= H2 or  6= � since the copies of H1 and H2 are not
Aut(G)-isomorphic. Suppose ,� 6= 2, then there are two k-forks. One that pokes
in two distinct open S-blocks, and one that pokes in two distinct S-separators. But
there is no automorphism of G mapping one to the other. This proves (i).

With an analog argument follows (ii): Suppose  or � is greater than 2. Then
there is a k-fork that pokes just one copy of an Hi and one that pokes two distinct
S-separators (� > 2) or two distinct open S-blocks ( > 2). Suppose on the other
hand that there are two non-adjacent vertices in Hj , then there are two incompatible
k-forks, too. One pokes an open S-block and the other one an S-separator.

For (iii), suppose that Hi as well as Hj contains edges. Then there are k-spoons
that poke an open S-block and others that poke an S-separator. ⇤

From the previous lemma we immediately get the following corollary:

Corollary 11.23. Let k � 3 and let G ⇠= Z,�(H1,H2) be a k-CS-transitive
graph and let S be a minimal cut system such that the structure tree of G and S
is basic and some open S-block is not empty. If both H1 and H2 have at least two
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vertices, one is a complete graph and the other one is the complement of a complete
graph and  = � = 2. ⇤

To finish the proof in the situation that both H1 and H2 have at least two
vertices, we will restrict the order of those graphs:

Lemma 11.24. Let k � 3 and let G ⇠= Z2,2(H1,H2) be a k-CS-transitive graph
and let S be a minimal cut system such that the structure tree of G and S is basic
and some open S-block is not empty. If H1 contains two non adjacent vertices or
H2 contains an edge, then H1

⇠= Km and H2
⇠= Kn with 2m + n  k + 1.

Proof. By Corollary 11.23 it su�ces to show that the boundaries for m and
n hold. Let H1 be the complement of a complete graph and let H2 be a complete
graph. Let S be some S-separator, and let X and Y be two distinct S-blocks with
S ✓ X,Y . Then any graph with precisely k vertices that consists of S, more than
k�n

2 (+1
2 if n is odd) vertices in X and less than k�n

2 vertices in Y can be mapped
onto a graph consisting of S, k�n

2 (+1
2 if n is odd) many vertices in X and k�n

2

(�1
2 if n is odd) many vertices in Y . Thus

2m + n  1 + n + (
k � n

2
+

1
2
) + (

k � n

2
� 1

2
)  k + 1.

We seemingly loose one vertex in the case that n is even. Since 2m + n and k are
even then, this is not a true loss. ⇤

Lemma 11.25. Let k � 3 and let G ⇠= Z,�(H1,H2) be a k-CS-transitive graph
and let S be a minimal cut system such that the structure tree of G and S is basic
and some open S-block is not empty. If |H1| = 1 and one of  and � is not 2, H2

is a complete graph on at most k � 1 vertices.

Proof. The first part follows directly from Lemma 11.22 (ii). For the second
part, suppose that H2 has more than k � 1 vertices. Then every open S-block X̊

contains an isomorphic copy of a Kk and there is a second isomorphic copy of a Kk

with k � 1 vertices in X̊ and one vertex in some S-separator S ✓ X. Since there
is no automorphism of G mapping the one onto the other, H2 has at most k � 1
vertices. ⇤

As the last part in this case of the proof (that there is some non-empty open
block) we will determine the graphs H2 if H1 is only one vertex and the open blocks
are neither complete nor complements of complete graphs.

Lemma 11.26. Let k � 3, let G ⇠= Z2,2(H1,H2) be a k-CS-transitive graph with
at least two ends, and let S be a minimal cut system of G such that the structure
tree of G and S is basic and that some open S-block is not empty. If |H1| = 1 and
H2 is neither complete nor a complement of a complete graph, then H2 2 Ek,m,n

with m  k � 2 and n  k
2 + 1.
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Proof. By Corollary 11.5 it su�ces to show that (a) H2 is l-S-transitive for
all l  k�1, (b) �(H2)  k�2, (c) any vertex set of order k

2 +1 in H2 is connected,
and (d) no two non-adjacent vertices of E have k � 2 common neighbors.

The proofs of (a), (b) and (d) are analog to those of Lemma 11.16 (a), (b)
and (d).
(c) We follow the argument of Lemma 11.16 (c). The boundary of n is slightly

di↵erent, since there is only one vertex in an S-separator available. Thus every
set of order k�1

2 + 1 is connected, since k is even and since a set with at least
k�1
2 + 1 vertices has at least k

2 + 1 vertices. ⇤

These lemmas let us finish the case for non-empty open blocks.

Theorem 11.27. Let k � 3, let G ⇠= Z2,2(H1,H2) be a k-CS-transitive graph
with at least two ends, and let S be a minimal cut system of G such that the structure
tree of G and S is basic and that some open S-block is not empty. Then k is even
and G is isomorphic to one of the following graphs:
(6) Z2,2(Km,Kn) with 2m + n  k + 1 and m  n;
(7) Z,�(K1,Kn) with n  k � 1 and cardinals ,� with  = 2 or � = 2;
(8) Z2,2(K1, E) with E 2 Ek,m,n, m  k � 2 and n  k

2 + 1. ⇤

With Section 11.2 the Theorems 11.17 and 11.27 imply one of our main results,
Theorem 11.1.

11.4. Ends of k-CS-transitive graphs

Gray [42] asked whether every locally finite k-CS-transitive graph (with k � 3)
is end-transitive. With Theorem 11.1 we may answer his question.

Theorem 11.28. Let k � 3 and let G be a connected locally finite graph. If G

is k-CS-transitive, then it is end-transitive. ⇤

Thus, this class of graphs belongs to those graphs discussed in Chapter 8. Theo-
rem 11.28 does not extend to graphs with vertices of infinite degree. For example
the graphs X,� with  � @0,� � 2 contain fundamentally di↵erent ends: local
ends and global ends. Theorem 11.1 shows that in k-CS-transitive graphs with
k � 3 every end is either local or global.

Theorem 11.29. Let k � 3 and G be a connected k-CS-transitive graph with
more than one end. Then every end of G is either local or global. The automorphism
group of G acts transitively on the local ends, as well as on the global ends. G is
end-transitive if and only if it has no local end. ⇤

Considering the metric ends, we obtain the following corollary.

Corollary 11.30. If k � 3, then the automorphism group of any k-CS-
transitive graph with at least two ends acts transitively on the metric ends of the
graph. ⇤





CHAPTER 12

Connected-homogeneous digraphs

This chapter deals with C-homogeneous digraphs. As we have already writ-
ten in Chapter 9, we do not only investigate the infinite C-homogeneous digraphs
but also the finite such digraphs and thereby, we prove the classification theorems
of [51] and [54]. The chapter is structured as follows. First, we determine the infi-
nite connected C-homogeneous digraphs with infinitely many ends whose underlying
undirected graph is a C-homogeneous graph those of Type I (Section 12.3), followed
by those with infinitely many ends whose underlying undirected graph is not a C-
homogeneous graph that are the digraphs of Type II (Section 12.4). Thereafter we
turn our point of interest to the finite and locally finite C-homogeneous digraphs
with at most one end. The first results in this part are obtained in the case that
the out-neighborhood (or in-neighborhood) of any vertex is not independent (Sec-
tion 12.5) and then we look at the more di�cult case, where the out-neighborhood
and also the in-neighborhood is independent (Section 12.6 and Section 12.7). This
latter case also divides into two parts: either the directed triangle embeds into the
digraph or not.

It is well known that a transitive connected locally finite graph either contains
one, two, or infinitely many ends. For arbitrary transitive connected infinite graphs,
this was proved by Diestel, Jung and Möller [27]. Since the underlying undirected
graph of a transitive digraph is also transitive, the same holds for infinite transi-
tive digraphs. As two-ended connected transitive digraphs are locally finite [27,
Theorem 7] we refer to Gray and Möller [45, Theorem 6.2] for the classification
result in this case. Consequently, we complete the classification of the locally finite
C-homogeneous digraphs and of the connected C-homogeneous digraphs with more
than one end.

12.1. C-homogeneous bipartite graphs

In this chapter we complete the classification of connected C-homogeneous bi-
partite graphs, which was already done for locally finite graphs, by Gray and Möller
[45]. They already mentioned that their work should be extendable with not too
much e↵ort—and indeed this section has essentially the same structure.

The proof of the locally finite analog [45, Lemma 4.4] of Lemma 12.1 is self
contained and does not use the local finiteness of the graph. Thus we can omit the
proof here.
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Lemma 12.1. Let G be a connected C-homogeneous bipartite graph with bipar-
tition X [ Y . If G is not a tree and has at least one vertex with degree greater
than 2 then G embeds C4 as an induced subgraph. ⇤

Let G be a bipartite graph with bipartition X[Y . Then for each edge xy 2 EG

we define the neighborhood graph to be:

⌦(x, y) := G[N(x) + N(y)� {x, y}]

A C-homogeneous graph G is, in particular, edge-transitive. Hence there is a unique
neighborhood graph ⌦(G).

Lemma 12.2. Let G be a connected C-homogeneous bipartite graph. Then ⌦(G)
is a homogeneous bipartite graph, and therefore is one of: an edgeless bipartite
graph, a complete bipartite graph, a complement of a perfect matching, a perfect
matching, or a homogeneous generic bipartite graph.

Proof. If we do not ask ⌦(G) to be finite, the proof of the locally finite
analogue [45, Lemma 4.5] carries over. Compared to the locally finite case, we only
have to deal with one other ’type’ of graph, due to [41, Remark 1.3] ⇤

Lemma 12.3. Let G be a C-homogeneous generic bipartite graph. Then G is
homogeneous bipartite.

Proof. Let V G = A[B be the natural bipartition of G, let X and Y be two
isomorphic induced finite subgraphs of G, and let ' : X ! Y be an isomorphism.
Let a 2 A\X be a vertex adjacent to all the vertices of X\B and let b 2 B\X be a
vertex adjacent to all the vertices of X\A and to a. Let a0, b0 be the corresponding
vertices for Y . Since G is bipartite, both G[X+a+b] and G[Y +a0+b0] are connected
induced subgraphs of G that are isomorphic to each other. Furthermore there is
an isomorphism  : G[X + a + b] ! G[Y + a0 + b0] such that the restriction of  
to X is '. As there is an automorphism of G that extends  , this automorphism
also extends ' and G is homogeneous. ⇤

Theorem 12.4. A connected graph is a C-homogeneous bipartite graph if and
only if it belongs to one of the following classes:

(i) T,� for cardinals ,�;
(ii) C2m for m 2 N;
(iii) K,� for cardinals ,�;
(iv) CP for a cardinal ;
(v) homogeneous generic bipartite graphs.

Proof. The nontrivial part is to show that this list is complete. So consider
an arbitrary connected C-homogeneous bipartite graph G with bipartition X [ Y .
If G is a tree then it is obviously semi-regular and hence a T,�. So suppose G

contains a cycle. Then, since G is C-homogeneous, each vertex lies on a cycle. Now
G is either a cycle, which is even since G is bipartite, or at least one vertex in G
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has a degree greater than 2 and G embeds a C4, due to Lemma 12.1. Thus ⌦(G)
contains at least one edge and by Lemma 12.2 we have to consider the following
cases:

Case 1: ⌦(G) is complete bipartite. Suppose that there is an induced path P =
uxyv in G. Then ⌦(x, y) gives rise to an edge between u and v, a contradiction.
Hence G is complete bipartite.

Case 2: ⌦(G) is the complement of a perfect matching. Consider x 2 X and
y 2 Y such that {x, y} is an edge of G. Since ⌦(x, y) is the complement of a
perfect matching and G is not a cycle, there is an index set I ◆ {1, 2} such that
N(x) = {y} [ {yi|i 2 I}, N(y) = {x} [ {xi|i 2 I} and for i 2 I the vertex xi is
nonadjacent to yi but adjacent to all yj with j 2 I \ {i}. Since ⌦(x, y1) is also the
complement of a perfect matching there is a unique vertex a 2 N(y1) \N(y). Since
xi with i 6= 1 is adjacent to y1 it is contained in ⌦(x, y1) and therefore yi is adjacent
to a. Thus for all i 2 I we have N(yi) = N(y) � xi + a. Now by symmetry there
is a unique vertex b adjacent to all xi with i 2 I but non-adjacent to x and for all
i 2 I there is N(xi) = N(x)� yi + b. If we look at ⌦(x1, y2) we have x, a 2 N(y2)
and y, b 2 N(x1) which implies {a, b} 2 EG and hence N(a) = N(x) � y + b

and N(b) = N(y) � x + a. Because G is connected we have X = N(y) + a and
Y = N(x) + b which means that G is itself the complement of a perfect matching.

Case 3: ⌦(G) is a perfect matching. For the same reason as for locally finite graphs
this case cannot occur (cp. [45, Theorem 4.6]).

Case 4: ⌦(G) is homogeneous generic bipartite. Let U and W be two disjoint
finite subsets of X (of Y). Since G is connected there is a finite connected induced
subgraph H ⇢ G that contains both U and W . By genericity, we find an isomorphic
copy H⌦ of H in ⌦(G). Because G is C-homogeneous there is an automorphism ' of
G with H'

⌦ = H. Now there is a vertex v in Y (in X) that is adjacent to all vertices
in U'�1

and non-adjacent to all vertices in W'�1
. Hence v' is adjacent to all

vertices in U and none in W which implies that G is generic bipartite. Furthermore
G is homogeneous bipartite by Lemma 12.3, as it is C-homogeneous. ⇤

12.2. Local structure of C-homogeneous digraphs
of Type I and Type II

In this section we summarize some preliminary results of the relation between
a C-homogeneous digraph and a basic cut system C of this digraph. In particular
we investigate the local structure around C-separators.

Lemma 12.5. Let D be a connected C-homogeneous digraph with more than one
end. Let C be a basic cut system and let S be a C-separator. Then there is no edge
xy in D with both vertices in S. In particular, no two C-blocks can share an edge.

Proof. Let (A,B) 2 C with A \ B = S and let us suppose that there is
xy 2 ED with x, y 2 S. By the minimality of C each vertex in a C-separator has
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neighbors in both wings of the corresponding separation. Let a 2 A\B and b 2 B\A
be such neighbors of y. Then there are di↵erent possibilities for the direction of
their connecting edges. Let us first consider the case that ay, by 2 ED. Then there
is an automorphism ↵ that maps xy onto by. Then S↵ lies in B, since C is nested
and b 2 S↵, and we have either A ✓ A↵ or A ✓ B↵ by the nestedness of C. So we
have a vertex b0, which is either a↵ or b↵, that lies either in B \B↵ or in B \ A↵

such that b0y 2 ED and S0 := S↵ separates a and b0. Let {A0, B0} = {A↵, B↵}
such that a 2 A0 and b0 2 B0.

Now let ↵0 be an automorphism of D such that a↵0 = a and (by)↵0 = b0y.
Hence the vertex b1 := b↵0

0 lies in B1 \A1, where A1 := A↵0
0 and B1 := B↵0

0 , and we
have b1y 2 ED. Since A0 meets A1, S1 := S↵0

0 6= S0 lies in B0, and C is nested, we
know that A0 is a proper subset of A1, B1 is a proper subset of B0 and S0 lies in A1,
which implies x 2 A1. Furthermore b1 and a are separated from each other by both
S0 and S1. By repeating this process recursively, we have an ↵i that fixes a and y

and maps bi�1 onto bi and we get a further vertex bi+1 = b↵i
i 2 Bi+1 \ Ai+1 that

is separated by Si+1 := S↵i
i from a 2 Ai+1 \ Bi+1. And with the same argument

as before we have that Ai is a proper subset of Ai+1 := A↵i
i , that Bi+1 := B↵i

i is
a proper subset of Bi and that bi 2 Ai+1. Hence, bj 2 Ai+1 for all j  i, which
implies bi 6= bj for all i 6= j.

Thus, after the step m := |S|+1 there has to be some k < |S| such that bk is not
contained in Sm and therefore lies in Am\Bm. That is, bk is also separated from bm

by Sm and I := {a, bk, bm} forms an independent set. Note that by construction all
elements in I have y as a common out-neighbor. Hence, due to the C-homogeneity
of D, there is an automorphism � of D which interchanges a and bk and fixes y and
bm. Note that a 2 A \B ⇢ Ak+1 \Bk+1 and bm 2 Bm \Am ⇢ Bk+1 \Ak+1. Thus,
Sk+1 is a separator containing bk that separates a and bm, which implies that S�k+1

is a separator containing a that separates bk and bm. But due to the minimality
of C, there is a bk-bm-path in Bk+1 that meets Sk+1 only in bk and therefore S�k+1

meets both Ak+1 \Bk+1 and Bk+1 \Ak+1, contradicting the nestedness of C (confer
Remark 2.8).

So let us suppose by, ya 2 ED. Let ↵ be an automorphism of D with (xy)↵ = ya

and choose {X,Y } = {A↵, B↵} such that b 2 X \ Y . Then there is a neighbor c

of y in Y \ X, which is separated from b by S↵. Note that by nestedness, and
since both X and Y meet A, we have that either X \ B or Y \ B is empty. So
b 2 X \ B yields c 2 A. If cy 2 ED then we may take the vertices c, b instead
of a, b and get a contradiction by the first case above. Thus we may assume that
yc 2 ED. But then we can map the digraph D[b, y, a] onto D[b, y, c] such that the
number of separators that separate b from a without containing one of them equals
the number of separators that separate b and c without containing one of them.
Due to [32, Lemma 4.1] this number is finite. Because of the nestedness of C, every
separator that separates the vertices b and a lies entirely in X, and since a and c

are joined by a path that lies except for a in Y \X, it also separates b and c. But
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S↵ contains a and separates b from c, a contradiction. The case ay, yb 2 ED is
analogous.

Let us finally suppose that ya, yb 2 ED. By considering the digraph D�1

instead of D we also may assume that there are a0 2 A \ B and b0 2 B \ A with
a0x, b0x 2 ED. Let ↵ be an automorphism of D with (xy)↵ = yb. Then there is a
vertex b00 2 B \ A that is separated by S↵ from a and such that b00y 2 ED. But
then we have the situation of the previous case and thus we know that no such edge
xy exists.

Let X and Y be distinct C-blocks, then there is x 2 X \ Y . Since Y , being a
C-block, is maximally C-inseparable, there is a C-separator S that separates x from
Y . As X is also C-inseparable, we have X \ Y ✓ S. Therefore X and Y cannot
share an edge. ⇤

Lemma 12.6. Let D be a connected C-homogeneous digraph with more than
one end and let C be a basic cut system. Then for each 2-arc P in D we have
|P \ S|  1 for all C-separators S.

Proof. Let P = xay be a 2-arc in D and S a C-separator. By Lemma 12.5
we only have to show that S cannot contain both x and y. So assume {x, y} ✓ S.
Let (A,B) 2 C with A \B = S and a 2 A. Since D is transitive there is an arc zx

in D. If z lies in A consider a neighbor z0 of x in B. Now either zxa, zxz0 or z0xa

is an induced 2-arc in D, which we denote by Q, with one vertex in A \B and one
vertex in B \A. Because D is connected-homogeneous there is an automorphism ↵

with P↵ = Q. Then S↵ contains vertices of both wings of (A,B). By Remark 2.8,
this contradicts the nestedness of C. ⇤

Lemma 12.7. Let D be a connected C-homogeneous digraph with more than one
end, let C be a basic cut system of D, and let S be a C-separator. Then there is no
directed path in D with both endvertices in S.

Proof. Suppose that there is such a path P . We may choose the path such
that it has minimal length. Then all of the vertices of P lie in the same C-block X.
By Lemma 12.6 the endvertices of any directed path of length 2 are separated by a
C-separator. Hence no directed path of length at least 2 can lie in any C-block. ⇤

Lemma 12.8. Let D be a connected C-homogeneous triangle-free digraph with
more than one end, and let C be a basic cut system. Then for any cut (A,B) 2 C
there is no path xyz in D [A] with y 2 A \B.

Proof. By Lemma 12.5 we only have to show that given a cut (A,B) 2 C
there is no 2-arc xyz in D such that y 2 S := A \ B and x, z 2 A \ B. So let us
suppose there is such a path. Then y has a neighbor b 2 B\A. We may assume that
their connecting edge is pointing towards y, since otherwise changing the direction
of each edge gives a digraph D0 which is C-homogeneous and has this property.

Suppose that there is a second neighbor c 2 B \A of y. If yc 2 ED, then there
is an ↵ 2 Aut(D) that fixes b, y, z and with x↵ = c, c↵ = x, as D is triangle-free.
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But then the separations (A,B) and (A↵, B↵) are not nested. Thus we may assume
that cy 2 ED. In this situation let � be an automorphism of D that fixes x, y, b

and maps z onto c and vice versa—a contradiction as before.
So b is the unique neighbor of y in B. We may assume that there is another

vertex a, say, that lies in S, since otherwise we could map the 2-arc byz onto xyz,
as D is C-homogeneous and triangle-free, and, thus, y would seperate x from z,
contradicting the fact that x and z lie in the same component of D � S. Now
consider a path P in D connecting a and y and let T denote the structure tree of D

and C. Let M be the set of C-blocks containing edges of P . Since C-separators
do not contain any edge, distinct blocks cannot contain a common edge. Thus we
choose a block M 2M whose distance to S in T is maximal with respect to M.

Now each nontrivial component of P \M has to contain exactly two edges: An
isolated edge would either be contained in a separator, in contradiction to Lemma
12.5, or it would connect M to two distinct neighbors in T \M, contradicting
the choice of M . If there is a segment of P in M with a length of at least three,
then it contains either a directed subsegment, isomorphic to byz, or a subsegment
isomorphic to by [ xy. In each case there exists an isomorphism ' such that S'

separates the endvertices of this subsegment, which is impossible since M is a C-
block.

Considering an arbitrary nontrivial component of P \M , its two edges have a
common vertex which we denote by m. With an analogous argument as above, both
edges are directed away from m. Let us denote their heads by u and v, respectively.
By construction, u and v lie both in the separator SM ⇢ M that lies on the unique
shortest path between M and S in T . Consider an arbitrary cut with seperator SM .
Then u has a neighbor u0 in the wing not containing m. Let  be an automorphism
with (mu) = by and either (uu0) = yz, if uu0 2 ED or (u0u) = xy, if u0u 2 ED.
Since C is nested we have S M ⇢ B which means that x and z are separated from b

by S M . By relabeling S := S M and a := v , if neccessary, we may assume that ba

is an edge.
Then there is a neighbor z0 of b in B \ A, and we can find an automorphism

� with (by)� = ba and either x� = z0 or z� = z0, depending on the orientation of
the edge between b and z0. Again by the nestedness of C we have S� ⇢ B and also
B� ✓ B. And since x is separated from b by S� we have y 2 S� . But that implies
that y and a both have b as their unique neighbor in B� . Hence, S� \ {y, a} [ {b}
is a seperator in D that seperates ends and has smaller cardinality, contradicting
the fact that C is basic. ⇤

Lemma 12.9. Let D be a connected C-homogeneous triangle-free digraph that is
not a tree and that has more than one end, and let C be a basic cut system of D. Let
S be a C-separator and let s 2 S. Then there is precisely one C-block that contains s

and all edges directed away from s, and there is precisely one C-block that contains
s and all edges directed towards s. Furthermore there is d+(s) > 1 and d�(s) > 1.
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Proof. By Lemma 12.8 there is at most one kind of neighbors in each C-
block. Suppose first that there is a C-block Z with only one neighbor a of s. We
may assume that as 2 ED. By C-homogeneity, we can map each edge xs onto as.
As there is by Lemma 12.5 precisely one C-block Y that contains xs, Y contains
no other neighbor of s, because the same holds for s and Z. Thus each component
of each C-block is either a single vertex or a star the edges of which are directed
towards the leaves of the star. If each C-block is a tree and every C-separator
consists of one vertex, then the digraph D has to be a tree. Since we excluded
this case, there is a second vertex t 2 S. For every component C of D � S, there
is an (undirected) s-t-path P with all its vertices but s and t in C. Let X be a
C-block with maximal distance to S in the structure tree of G and C such that there
are at least two edges from P in X. This C-block exists by Lemma 2.14. As each
component of X that contains edges is a star, the longest subpath of P that lies
completely in X has length 2. Let xyz be such a subpath. Then due to Lemma 12.6
we have xy, zy 2 ED and y is the only X-neighbor of both x and z. Let S0 be the
C-separator in X that separates X from S. Then, S0 contains x and z. But, as in
the previous lemma, S0 \ {x, z} [ {y} would be a separator of smaller cardinality
separating two ends, a contradiction.

Thus a C-block cannot contain s together with a single neighbor of s and by
C-homogeneity there has to be one C-block that contains all in-neighbors of s and
one that contains all out-neighbors of s. ⇤

Lemma 12.10. Let D be a connected C-homogeneous triangle-free digraph that
is not a tree and that has more than one end, and let C be a basic cut system of D.
Then each C-separator has degree two in the structure tree T for D and C.

Proof. Let S be a C-separator. Then for each component X of T � S the
vertex set (

S
X) \ S is the union of components of D � S. Since each s 2 S has

a neighbor in each component of D � S, it also has at least one neighbor in each
component of T � S. With Lemma 12.9 we have dT (S) = 2. ⇤

If we combine Lemma 12.9 and Lemma 12.10 we get the following

Corollary 12.11. Let D be a connected C-homogeneous triangle-free digraph
that is not a tree and that has more than one end, and let C be a basic cut system
of D. Let B be a C-block, S ⇢ B a C-separator and s 2 S. If s has no neighbor in
B, then there is exactly one C-separator S0 ⇢ B such that s 2 S0 \ S. If s has a
neighbor in B, then S is the only C-separator in B that contains s. ⇤

Lemma 12.12. Let D be a connected C-homogeneous digraph with more than
one end that embeds a triangle, and let C be a basic cut system of D. Then every
C-block that contains edges is a tournament and D has connectivity 1.

Proof. Let S be a C-separator and let x 2 S. Then x has adjacent vertices
in both wings of each cut (A,B) 2 C with A \ B = S. As D contains triangles,
each edge lies on a triangle. We know that each wing of (A,B) contains both an in-
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and an out-neighbor of x, as any triangle contains a 2-arc and D is edge-transitive.
Thus every induced path of length 2 in D can be mapped on a path crossing S,
i.e. a path both end vertices of which lie in distinct wings of (A,B). Hence no two
vertices in the same C-block can have distance 2 from each other and, in particular,
every component of every C-block has diameter 1.

To prove that each C-block has diameter 1 we just have to show that each
C-block is connected. So let us suppose that this is not the case. Let X be a C-
block and let P be a minimal (undirected) path in D from one component of X to
another. Let Y be a C-block with maximal distance in the structure tree of D and C
to X that contains edges of P . By Lemma 12.5 the block Y has to contain at least
two edges and there are two non-adjacent vertices in the same component of Y .
This contradicts the fact that these components are complete graphs. Hence each
C-block that contains edges has precisely one component which has diameter 1.

For any C-block X, there is a C-separator S with S ✓ X. By Lemma 12.5,
S contains no edge and thus precisely one vertex. ⇤

12.3. C-homogeneous digraphs of Type I

In this section we shall completely classify the countable connected C-homoge-
neous digraphs of Type I with more than one end and give—apart from the clas-
sification of infinite uncountable homogeneous tournaments—a classification of un-
countable such digraphs. As a part of the countable classification we apply the
classification of Lachlan [71], see also [21], of the countable homogeneous tourna-
ments (see Theorem 2.31).

The underlying undirected graph of a digraph X�(T ) for a homogeneous tour-
nament T is a distance-transitive graph as described in [55, 76, 81]. Thus, if a
digraph X�(T ) is C-homogeneous, then so is its underlying undirected graph.

Theorem 12.13. Let D be a connected digraph with more than one end. Then
D is C-homogeneous of Type I if and only if one of the following statements holds:

(1) D is a tree with constant in- and out-degree;
(2) D is isomorphic to a X�(T), where  and � are cardinals with � � 2 and 

either 3 or infinite and T is a homogeneous tournament on  vertices.

Proof. Let us first assume that D is a C-homogeneous digraph of Type I. Then
the underlying undirected graph is isomorphic to a X,� for cardinals ,� � 2. If
 = 2, then D is a tree with constant in- and out-degree, so we may assume  � 3.
As each block is a complete digraph, it is homogeneous and, thus, we conclude from
Theorem 2.31 that the cardinal  has to be either 3 or infinite. This proves the
necessity-part of the statement.

Since the digraphs of part (1) are obviously C-homogeneous of Type I, we
just have to assume for the remaining part that D is isomorphic to X�(T) for
a cardinal � � 2 and a homogeneous tournament T on  vertices for a cardinal
 that is either 3 or infinite. Let C be a basic cut system of D. Let X and Y
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be two connected induced finite and isomorphic subdigraphs of D. Let ' be the
isomorphism from X to Y . If X has no cut vertex, then X lies in a subgraph of D

that is a homogeneous tournament and the same is true for Y , so ' extends to
an automorphism of D. So let x 2 V X be a cut vertex of X. Hence x' is a cut
vertex of Y . It is straight forward to see that for any C-block B the image of X \B

in Y is precisely the intersection of Y with a C-block A. Since the C-blocks are
all isomorphic homogeneous tournaments, the isomorphism from X \ B to Y \ A

extends to an isomorphism from X to Y . Thus the isomorphism from X to Y

easily extends to an automorphism of D. Since the underlying undirected graph is
C-homogeneous by Corollary 11.3, D is C-homogeneous of Type I. ⇤

Lachlan’s theorem together with Theorem 12.13 enables us to give a complete
classification of countable connected C-homogeneous digraphs of Type I and with
more than one end:

Corollary 12.14. Let D be a countable connected digraph with more than
one end. Then D is C-homogeneous of Type I if and only if one of the following
assertions holds:

(1) D is a tree with constant countable in- and out-degree;
(2) D is isomorphic to a X�(Y ), where  is a countable cardinal greater or equal to 2

and Y is one of the four non-trivial homogeneous tournaments of Theorem 2.31.
⇤

12.4. C-homogeneous digraphs of Type II

12.4.1. Reachability and descendant digraphs. In this subsection we
prove that, if a connected C-homogeneous digraph D with more than one end
contains no triangles, then D is highly-arc-transitive, each reachability digraph of
D is bipartite, and, if furthermore D has infinitely many ends, then the descendants
of each vertex in D induce a tree. All these properties were proved to be true in
the case that D is locally finite, see [45, Theorem 4.1].

Theorem 12.15. Let D be a connected C-homogeneous triangle-free digraph
with more than one end. Then D is highly-arc-transitive.

Proof. Let C be a basic cut system. It su�ces to show that each directed
path is induced. Suppose this is not the case. Then there is a smallest k such that
there is a k-arc A = x0 . . . xk that is not induced. Hence there is an edge between
x0 and xk. Consider a C-separator S that contains x1. By Lemma 12.7 we have
xk /2 S and by Lemma 12.5 we have x0 /2 S; hence x0 and xk lie on the same side
of S. But then the same holds for xk�1 and so on. So finally x0 and x2 have to lie
on the same side of S, in contradiction to Lemma 12.8. ⇤

Theorem 12.16. Let D be a connected C-homogeneous triangle-free digraph
with more than one end. Then �(D) is bipartite and if D is not a tree, then each
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�e with e 2 ED is a component of a C-block. Furthermore, if D has infinitely
many ends, then every descendant digraph desc(x) with x 2 V D is a tree.

Proof. Let C be a basic cut system. We first show that either D is a tree
or any �e with e 2 ED is a component of a C-block. Let us assume that D is
not a tree. Lemma 12.9 immediately implies that �e for any e 2 ED, cannot be
separated by any C-separator and, thus, each �e lies in a C-block. As there are
induced paths of length 2 crossing some C-separator and as D contains no triangle, a
component of a C-block X cannot contain more vertices than �e with e 2 E(D[X])
contains. Thus �e is a component of a C-block.

Suppose that �(D) is not bipartite. Then there is a cycle of odd length in
�(D). Thus there has to be a directed path of length at least 2 on that cycle. By
Lemma 12.6 this path lies in distinct C-blocks. This is not possible as shown above
and thus �(D) has to be bipartite.

Now suppose that there is x 2 V D such that desc(x) contains a cycle. So by
transitivity there is a descendant y of x such that there are two x-y-arcs that are
apart from x and y totally disjoint. Thus, since we are C-homogeneous, any two
out-neighbors of x have a common descendant. Assume that there are two distinct
C-separators S, S0 such that both Y := S \ S0 and Y 0 := S0 \ S contain an out-
neighbor of x. Then it exists a vertex z in D with Y -z- and Y 0-z-arcs. But by the
Lemmas 12.7 and 12.8 the vertices x and z cannot lie on the same side of S and S0,
respectively, hence S and S0 meet on both sides, a contradiction to the nestedness
of C. Thus there is a C-separator S+1 that contains the whole out-neighborhood
of x. This implies that all descendants of distance k are contained in a common
C-separator S+k, since either all distinct k-arcs originated at x are disjoint, and we
can apply the same argument as above, or each two of those k-arcs intersect in a
vertex x0 in D that has the same distance to x on both arcs by Lemma 12.7, and
we are home by induction.

With a symmetric argument we get that each k-arc that ends in x has to start in
a common C-separator S�k. For a path P in D that starts in x, let �(P ) denote the
di↵erence of the number of edges in P that are directed away from x (with respect
to P ) minus the number of edges of the other type. Then one easily checks that
the endvertex of P lies in S�(P ). Since all C-separators have the same finite order s,
say, there can be at most 2s rays that are eventually pairwise disjoint. Hence D

has finitely many ends, which proves the last statement of the theorem. ⇤

Lemma 12.17. Let D be a connected C-homogeneous triangle-free digraph with
more than one end and let C be a basic cut system of D. Then for each C-separator
S of order at least 2 there is a reachability digraph �e and a C-block K such that
|S \�e| � 2, �e ✓ K, and S ✓ K.

Proof. Let S be a C-separator with |S| � 2. Suppose that there is no reach-
ability digraph �e with |S \ �e| � 2. Let x, y 2 S and let P be an x-y-path in
a component of D � S. Let B be a C-block that contains edges of P and such
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that dT (S,B) is maximal with this property. Then the C-separator SB ✓ B that
separates S and B in T has the desired property and thus each C-separator has it,
in contradiction to the assumption. ⇤

We have roughly described the global structure of C-homogeneous digraphs. To
investigate the local structure of these graphs, we show that the underlying undi-
rected graph of each reachability digraph is a connected C-homogeneous bipartite
graph. Such graphs were already described in Section 12.1.

Lemma 12.18. Let D be a connected C-homogeneous digraph such that �(D) is
bipartite. Then the underlying undirected graph of �(D) is a connected C-homoge-
neous bipartite graph. ⇤

12.4.2. The classification. As a first result we prove that no connected C-
homogeneous digraph of Type II with more than one end contains any triangle.

Lemma 12.19. Let D be a connected C-homogeneous digraph of Type II with
more than one end. Then D contains no triangle.

Proof. Let C be a basic cut system and suppose that D contains a triangle.
By Lemma 12.12, every C-block of D that contains an edge is a tournament and
D has connectivity 1. Hence, each C-block contains edges and the C-blocks have
to be homogeneous tournaments. Thus, D is of Type I in contradiction to the
assumption. ⇤

Now we are able to classify the connected C-homogeneous digraphs of Type I
with at least two ends and connectivity 1.

Lemma 12.20. Let D be a connected C-homogeneous digraph of Type II with
more than one end. If D has connectivity 1, then D is isomorphic to DL(�(D)).

Proof. This is direct consequence of Lemma 12.19 and Lemma 12.9. ⇤

In the next two theorems we prove that in the cases that the reachability
digraph is either isomorphic to CP or to K2,2 the digraph has connectivity at most
2. Thus, in this case it remains to determine those with connectivity exactly 2.

Theorem 12.21. Let D be a connected C-homogeneous digraph of Type II with
infinitely many ends and with �(D) ⇠= CP for a cardinal  � 3. If D has con-
nectivity more than one, then D is isomorphic to M(,m) for an m 2 N with
m � 2.

Proof. By Lemma 12.19 the digraph D contains no triangle. Let C be a basic
cut system and let T be the structure tree of D and C. Let S0 be a C-separator,
let X0 = �e for an e 2 ED such that |S0 \X0| � 2, and let K0 be a C-block with
S0 ✓ K0 and �e ✓ K0, which all exists by Lemma 12.17. Let A[B be the natural
bipartition of X0 such that its edges are directed from A to B. For each a 2 A let
us denote with ba the unique vertex in B such that aba is not an edge in X0. By
symmetry we may assume that A \ S0 6= ;, so let a 2 A \ S0.
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First we will show that X0 \ S0 = {a, ba}. Since S0 contains no edges by
Lemma 12.5 it su�ces to show that A \ S0 = {a}. So let us suppose that there
is another vertex a0 6= a in A \ S0. Since any two vertices in A have a common
successor in B, we have A ✓ S0 by C-homogeneity. Let a0 2 A be distinct from
a and P an induced a-a0-path whose interior is contained in D �K0. Denote the
unique neighbor of a on P by c. Taking into account that X0 is a CP, there is
a common successor for each pair of A-vertices; let b be such a common successor
of a and a0. Since S0 separates both, b and ba, from the interior of P , the paths
cPb and cPba are isomorphic and,by C-homogeneity, we can map cPb onto cPba

by an automorphism ' of D. Then a' is a successor of c that sends an edge to ba.
Hence a' lies in A and is distinct from a, contradicting the fact that desc(c) is a
tree. Thus we know that X0 \ S0 = {a, ba} for a vertex a 2 A.

For the remainder let X0 \ S0 = {x0, x1}. Because each vertex clearly lies in
exactly two distinct reachability digraphs, there is a unique reachability digraph
X1 6= X0 that contains x1. If x0 2 X1 then it is straight forward to see that
D ⇠= M(, 2). So assume x0 /2 X1 and let  be an automorphism of D mapping X0

onto X1 and x0 to x1. Let S1, K1 denote the image under  of S0, K0, respectively,
and let x2 = x 1 . Since C is basic there is an induced x0-x1-path P the interior of
which lies in D �K0. We shall show that P contains x2.

Suppose that P does not contain x2 and has minimal length with this property.
Let u be the neighbor of x1 on P , which clearly lies in X1, and let v be a neighbor
of u in X1 distinct from x1. If v does not lie on P , then Puv is a path of the
same length as P which is induced by the minimality of P and Theorem 12.16,
contradicting the fact that x0 and v cannot lie in a common reachability digraph.
On the other hand, if v lies on P then consider a neighbor w of x2 in X1 distinct
from v. Remark that since X1 is a CP there is an edge between v and x2. Thus
by the choice of P the path Pvx2w is induced and of the same length as P , which is
impossible since x0 and w do not belong to a common reachability digraph. Hence
P contains x2.

We have just proved that {x1, x2} separates x0 from any neighbor of x1 in X1.
Hence all C-separators have order 2 and thus the blocks which contain edges consist
each of a single reachability digraph. Now we repeat the previous construction to
continue the sequences (Xi)i2N, (Si)i2N, (Ki)i2N and (xi)i2N, respectively. Since
Px2 is an induced x0-x2-path the interior of which lies in D�K1, we can apply the
same argument as above to assure that P contains x3. Hence by induction we have
xi 2 P for all i 2 N, and since P is finite there is an m 2 N such that xm = x0.
Furthermore we have Xm = X0, Sm = S0 and Km = K0. One can verify that
{x0, x1, . . . , xm�1} forms a maximal C-inseparable set—a C-block—which means
that D is isomorphic to M(,m). ⇤

Theorem 12.22. Let D be a connected C-homogeneous digraph of Type II with
infinitely many ends and with �(D) ⇠= K2,2. If D has connectivity more than one,
then D is isomorphic to M 0(2m) for 2  m 2 N.
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Proof. Lemma 12.19 implies that D contains no triangle. Let C be a basic
cut system of D. Let S0 be a C-separator and let X0 = �e for an e 2 ED such
that |S0 \X0| � 2. Such an X0 exists by Lemma 12.17. As �(D) ⇠= K2,2 and as
no C-separator contains any edge by Lemma 12.5, there is |S0 \ X0| = 2. So let
x0, x1 be the two vertices in X0 \ S0. Let X1 be the other reachability digraph
that contains x1 and let x2 be the unique vertex in X1 that is not adjacent to x1.
Let  be an automorphism of D that maps X0 onto X1 and let S1 be the image
of S0 under  .

With the same technique as in the previous proof, we can verify that {x1, x2}
separates D and so S0 = {x0, x1}. We can continue the sequences (xi)i2N and
(Si)i2N so that S1 = {x1, x2} and Si = {xi, xi+1}, and there is an n 2 N such that
xn = x0. Since D has infinitely many ends we have n � 3, and as xi 2 Si only holds
for all even integers i we have n = 2m with m � 2. Now analog as in the proof
of Theorem 12.21

S
i Si forms a C-block that contains no edges. Hence there are

precisely two Aut(D)-orbits on the C-blocks and D is isomorphic to M 0(2m). ⇤

If we assume �(D) to be one of the other possibilities as described in The-
orem 12.4, then the C-homogeneous digraphs have—in contrast to the other two
cases—connectivity 1.

Lemma 12.23. Let D be a connected C-homogeneous digraph of Type II with
infinitely many ends and such that �(D) is isomorphic to a T,� for cardinals ,�,
a C2m with 4  m 2 N, a K,� for cardinals ,� � 2, or an infinite homogeneous
generic bipartite digraph. Then D has connectivity 1.

Proof. Since D is of Type II, it contains no triangle by Lemma 12.19. Let us
suppose that D has connectivity at least 2 and let C be a basic cut system of D.
Let S be a C-separator and let X be a reachability digraph with |S \X| � 2 as in
Lemma 12.17. We investigate the given reachability digraphs one by one and get
in each case a contradiction and, thereby, we get a contradiction in general to the
assumption that D has connectivity at least 2. So let us assume that X ⇠= T,�

for cardinals ,�. By Lemma 12.9 we know that ,� � 2, as D is not a tree. Let
x, y 2 S\X such that dX(x, y) is maximal. Such vertices exist as S is finite. Let e1

be the first edge on the path from x to y in X and let e2 be another edge incident
with x. There is an ↵ 2 Aut(D) with e↵1 = e2. But then y↵ lies in a common
separator with x, as x↵ = x. By Corollary 12.11 the separator S↵ has to be the
same as S. But this contradicts the maximality of dX(x, y), as dX(y↵, y) > dX(x, y).

Let us now assume that X ⇠= C2m for a 4  m 2 N and let x, y be distinct
vertices in S\X. Then there is an induced path P from x to y that lies apart from
x and y in a component of D � S that intersects trivially with X. We first show
that we may assume that dX(x, y) � 4. Let e1, e2 be the two edges in D[X] that
are incident with x. If dX(x, y) = k  3, then let ↵ 2 Aut(D) with e↵1 = e2. Then
there is dX(y, y↵) = 2k, as m � 4. Thus we have shown that there are x, y 2 S \X

with dX(x, y) � 4. Let s1 and s2 be the vertices in X that are adjacent to y and
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let t be a vertex in X that is adjacent to x. Since dX(x, y) � 4, the graphs txPysi

for i = 1, 2 are induced paths. Hence there is an automorphism ↵ of D that maps
txPys1 onto txPys2 and thus dX(s1, x) = dX(s2, x) and dX(s1, t) = dX(s2, t), a
contradiction as X is a cycle.

For the next case let us assume that X ⇠= K,� for cardinals ,� � 2. Let
A [ B be the natural bipartition of X. Since |S \ X| � 2, the vertices in S \ X

lie in the same partition set, A say. By the C-homogeneity it is an immediate
consequence that A ✓ S. As the C-separators have minimal cardinality with respect
to separating ends, there is |A|  |B|. If there is a C-separator S0 with |S0\B| � 2,
then B ✓ S0. If in addition the intersection of B with another reachability digraph
distinct from X is B, then it is a direct consequence that  = � is finite and that
D has two ends. Thus there are two distinct reachability digraphs X1,X2 that
intersect with B non-trivially and that are distinct from X. Let A1, B1, A2, B2 be
the natural bipartitions of X1,X2, respectively. Let P be an induced path from
A1\B to A2\B in a component of D�S0 that intersects non-trivially with X. Let
a be the vertex on P that is adjacent to the vertex in P \A1 and let b be a vertex
in B \ A1 not on P . Then there is an automorphism ↵ of D that maps P onto
baP . But this contradicts the fact that the endvertices of P lie both in B but the
endvertices of baP do not lie in in any common reachability digraph as |A1\B| = 1.
Thus we conclude that |B \ S0| = 1. So let x, y, z 2 B be three distinct vertices.
There is a shortest induced path P from x to y in that component of D � S that
contains B. Let a 2 A and let b be the vertex on P with distance 2 to y. Then there
is an automorphism ↵ of D that maps zaxPb onto yaxPb. Thus we conclude that
d(b, z) = 2. But then z has to have incident edges that are directed both towards
or both from distinct C-blocks. This contradicts Lemma 12.9.

Let us finally assume that X is isomorphic to an infinite homogeneous generic
bipartite digraph. Let again A [ B be the natural bipartition of X. Since X is
homogeneous, all vertices in the same set A or B have distance 2 to each other.
We conclude that |S \ A| � 2 immediately implies A ✓ S which contradicts the
finiteness of S. Conversely we also know |B \ S|  1. Since D has connectivity at
least 2, there is |A \ S| = 1 = |B \ S|. Let a, b be the vertices in A \ S,B \ S,
respectively, and let ab0a0b be a path of length 3 from a to b. This path exists
because each two vertices in the same set A or B have distance 2 to each other as
before. Since there are infinitely many vertices in A that are adjacent to b0 but not
to b, all these vertices have to lie in S, a contradiction. Thus we conclude that D

has connectivity 1. ⇤

Let us summarize the conclusions of this section in the following theorem. In
its proof we will finally prove that all the candidates for C-homogeneous digraphs
are really C-homogeneous.

Theorem 12.24. Let D be a connected digraph of Type II with infinitely many
ends. Then D is C-homogeneous if and only if one of the following holds:
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(1) �(D) ⇠= CP for a cardinal  � 3 and D ⇠= DL(�(D)).
(2) �(D) ⇠= C2m for 2  m 2 N and D ⇠= DL(�(D)).
(3) �(D) ⇠= K,� for cardinals ,� � 2 and D ⇠= DL(�(D)).
(4) �(D) is isomorphic to an infinite homogeneous generic bipartite digraph and

D ⇠= DL(�(D)).
(5) �(D) = CP and D ⇠= M(,m) for a cardinal  � 3 and 2  m 2 N.
(6) �(D) = K2,2 and D ⇠= M 0(2m) for 2  m 2 N.

Proof. By the Lemmas 12.19, 12.20, and 12.23 and by the Theorems 12.21 and
12.22, it remains to show that the described digraphs are indeed C-homogeneous.
Remark that the underlying undirected graph of DL(T,�) is a regular tree and thus
DL(T,�) is not of Type II. It is straight forward to see that the graphs of the part
(1)-(4) are C-homogeneous. So let D ⇠= M(,m) for an m 2 N with m � 2 and a
cardinal . Let C be a basic cut system of D. Let A and B be two connected induced
finite and isomorphic subdigraphs of D and let ' be an isomorphism from A to B.
Let us first consider the case that A contains no 2-arc. Then both A and B lie in
a reachability digraph, each. Without loss of generality we may assume that they
lie in the same reachability digraph � of D. But, as the reachability-digraphs are
obviously C-homogeneous, it is straight forward to see that the isomorphism ' from
A to B first extends to an automorphism of � and then also to an automorphism
of D. So let us assume that A contains a 2-arc. Let us consider the case that A

is a k-arc for some k � 2. Let A1, A2 be two induced subdigraphs of A that have
one common vertex, are both connected, and whose union is A. Then both are
shorter arcs and, by induction, we can extend both restrictions, '|A1 and '|A2 , to
automorphisms  1, 2 of D, respectively. Let S be a C-separator that contains the
common vertex of A1 and A2. There are two possibilities for S if m � 3, and one
possibility if m = 2. If m = 2, then it is an immediate consequence that S 1 = S 2

and that we can combine the two automorphisms to one that extends ' by setting
'|Ki =  i|Ki , where Ki is the component of D � S that contains vertices of Ai,
and '|S =  1|S . So we assume that m � 3. We choose in this case S so that it
lies in a common C-block with an edge of A1. Let S0 = S 1 . As we had just two
possibilities for the choice of S, the image of S under  2 has to be S0, too. In the
same way as above, we can combine appropriate restrictions of  1 and  2 to an
automorphism of D that extends '.

Now let us assume that A is no k-arc. Then there is a C-block X that contains
two edges of A that have a common vertex. Let us first assume that X contains
three edges of A. Then, since � ⇠= CP, we know that X \A is connected. Thus,
(X \A)' lies in a C-block Y of B and we have (X \A)' = B\Y . We have already
shown that we can extend '|A\X to an automorphism  X of D. If each component
of D � X contains at most one component of A, then we have the extensions of
the restriction of ' to these components and we can construct, as in the case of
k-arcs, an automorphism of D. So we assume that there is at least one component
C of D � X such that, for the C-separator S ✓ X that separates X and C, the
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digraph A0 = A\(C[S) contains at least two components. As the C-separators have
cardinality 2, A0 consists of precisely two components. Let Z 6= X be the second
C-block that contains S. If Z contains edges, that means m = 2, then A\Z consists
of precisely two edges that have their other incident vertices again in a common
separator. Since the same must be true for Z X \ B, we may assume inductively
that we have extended '|A\X so that  X coincides with '|Z\A on Z \A. Thus, we
can consider the case that Z does not contain any edge. There is an enumeration
z1, . . . , zm of the vertices of Z such that {zm, z1} and for all i  m also {zi, zi+1}
are all the C-separators in X. We may assume that S = {z1, zm}. Let Ci be the
subdigraph induced by zi, zi+1 and that component of D� {zi, zi+1} that contains
no other zj . If Ci \ A consists of one component and contains zi and zi+1, then
we can extend the restriction of ' to that component to an automorphism  i of D

and we may suppose that we have chosen  X so that they are equal on Ci. If there
is one Ci that has at least two components of A\Ci, then it is unique and we can
suppose that  X |Ci =  i|Ci on all Ci such that A\Ci is connected. By induction,
we can assume that the same holds also for a component Ci such that A \ Ci is
not connected. So the only remaining case is if Ci \ A is connected but contains
only one of the vertices zi, zi+1. But in this case we know that this situation occurs
in at most one other Cj with i 6= j. Then '|A\Ck with k 2 {i, j} extends to an
automorphism  k of D by induction. Because these two automorphisms exist, we
know that S k

i contains only one vertex of B, and hence we can assume that  X

and  k coincide on Ck. Thus, if we extend this to all the components of D �X,
we know that  X extends '.

The final case that remains is when the block X contains only two edges. Then
it might be the case that X \A is not connected. If it is not connected, then there
has to be a C-block that contains at least three edges, so we assume that X \ A

is connected. If, for the C-block Y that contains (X \ A)', we have that Y \B is
connected, then we can construct an automorphism that extends ' as in the case
where X contained three edges of A. On the other hand, if Y \B is not connected,
there has to be a C-block that contains three edges of B, and the same must be
true for a C-block and A. Since we know that in this case there is an automorphism
of D that extends ', we have proved that M(,m) is C-homogeneous.

In the case that D ⇠= M 0(2m) for an m 2 N the arguments used are analog
ones as in the case D ⇠= M(,m) and therefore we omit that proof here. ⇤

12.4.3. Line digraphs of C-homogeneous digraphs. It is well known
(see [19]) that line digraphs of highly-arc-transitive digraphs are again highly-
arc-transitive. In some cases also C-homogeneity is preserved under taking the
line digraph: Gray and Möller [45] stated that the line digraph of a DL(C2m) is
C-homogeneous. In terms of our classification:

Remark 12.25. For each m 2 N we have L(DL(C2m)) ⇠= M 0(2m).



12.5. THE NON-INDEPENDENT CASE 105

Proof. Consider the digraph D = DL(C2m) for a m 2 N. By construction
the deletion of each single vertex v of D splits the digraph into two components
such that v has two out-neighbors in the one and two in-neighbors in the other
component. Thus the four edges that are incident with v form a K2,2 in L(D)
whose independent vertex sets separate L(D). Furthermore the edges of each C2m

in D form an independent set in L(D) so that any two adjacent edges lie in a
common K2,2 in L(D). One can easily verify that this digraph is indeed isomorphic
to M 0(2m). ⇤

Interestingly, our classification of the C-homogeneous digraphs with infinitely
many ends implies that C-homogeneity is not generally preserved under taking line
digraphs. Indeed, for all m 2 N the line digraph of M 0(2m) is triangle-free, has in-
finitely many ends, and has connectivity 4, hence it is not of Type II. Thus, by The-
orem 12.24, we know that L(M 0(2m)) ⇠= L(L(DL(C2m))) is not C-homogeneous.
This had remained an open question in [45].

12.5. The non-independent case
for C-homogeneous digraphs with at most one end

Now we turn our point of view to the C-homogeneous digraphs all whose vertices
have finite degree and that is, if it is an infinite digraph, at most one end. It is a
straightforward argument that the out-neighborhood as well as the in-neighborhood
of any vertex of a C-homogeneous digraph has to be a homogeneous digraph. We
state the classification result of Lachlan in Theorem 12.26. We investigate which of
the homogeneous digraphs of Theorem 12.26 may occur as a subdigraph induced
by N+(x) or by N�(x) for a vertex x 2 V D. In this section we take a look at those
cases that contain an edge and show that there is precisely one such case that may
occur. This case is a generalization of the digraph H that occurs in the case (v) of
Theorem 12.26.

Theorem 12.26. [70, Theorem 1] A finite digraph is homogeneous if and only
if it is isomorphic to one of the following digraphs:

(i) the C4;
(ii) a K̄n for an n � 1;
(iii) a K̄n[C3] for an n � 1;
(iv) a C3[K̄n] for an n � 1;
(v) the digraph H. ⇤

Let x be a vertex of a connected locally finite C-homogeneous digraph. Our first
aim is to show that N+(x) and N�(x) are both not isomorphic to H. Therefore, we
define a dominated directed triangle to be a digraph that is isomorphic to a directed
triangle together with a vertex that sends edges to all its vertices (Figure 5).

Lemma 12.27. For every connected locally finite C-homogeneous digraph D

there is N+(x) 6⇠= H and N�(x) 6⇠= H for all x 2 V D.



106 12. CONNECTED-HOMOGENEOUS DIGRAPHS

Figure 5. A dominated directed triangle

Proof. Let x 2 V D and suppose by symmetry that N+(x) ⇠= H. Then there
is a dominated directed triangle embedded in N�(y) for all y 2 N+(x). Hence we
also have N�(x) ⇠= H.

If two vertices x, y are adjacent, say xy 2 ED, then |N+(x)\N+(y)|  3 since
N+(y) ⇠= H. Furthermore, there exists a vertex z 2 N�(y) \N+(x).

Claim 12.28. No neighbor of y lies in N+(x) \N+(z).

Proof of Claim 12.28. Suppose that there is a vertex a 2 N+(x)\N+(z)\
N(y). By mapping D[x, y, z] onto D[x, a, z] by an automorphism of D, we get
recursively a directed cycle in N+(x)\N+(z). We already mentioned that |N+(x)\
N+(z)|  3. Hence there is a directed triangle in N+(x) \ N+(z). Let v1 be a
vertex in N+(x) that has two neighbors in N+(x) \ N+(z), let v2 be a vertex in
N+(x) with N+(x) \ N+(z) ✓ N+(v2), and let v3 be a vertex in N+(x) with
N+(x) \N+(z) ✓ N�(v3). Such vertices exist because N+(x) ⇠= H. Then either
two of these vertices are adjacent to z—and hence lie in N�(z)—or two of them are
not adjacent to z. Let vi, vj (i 6= j) be two vertices either both of the first or both of
the second kind. Then D[z, x, vi] ⇠= D[z, x, vj ], and thus there is an automorphism
of D mapping the first onto the second subdigraph. But this is a contradiction by
the choice of vi and vj . ⇤

As N+(x) ⇠= H, there are two out-neighbors of z that are adjacent to y in
contradiction to Claim 12.28. Thus the lemma is proved. ⇤

The next case that we exclude is that neither the out- nor the in-neighborhood
induces a subdigraph isomorphic to C4.

Lemma 12.29. Let D be a connected locally finite C-homogeneous digraph and
let x 2 V D. Then N+(x) 6⇠= C4 and N�(x) 6⇠= C4.

Proof. By regarding the digraph whose edges are directed in the inverse way,
if necessary, we may suppose that N+(x) ⇠= C4. Let us denote with v1, . . . , v4

the four vertices in N+(x) with vivi+1 2 ED for 1  i  3 and v4v1 2 ED. Since
x, v4 2 N�(v1) and since N�(v1) is homogeneous, there is another vertex in N�(v1)
distinct from both x and v4.

We know by Lemma 12.27 that N�(v1) 6⇠= H.

Claim 12.30. There is no other vertex than x in N�(v1) \N�(v2).
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Proof of Claim 12.30. Let us suppose that there is a vertex y 2 N�(v1) \
N�(v2). Then an immediate consequence of the C-homogeneity is N+(x) = N+(y).
But then neither xy nor yx can be an edge of D. The subdigraph induced by
{x, y, 4} is a subdigraph of N�(v1) and thus N�(v1) ⇠= K̄n[C3] with n > 1. Then
there is z 2 N+(x) \ N�(v1) which is distinct from v4. This is not possible and
hence no such y exists. ⇤

Claim 12.31. There is no vertex in N�(v1) \N+(v2).

Proof of Claim 12.31. Suppose that there is a vertex y 2 N�(v1)\N+(v2).
If y is neither adjacent to x nor to v4, then N�(v1) has to be isomorphic to K̄n[C3]
with n > 1. Then there is an automorphism ↵ of D with v↵4 = v4, v↵1 = v1, and
v↵2 = y and hence x 6= x↵ 2 N�(v1) \N�(v4). This contradicts Claim 12.30 with
v4 and v1 instead of v1 and v2. So y is adjacent to at least one of x and v4.

If y is adjacent to x but not to v4, then N�(v1) ⇠= C4 or N�(v1) ⇠= H since an
induced path of length 2 embeds into N�(v1). As we already saw, only the first
case can occur and then there is an automorphism ↵ of D with v↵4 = y, v↵1 = v1,
and v↵2 = v2. So x 6= x↵ and x↵ is a second vertex in N�(v1) \N�(v2), which is
impossible by Claim 12.30.

If y is adjacent to v4 but not to x, then we distinguish two cases: in the first
one yv4 2 ED. But then by C-homogeneity applied to D[y, x, v4] and D[y, x, v1]
also v2 2 N+(y) contrary to the case we are discussing. In the second case we
have v4y 2 ED and thus N�(v1) ⇠= C4. Then there has to be a vertex z 2
N�(v1) \ {v4, x, y}. If z is not adjacent to v2, then there is an automorphism
of D that maps D[v2, v1, z] onto D[v2, v1, v4]. Since this automorphism cannot
fix x, the image of x also lies in N�(v1) \ N�(v2) contrary to Claim 12.30. If
v2z 2 ED, then there is an automorphism of D that maps the cycle D[v2, y, v1]
onto D[v2, z, v1]. This is again a contradiction and the final contradiction in the
case that y is adjacent to v4 but not to x is given directly by Claim 12.30 since, if
zv2 2 ED, then z 2 N�(v1) \N�(v2).

Let us now consider the case that both x and v4 are adjacent to y. By the
same arguments as above there has to be v4y 2 ED and not yv4 2 ED. By C-
homogeneity we have yv3 2 ED and since y /2 N+(x), we have yx 2 ED. But then
D[v1, x, v3] is a subdigraph of N+(y) but this digraph cannot be embedded into a
C4 and thus we just have proved the final contradiction of this claim. ⇤

Claim 12.32. There is no vertex in N�(v1)\N+(v4) that is not adjacent to v2.

Proof of Claim 12.32. Let us suppose that there exists y 2 N�(v1)\N+(v4)
such that y is not adjacent to v2. Then v3 is not adjacent to y, too, and hence
there is an automorphism ↵ of D that maps D[v3, v4, v1] onto D[v3, v4, y]. Since
y /2 N+(x), we have x 6= x↵ 2 N�(v3) \ N�(v4) and thus a contradiction to
Claim 12.30. ⇤

Claim 12.33. There is N�(v1) \N+(v2) 6= ; or N�(v1) \N+(v4) 6= ;.
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Proof of Claim 12.33. Suppose that both intersections are empty. Let y 2
N�(v1) with x 6= y 6= v4. If x and y are not adjacent, then N�(v1) has to
be isomorphic to K̄n[C3] for an n > 1. Hence there is z 2 N+(v4) \ N�(x) \
N�(v1). This is a direct contradiction to the assumptions. Thus x and y have to
be adjacent and hence yx 2 ED. So there is an induced path of length 2 in N�(v1)
and thus N�(v1) ⇠= C4 or N�(v1) ⇠= H, whereas the second case cannot occur
by Lemma 12.27. So N�(v1) ⇠= C4. Then both D[v4, v1, v2] and D[y, v1, v2] are
isomorphic subdigraphs of D and thus there is an automorphism ↵ of D that fixes
v1 and v2 and maps v4 onto y. We conclude that x↵ 2 N�(v1) \N�(v2) which is
untenable because of Claim 12.30. ⇤

By all the claims we showed that there is no vertex in N�(v1) distinct from
x and from v4 in contradiction to the homogeneity of N�(v1) by Theorem 12.26.
Thus we proved Lemma 12.29. ⇤

Lemma 12.34. Let D be a connected C-homogeneous digraph with N+(x) ⇠=
K̄n[C3] and N�(x) ⇠= K̄m[C3] for all x 2 V D and for some m,n � 1. Then
m = n = 1.

Proof. Let xy 2 ED. Then there exists z 2 N�(y) \ N�(x). By regarding
N�(y), we obtain an a 2 N�(y)\N+(x) with az 2 ED. Let b be the third vertex
of N+(x) in that isomorphic image of C3, that contains y and a. We have neither
zb nor bz in ED since otherwise there is an edge either in N+(x) \ N+(z) or in
N+(x)\N�(z) and by applying the C-homogeneity we obtain the whole isomorphic
image of C3, D[a, b, y], in N+(x)\N+(z) or in N+(x)\N�(z) which is impossible.

Let us suppose that n > 1. Then there exists a vertex y0 2 N+(x) that is
distinct from a, b, and y. Then there is a vertex v 2 {a, b, y} such that D[z, x, v] ⇠=
D[z, x, y0] and hence the isomorphic image of C3 in N+(x) that contains y0 contains
a vertex of N+(z). We may suppose that y0 2 N+(z). But then D[y, x, y0] is a
digraph that cannot be embedded into N+(z). So n 6> 1. By a symmetric argument
we also have m = 1. ⇤

Lemma 12.35. Let D be a connected locally finite C-homogeneous digraph and
x 2 V D. If N+(x) ⇠= C3[K̄n] or if N�(x) ⇠= C3[K̄n] for an n � 1, then there is
D ⇠= H[K̄n].

Proof. We assume that N+(x) ⇠= C3[K̄n] for an n � 1. Let y 2 N+(x). Then
x together with n vertices of N+(x) lie in N�(y) and hence N�(y) ⇠= C3[K̄m] for
an m � n or n = 1 and N�(y) ⇠= K̄m[C3] for an m � 1 which has to be equal to 1
by Lemma 12.34, so in each case N�(y) ⇠= C3[K̄m] for an m � n. By symmetry we
conclude that m = n. Then there is a vertex z 2 N�(x) \N�(y).

Claim 12.36. N+(x) \N+(z) is an independent set of cardinality n.

Proof of Claim 12.36. This is a direct consequence of the fact that N+(z)
is isomorphic to C3[K̄n]. ⇤
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An immediate consequence of the C-homogeneity of D is N+(x) \N�(z) 6= ;.

Claim 12.37. N+(x) \N�(z) is an independent set of cardinality n.

Proof of Claim 12.37. We already know that the set N+(x)\N�(z) is not
empty. So let us suppose that there is an edge ab with both of its incident vertices
in N+(x) \N�(z). Then the digraphs D[z, x, a] and D[z, x, b] are isomorphic and
hence there is an automorphism of D mapping the first onto the second one. As a
consequence of Claim 12.36 both, a and b, have to be adjacent to all the vertices in
N+(x)\N+(z). Hence there is y0a 2 ED and by0 2 ED for all y0 2 N+(x)\N+(z).
Thus no such automorphism can exist and we conclude that no such edge ab can
exist. Since there are at least n vertices in N�(y) that lie in N+(x) \N�(z) and
since there are at most n vertices in N+(x) that are pairwise not adjacent, the
assertion follows. ⇤

Claim 12.38. There is |N+(x) \N+(z)| = n = |N+(x) \N�(y)|.

Proof of Claim 12.38. This is a direct consequence of the fact that the
subdigraph induced by N+(x) is isomorphic to C3[K̄n]. ⇤

Claim 12.39. There is an equivalence relation ⇠ on V D whose equivalence
classes have precisely n independent vertices each and such that D⇠ is isomorphic
to H and D⇠[K̄n] is isomorphic to D.

Proof of Claim 12.39. Let us define a relation ⇠ via

a ⇠ b :, N�(a) = N�(a) \N�(b) = N�(b).

Then ⇠ is obviously an equivalence relation.
If we consider two of the equivalent classes of ⇠, then all of the edges between

these two classes must be directed in the same direction and furthermore the digraph
induced by these two classes is a complete bipartite digraph. Hence D induces a
C-homogeneous digraph on D⇠ with D ⇠= D⇠[K̄n].

It is a straightforward argument to show that D ⇠= H if N+(x) ⇠= C3. So if we
consider D⇠, then we may instead assume that N+(x) ⇠= C3 for all x 2 D⇠ and
hence we obtain the isomorphism. ⇤

The lemma is a direct consequence of the previous claim. ⇤

12.6. The independent case
for C-homogeneous digraphs with at most one end

In this section we consider the situation that every out-neighborhood—and
hence by the results of Section 12.5 also every in-neighborhood—is independent.
The first case we classify is if every vertex has in- or out-degree 1.

Lemma 12.40. Let D be a locally finite connected C-homogeneous digraph and
let x 2 V D. If N+(x) or N�(x) consists of precisely one vertex, then D is either
an infinite tree or a directed cycle.
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Proof. By symmetry we may assume that N+(x) consists of precisely one
vertex. Let F be the subdigraph of D that is induced by all descendants of x.
Then either this contains a directed ray or a directed cycle. If F contains a directed
cycle, then, by the C-homogeneity, x has to lie on such a cycle, say C. Suppose
that a vertex y exists that does not lie on C but has a successor on C. Let ↵ be
an automorphism of D with x↵ = y. Then C↵ \C contains the successor of y and
hence y has to lie on C since every vertex of C has its unique successor on C. So
in this case we conclude that D is a directed cycle.

We now assume that no directed cycle lies in F . Let H be the digraph that is
induced by all ancestors of vertices of F . As |N+(x)| = 1 and as D is connected,
H has to be the whole digraph D. Now let us suppose that there is an undirected
cycle in D. Then there has to be a vertex on that cycle that has out-degree at
least 2 since F is a ray, contrary to the assumption. Hence D is an infinite tree. ⇤

In the following we will at first suppose that our digraphs su�ce the assump-
tions of Lemma 12.18 to apply the result of Section 12.1 and to obtain partial
classification results which will be completed in Section 12.7. Recall that the as-
sumptions of Theorem 12.18 is that the reachability digraph of the digraph is bipar-
tite. Thereafter we shall prove in the lemmas 12.47 and 12.53 that the connected
locally finite C-homogeneous digraphs indeed always satisfy these assumptions.

Lemma 12.41. Let D be a locally finite connected C-homogeneous digraph such
that N+(x) and N�(x) are independent sets for all x 2 V D. If �(D) is bipartite,
then either �(D) is a finite digraph or C3 embeds into D and �(D) ⇠= T2,2.

Proof. Suppose that �(D) is not finite. Since D is locally finite, we conclude
from Theorem 12.4 that �(D) ⇠= Tk,l for integers k, l � 2. We distinguish two
cases: Either C3 embeds into D or not. So let us first suppose that C3 does not
embed into D. Let �1,�2 be two distinct reachability digraphs with non-empty
intersection and let us denote with di the distance in �i between vertices of �i.
If �1 and �2 intersect in at most one vertex, let x, y, z 2 V D with xz, yz 2 ED,
x, y, z 2 V �1, z 2 V �2. Then there is a ray R in �2 starting in z and such
that no vertex on R except for z is adjacent to x or y because none of the out-
neighbors of z is adjacent to x or y. Let a 2 V �1 with r := d1(a, x) � 2 and
d1(a, x) < d1(a, y), d1(a, z). Then there is a path P outside Br+2(x) from a to R.
Let P 0 be the (induced) path in P [R from a to z. Then the subdigraphs P 0 [ {x}
and P 0[{y} are isomorphic—we can map x, z, z1 onto x, z, z2 for any two successors
of z and thus we may conclude that no vertex of �2 except for z is adjacent to x or
to y. But there is no automorphism of D mapping the first onto the second since
d1(a, x) < d1(a, y). Thus we have |�1\�2| � 2 and hence there are infinitely many
vertices in �1 \�2 because of the C-homogeneity of D.

If there are two vertices u, v in �1\�2 with minimal distance di(u, v) and with
di(u, v) � 3 and dj(u, v) � 2 (i 6= j), then we get a contradiction by two analog
paths as before.
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So we conclude that for all u, v 2 V �1 \ V �2 with minimal distance in �1

there is d1(u, v) = 2 = d2(u, v). Now we shall construct a cycle in �2. Let x1 be
the vertex in �1 that is adjacent to both u and v and let x2 be another neighbor of
u in �1. Let y1 and y2 be analog vertices in �2. Then there is an automorphism
of D that fixes u, y1 and y2 and maps x1 onto x2 and vice versa. Hence x1 has
another neighbor v0 in �1 that is also a neighbor in �2 of y2. But as d1(v, v0) = 2,
there is a neighbor y3 of v and v0 in �2. Then the digraph induced by the vertices
u, v, v0, y1, y2, y3 induces a cycle of length 6 in �2 which is impossible.

For the last case we suppose that C3 embeds into D. Let �1,�2 be as above
and xz, yz 2 E�1 with z 2 �1 \�2. Let us suppose that d+ � 3 or d� � 3. Then
we obtain a contradiction similar to the first one, if there is an out-neighbor of z

that is adjacent neither to x nor to y. So we may assume that there are at least
two elements of N+(z) that are adjacent to x. As D is C-homogeneous, each two
elements of N+(z) have a common successor, and since �(D) ⇠= Tk,l, there is a
vertex adjacent to all elements of N+(z). This vertex has to be x by the choice
of x. But by C-homogeneity this also holds for y, so there is a cycle in �3 which is
impossible. So in this case we have d+ = d� = 2. ⇤

Lemma 12.42. Let D be a locally finite connected C-homogeneous digraph with
at most one end such that N+(x) and N�(x) are independent sets for all x 2 V D.
If �(D) is bipartite and if the intersection of any two reachability digraphs does not
separate each of them, then no reachability digraph separates D.

Proof. Suppose that there is a reachability digraph �1 that separates D. Let
�2 be a reachability digraph with V �1 \ V �2 6= ;, let x 2 V �1 \ V �2, y be a
neighbor of x in �2, and let Ci, i = 1, 2, be the component of D��i that contains
y or is adjacent to y by an edge that lies not in E�i. If C2 does not contain any
vertex of �1, then C2 ⇢ C1 with C2 6= C1. So both C1 and C2 have to be infinite
since they are isomorphic. Thus D has one end in C1 \C2 and symmetrically also
another one in (D � C1) \ (D � C2) contrary to the assumptions. So C2 contains
a vertex of �1 and C2 6⇢ C1. But then, as �1 \ V �2 is connected, there is another
component C02 of D��2 that is completely contained in C1 and contains no vertex
of �1. The component C02 does not have to be isomorphic to C1, but since there is a
reachability digraph �3 in C02, we obtain a component C3 of D��3 with C3 ⇢ C02
and so on. Because the degree of any vertex is finite, there are m,n such that Cm

and Cn—or C02 if m or n is 2—lead to an analog contradiction as before. ⇤

The following lemma is the main lemma for the case that there is no isomorphic
copy of C3 in the C-homogeneous digraph. After its proof, we show in Lemma 12.47
that in the case that the out-neighborhood and the in-neighborhood each are in-
dependent sets the connected locally finite C-homogeneous digraphs that contains
directed triangles always satisfy the assumptions of Lemma 12.43, so that in this
case the conclusion of Lemma 12.43 holds.
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Lemma 12.43. Let D be a locally finite connected C-homogeneous digraph that
contains no directed triangle and such that N+(x) and N�(x) are independent sets
for all x 2 V D. If �(D) is bipartite, then either D has at least two ends or D is
isomorphic to Cm[K̄n for an m � 4, n � 1.

Proof. Let �(D) be bipartite. We suppose that D contains at most one end
and, by Lemma 12.40, that d+, d� � 2.

Claim 12.44. Let �1,�2 be two reachability digraphs with non-trivial intersec-
tion. Then either their intersection is contained in the same side of the bipartition
of �1 or �(D) ⇠= CPk for a k � 3 and the intersection consists of precisely one
unmatched pair in CPk.

Proof of Claim 12.44. Suppose that the claim does not hold. We remember
that the reachability digraphs are induced subdigraphs. So D consists of at least 3
reachability digraphs. We also conclude that �(D) cannot be a complete bipartite
digraph, so it is either the complement of a perfect matching or a directed cycle.
Let x, y 2 �1 \�2 be on distinct sides of �1 (and hence also of �2) with minimal
distance in �1. If �1

⇠= C2m for an m � 4, then we choose a minimal path P in
�2 from x to y. Let x0 be a neighbor of x in �1 and y1, y2 two neighbors of y

in �1. Then by mapping Pyy1 onto Pyy2 we obtain d�1(x, y) = m and hence the
subdigraphs induced by x0xPyy1 and x0xPyy2 are isomorphic paths. We conclude
that also d�1(x0, y) = m, a contradiction. So �(D) is isomorphic to CPk for a
k � 3. Then �1 \ �2 consists of precisely two vertices that are not matched as
claimed. ⇤

Since each vertex lies in at most two reachability digraphs, we consider the
following two relations: Let x ⇠ y for x, y 2 V D if x and y lie on the same side
of a reachability digraph, that is, both have the same out-degree and the same
in-degree in that reachability digraph and one of these two values is 0. Let x ⇡ y

for x, y 2 V D if x and y lie on the same side of two reachability digraphs.

Claim 12.45. Let x, y 2 V D. Then x ⇠ y if and only if x ⇡ y.

Proof of Claim 12.45. Let x, y 2 V D. It su�ces to prove that x ⇠ y im-
plies x ⇡ y. So let us suppose that x ⇠ y but x 6⇡ y and let � be the reachability
digraph that contains both vertices, x and y, on the same side. Since �(D) is finite
by Lemma 12.41, we know from Theorem 12.4 that both sides of the reachability
digraph have the same size. Hence there is a vertex with two successors in distinct
reachability digraphs and one with two predecessors in two distinct reachability
digraphs. We conclude by the C-homogeneity that for every vertex each two suc-
cessors lie in precisely one common reachability digraph and the same holds for
each two predecessors. So we may assume that x and y have distance 2. Let v1 be
a vertex in the same reachability digraph as x and y that is adjacent to both x and
y. By symmetry we may assume that xv1, yv1 2 ED.
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The next aim is to show that no reachability digraph separates D. Let us
suppose that the converse holds. By Lemma 12.42 each two reachability digraphs
that have at least one common vertex, have at least two common vertices. We
conclude from Lemma 12.42 and Claim 12.44 that the intersection of each two
reachability digraphs is contained in one side of the bipartition of each one. But
then Theorem 12.4 implies that �(D) is a cycle of length 2m with m � 4. So let
a, b be two vertices in the same two reachability digraphs �1 and �2 with minimal
distance. Then there is a minimal path P between a and b in �1. Let w1, w2 be
the neighbors of b in �2, let u1 be the vertex on P that is adjacent to a, and let u2

be a vertex in �2 that is adjacent to a. Then the paths u1Pbw1 and u1Pbw2 are
isomorphic and thus there is an automorphism of D that maps the first onto the
second one. This automorphism has to fix a and thus the distance in �2 from a

to w1 is the same as the one from a to w2. But since m � 4, we can also map the
path u2aPbw1 onto u2aPbw2. Then also u2 and w1 have the same distance in �2

as u2 and w2. But this cannot be true. Thus we know that no reachability digraph
can separate D.

Hence we find an (undirected) induced path R from v1 to y whose only vertices
in � are v1 and y and that does not use the edge yv1. We may choose R so that the
only vertex on R that is adjacent to x is v1 by applying the C-homogeneity to an
automorphism that maps D[x, v1, y] onto D[y, v1, x]. Let v3, v2, y be the last three
vertices on R. If v3 ⇠ y, then we conclude that v3 6⇠ x. But then yv1Rv3 can be
mapped onto xv1Rv3 by an automorphism of D and we obtain a contradiction by
x ⇠ v3.

So v3 6⇠ y. By an analog automorphism to the one above—one that maps
yv1Rv3 onto xv1Rv3—we obtain that v3 and x have a common neighbor v4. Let
w1 be the neighbor of v1 on R. Since D contains no directed triangle, there is an
automorphism ↵ of D that fixes w1Rv2 and also v4x pointwise, but with y↵ 6= y.
But then y↵ has to lie in the reachability digraph � as y and x which is impossible
as we already saw. ⇤

We conclude from Claim 12.45 that ⇠ and ⇡ are equivalence relations on V D.
Let � be a digraph on the equivalence classes of ⇠ such that there is an edge from
one class X1 to another X2 if and only if there are vertices x1 2 X1 and x2 2 X2

with x1x2 2 ED. By Claim 12.45 each vertex of � has precisely one successor
and one predecessor. It is a straightforward argument that � is a C-homogeneous
digraph. Since D has at most one end, � must be a directed cycle Cn for an n � 3
by Lemma 12.40.

It remains to show that the inverse images of any edge of �, that is the subdi-
graph of D induced by the equivalence classes that are incident with that particular
edge of �, and that is precisely one reachability digraph, induces a complete bipar-
tite digraph. Let V1, . . . , Vn denote the equivalence classes such that ViVi+1 2 E�
for i < n and VnV1 2 E� with n � 4.
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It follows from Lemma 12.18 and Theorem 12.4 that �(D) is either a semi-
regular tree Tk,l, a cycle C2m, the complement of a perfect matching CPk, or a
complete bipartite digraph Kk,l. To prove the lemma, we have to show that none
of the first three cases can occur where the first one was already excluded by
Lemma 12.41.

Let us suppose that �(D) ⇠= C2m for an m � 4. Let x 2 V1 and let a, b be
its successors. Let P be a shortest a-b-path in �2, the subdigraph induced by V2

and V3, and let P � := P � b. Let P 0 be a path of the same length as P � in �2

that starts in a and is, except for a, distinct from P . By mapping xP � onto xP 0,
we obtain d�2(a, b) = m. But then the same holds for the other predecessor y 6= x

of a and thus y also has to be adjacent to b and hence m = 2, a contradiction.
Let us now suppose that �(D) ⇠= CPk for a k � 3. Let x 2 V1. Then there

exists a unique vertex in V2 that is not adjacent to x and this vertex itself has a
unique vertex y 2 V3 it is not adjacent to. Now let X be the digraph D[(V3\{y})[P ]
where P denotes a path that consists of one vertex from each Vi, i � 4 and of x

such that the vertex in V4 is the only vertex incident with all of V3 but y. Let x0

be another vertex of V1 that is adjacent to the predecessor of x on P and let Y

be the digraph D[(V X \ {x}) [ {x0}]. Then X and Y are isomorphic subdigraphs
of D but there is no automorphism of D mapping the first onto the second one
since for x and y there is a unique vertex in V2 that is not adjacent to both, but
for x0 and y there is no such vertex. Hence �(D) 6⇠= CPk and thus we conclude
from Theorem 12.4, since we excluded all other cases, that �(D) is a complete
bipartite digraph. As all equivalence classes have the same size, �(D) ⇠= Kk,k for
a k � 1. ⇤

The following proposition is similar to a result by Malnič et.al., see [77, Propo-
sition 3.2]. Since we apply it in a situation where its original assumptions need
not to be satisfied, we formulated the result with di↵erent assumptions. But the
general idea of the proof of Proposition 12.46 is quite similar to the one of the
proof of [77, Proposition 3.2]. Because our assumptions are to handle di↵erently,
we prove it here.

Proposition 12.46. Let D be a connected C-homogeneous digraph such that
in-degree and out-degree of any vertex are at most a fixed integer d and such that
both N+(x) and N�(x) are independent sets. Let � = Aut(D), xy 2 ED and
⌦ ✓ N+(x) with |⌦| = d such that H = �xy fixes ⌦ setwise but stabilizes no vertex
of ⌦.

Then there is no alternating walk whose first edge is xy and which ends at a
vertex of ⌦.

Proof. Since D is C-homogeneous, the group H acts on ⌦ like S⌦, i.e. H⌦ ⇠=
S⌦. Let P be an alternating walk with initial edge xy. Suppose that H⌦

P = H⌦.
Let e 2 ED such that Pe determines an alternating walk, and let z be the vertex
incident with e but distinct from the end vertex of P . Then there are at most d�1
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vertices in {z↵ | ↵ 2 HP }. Since H⌦ = H⌦
P , either we have d = 2 or we have

|H⌦ : H⌦
z | < d. Let us first assume that d 6= 2. Then, by Proposition 2.2, H⌦

z

is either H⌦ or isomorphic to A⌦. We shall now show that the latter case cannot
occur. So suppose that H⌦

z
⇠= A⌦. Then Hz acts transitively on ⌦ but there is

no automorphism fixing |⌦| � 2 elements and switching the other two. Since D is
C-homogeneous and ⌦ is independent, this is impossible. Hence H⌦

z = H⌦ and
thus no vertex of ⌦ is fixed by Hz. So let us now assume that d = 2. But in this
case we immediately deduce from the fact that the orbit of z under H contains
only z, that H = Hz. So we conclude in each case that no vertex of ⌦ can lie on
an alternating walk. ⇤

Lemma 12.47. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N�(x) are independent sets for all x 2 V D and assume that D

contains no directed triangle. Then the reachability relation of D is not universal.

Proof. Let xy 2 ED. By symmetry we may assume that d+(x) � d�(x). Let
⌦ = N+(y). By applying Proposition 12.46 we conclude that no vertex of ⌦ lies
on an alternating path that starts with the edge xy and thus that the reachability
relation of D cannot be universal. ⇤

Lemma 12.48. Let D be a connected locally finite C-homogeneous digraph such
that N+(x) and N�(x) are independent sets for all x 2 V D. If C3 embeds into D,
then we have d+(x) = d�(x).

Proof. Let y 2 N+(x) and z 2 N�(x) \N+(y). The number n1 of directed
triangles that contain xy is equal to the number of all 2-arcs from y to x. By C-
homogeneity this is the same as the number of all 2-arcs from x to z which is again
equal to the number n2 of all directed triangles that contain zx. Let n3 denote
the number of all directed triangles that contain x. Then we conclude from the
C-homogeneity

|N+(x)|n1 = n3 = |N�(x)|n2.

Since n1 = n2, the claim follows. ⇤

Lemma 12.49. Let D be a locally finite C-homogeneous digraph that contains a
directed triangle. Then for every edge xy 2 ED the number of directed cycles that
contains xy is either 1 or at least (d+ � 1).

Proof. Let d1 be the number of elements of N+(y) that lie on a common
directed triangle with xy and let d2 be the number of elements of N+(y) for which
this is not the case. Then d = d1 + d2 where d := d+ which is the same as d�

by Lemma 12.48. Let ⌦1 be the set of all vertices of N+(y) that lie on a common
directed triangle with xy and let ⌦2 = N+(y) \ ⌦1. Let ⌦3 := N+(x) \ {y}. We
consider the action of H := Aut(D)xy on ⌦3. Because N+(x) is an independent set,
H acts on ⌦3 like A⌦3 . For z 2 ⌦i, i = 1, 2, we have |H : Hz| = di < d+�1 = |⌦3|.
Thus and by Proposition 2.2, Hz acts on ⌦3 either like S⌦3 or like S⌦3 . Let us
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first consider the second case. By a similar argument as in Proposition 12.46, we
know that |⌦3| = 2. But then d+ = 3 and the assertion trivially holds. So we
assume that Hz acts on ⌦3 like S⌦3 . In that case either no vertex of N+(y) lies in
N+(y0) for any y 6= y0 2 N+(x) or every vertex of N+(y) lies in N+(y0) for every
y 6= y0 2 N+(x). We conclude that each edge lies either on precisely one or on d

distinct directed triangles. ⇤

The following lemma is the main lemma for the case that the C-homogeneous
digraph contains a directed triangle. The assumption that �(D) is bipartite in this
case shall be verified in Lemma 12.53 and the case (iv) of the conclusions shall be
investigated in Section 12.7.

Lemma 12.50. Let D be a locally finite connected C-homogeneous digraph that
contains an isomorphic copy of C3 and that has the property that N+(x) and N�(x)
are independent sets for all x 2 V D. If �(D) is bipartite, then one of the following
cases holds.

(i) The digraph D has at least two ends.
(ii) The reachability digraph �(D) is isomorphic to Kk,k for a k � 3 and D is

isomorphic to C3[K̄k].
(iii) The reachability digraph �(D) is isomorphic to CPk for a k 2 N and D is

isomorphic to a Yk for a k � 3.
(iv) The reachability digraph �(D) is isomorphic to C2m for an m � 4 or to T2,2.

Proof. Let us assume that the digraph D has at most one end, that case
(iv) does not occur, and that d+, d� � 2 by Lemma 12.40. By Theorem 12.4, we
know that �(D) is either a semi-regular tree—which is impossible in our situation
because of Lemma 12.41—, a complete bipartite digraph, a CPk, or a cycle C2m—
which we also excluded. Let us first assume that �(D) is a complete bipartite
digraph Kk,l for k, l 2 N but not K2,2. By Lemma 12.48, we know that k = l.
If, for two reachability digraphs �,�0, there is |� \ �0| � 2, then it is a direct
consequence of the C-homogeneity that �\�0 is a complete side of each of �,�0.
Thus it is—like in the proof of Lemma 12.43—a direct consequence that (ii) holds
in this case. So let us suppose that � \ �0 has cardinality 1. If an edge lies on
more than one directed triangle, then we know from Lemma 12.49 that it lies on at
least k� 1 distinct such triangles. But then, the intersection �\�0 has to contain
at least k � 1 elements which is a contradiction. So every edge lies on a uniquely
determined directed cycle of length 3.

Claim 12.51. For every four distinct reachability digraphs �1,�2,�3,�4 such
that �i \�i+1 (i = 1, 2, 3) is not empty and such that (�i�1 [�i+1) \�i lies on
the same side of �i for i = 2, 3, �1\�4 is not empty, too, and its intersection lies
on the same side of �4 as �3 \�4.

Proof of Claim 12.51. Let us suppose that �1 \�4 is empty. Since every
edge lies on a directed triangle, there has to be a vertex x with successors in �1
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and �2. Let y be its sucessor in �1, z be its successor in �2 and let a be the vertex
in �2 \ �3, b the vertex in �3 \ �4. Then there is no automorphism of D that
maps a to b and fixes all of x, y, z, because �1 \�2 6= ; but �1 \�4 = ;. Hence
we proved the claim. ⇤

Now we are able to show that the whole situation cannot occur. Let x, y be
two vertices on the same side of a reachability digraph such that their out-degree
is 0. Let a, b be successors of x, y, respectively, such that they lie in a common
reachability digraph. As k � 3 and as every edge lies on precisely one copy of C3,
there is a successor c of a and b such that neither D[x, a, c] nor D[y, b, c] are triangles.
Furthermore, there exists a predecessor z of b such that z and c are not adjacent.
The vertices a and z cannot be adjacent, because otherwise y and x have to lie in two
common reachability digraphs which we supposed to be false. Then D[x, a, c, b, y]
and D[x, a, c, b, z] are isomorphic, but there is no automorphism of D that maps
one onto the other just by fixing all of x, a, c, b. Thus we showed that there are no
two reachability digraphs whose intersection consists of precisely one vertex. This
finishes the case �(D) ⇠= Kk,l.

The next and final situation which we consider is �(D) ⇠= CPk for a k � 4.
Let �1,�2 be two distinct reachability digraphs of D with non-trivial intersection.
We prove that |�1 \�2| � 2. So suppose that |�1 \�2| = 1. Let b 2 V D and let
a, c be two predecessors of b. Let x, y be two predecessors of a and let v (w) be a
vertex such that av, vx (aw,wy, respectively) lie in ED and such that cw but not
cv lies in ED. Then the digraphs D[a, b, c, x] and D[a, b, c, y] are isomorphic but
there is no automorphism of D that maps them onto each other because such an
automorphism has to map v onto w but w is adjacent to c and v is not.

Claim 12.52. The set �1 \�2 is one whole side of each of �1,�2.

Proof of Claim 12.52. Let us first suppose that �1 \�2 is not contained
in any of the sides of �1. Then �1 \�2 consists of precisely two vertices that are
adjacent in the bipartite complement of �1. Let us consider the subdigraph of �i

with vertices a, b, c, d, with edges ba, bc, dc such that a, d 2 �1\�2. Let x, y be two
predecessors of d in �j with i 6= j and let z be the neighbor of x in the bipartite
complement of �j . Since each edge lies on a directed triangle, we may assume that
b, a, z form such a triangle and, since k � 4, we also may assume that c and y do
not lie in a common reachability digraph. Then neither c nor y lies in a common
reachability digraph with b and z. So each of the subdigraphs D[a, b, c, d, x] and
D[a, b, c, d, y] contains precisely 4 edges and they are isomorphic to each other.
Hence there is an automorphism ↵ that fixes each of a, b, c, d and maps x onto y

which is impossible because y and b do not lie in any common reachability digraph
in contrast to x and b. Thus we proved that �1 \ �2 is contained in one side of
�i, i = 1, 2.

The C-homogeneity directly implies that �1\�2 is a whole side of �i, i = 1, 2.
Thus we proved the claim. ⇤
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We shall now show that D ⇠= Yk. Let D denote the tripartite complement of D.
Since �(D) ⇠= CPk, the digraph D is a union of directed cycles. We want to show
that every component of D is a directed cycle of length 3. So let us suppose that
this is not the case. Then there are x, y 2 V1 that lie on a common directed cycle
of length at least 6 and have distance 3 on that cycle in D. Since k � 3, there is a
vertex a 2 V2 that is adjacent to both x and y. We conclude that for every vertex
z 2 V1, distinct from x, x and z lie on a common cycle and have distance 3 on
that cycle. It is a direct consequence that k = 3 and D ⇠= C9. But then there are
edges of D that lie on precisely one copy of C3 and some lie on two copies which
contradicts the C-homogeneity. Hence we have D ⇠= Yk. ⇤

Lemma 12.53. Let D be a connected locally finite C-homogeneous digraph that
contains a directed triangle. Furthermore, assume that N+(x) and N�(x) are in-
dependent sets for all x 2 V D. Then the reachability relation of D is not universal.

Proof. Let d = d+. By Lemma 12.48 we have d = d�. Suppose that the
reachability relation of D is universal. Let D1 be the digraph depicted in Figure 6.

Figure 6. The digraph D1

Claim 12.54. D contains an isomorphic image of D1.

Proof of Claim 12.54. Since the reachability relation of D is universal, there
is an induced cycle such that for an edge xy on that cycle the other path between
x and y is an alternating path but such that the whole cycle is not alternating.
Such a cycle shows that the reachability relation is not universal. To show that
such a cycle exists, suppose that it is not the case. We choose a counterexample C

with minimal length. Since there is always a cycle that shows that the reachability
relation is not universal, we may assume that C is not induced. So there is a chord
in C and hence one of the smaller cycles is a counterexample of smaller length,
contrary to the assumption. Thus a cycle as described exists.

Let us first assume that such a cycle C has odd length. Then it has length at
least 5. By symmetry we may assume that for the edge xy described above we have
d�C(x) = 1 and d�C(y) = 2. Let z be the other vertex in N�(y)\V C. Then there is
an automorphism ↵ of D that maps C � x onto C � y. The digraph D[x, y, z, x↵]
is isomorphic to D1 because N�(x) and N+(x) are independent sets.



12.6. THE INDEPENDENT CASE 119

Let us now consider the case that C is an induced cycle of even length and
let xy be again the above described edge. Let a 6= y be the vertex on C adjacent
to x, let b 6= x be the vertex on C adjacent to y, let PC be the path on C between
a and b that contains neither x nor y, and let P�C denote the path inverse to PC .
Since C has odd length, we have PC

⇠= P�C . Then we can map xPC onto yP�C by
an automorphism of D and obtain an induced subdigraph isomorphic to D1 by the
two paths of length 2 between a and y. ⇤

Claim 12.55. There is |N+(y) \N�(x)| = 1 for all edges xy 2 ED.

Proof of Claim 12.55. By Lemma 12.49 we know that either |N+(y) \
N�(x)| = 1 or |N+(y)\N�(x)| � d�1. So it su�ces to prove that N+(y)\N�(x)
contains at least two vertices. Let u, v, a, b be the four vertices of the digraph D1

such that u has the two predecessors a and b. Since there is an automorphism of D

that fixes u and maps a onto b and vice versa, there is a directed path of length 2
from a to b and one from b to a. Since N+(v) and N�(v) are both independent
sets and the same holds for v0, the image of v under the described automorphism,
there is no edge between v and v0. We may assume by symmetry that va is an
edge in D. Then both v0 and u are vertices in N+(a) that do not lie on a common
directed triangle with va, so we conclude that N+(a) \ N�(v) contains precisely
one vertex. ⇤

Let D2 be the digraph shown in Figure 7.

Figure 7. The digraph D2

Claim 12.56. There is an isomorphic image of D2 in D.

Proof of Claim 12.56. By an analog argument as in the proof of Claim 12.55,
we immediately see that either D2 is an induced subgraph or D2 together with an
edge from the vertex on the right hand to the vertex on the left hand is an induced
subgraph of D. But the latter cannot be the case since the additional edge would
lie on at least two copies of C3, contrary to Claim 12.55. ⇤

Now let D0 be an isomorphic copy of D2 in D. Let x be the vertex on the left,
y the one on the right and a, b, u, v the vertices of the cycle such that x and y are
adjacent to a and u. Since C3 embeds into D, there is a vertex a0 2 N+(a)\N�(x).
Then a0 is adjacent neither to b, nor to v, nor to y, since the only directed triangle
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that contains aa0 is D[x, a, a0] and since directed cycles are the only cycles of length
3 that embed into D. Then there is an automorphism of D that fixes a0, x, and
u, and maps v onto y. This automorphism also has to fix a, since it fixes together
with x and a0 the unique vertex in the directed triangle that contains the edge a0x.
Hence such an automorphism cannot exist. ⇤

12.7. An imprimitive case

In this section we investigate the following situation. Let D be a C-homogeneous
digraph that contains directed triangles of length 3 and whose reachability digraph
is either T2,2 or C2m for an m � 2. There exists a well-known such digraph, the
digraph T2(C3) that was defined in the introduction. This digraph has infinitely
many ends. But although we are interested only in digraphs with at most one end,
this particular digraph turns out to be very important in this case. We shall show
that every digraph with the above described properties and with at most one end
is a homomorphic image of T2(C3) in a very particular way.

Theorem 12.57. The following two assertions are equivalent for any locally
finite connected digraph D.

(i) The digraph D is C-homogeneous, contains directed cycles of length 3, and its
reachability digraph is either T2,2 or C2m for an m � 2.

(ii) There exists a subgroup H of Aut(T2(C3)) acting transitively on V T2(C3)
and an H-invariant equivalence relation ⇠ on V T2(C3) such that T2(C3)⇠ is
isomorphic to D.

Furthermore, the digraph has at most one end if and only if each equivalence class
consists of more than one element.

In the situation (ii) we may always choose H to be the whole automorphism
group of D.

Proof. First, let us assume that (ii) holds. We choose H so that it is maximal
such that ⇠ is H-invariant.

Claim 12.58. The stabilizer Hx of any vertex x of T2(C3) has order 2.

Proof of Claim 12.58. There are two possibilities for an element of Hx.
Either it fixes both directed triangles that meet x or it changes the two triangles.
As every isomorphism between two directed triangles of T2(C3) extends uniquely
to an automorphism of T2(C3), |Hx|  2. So we have to prove that the element
↵ 6= id of Aut(T2(C3))x is also contained in H. Because H is the maximal subgroup
of Aut(T2(C3)) such that ⇠ is H-invariant, we have to prove that ↵ maps one
equivalence class onto another. Let y, z be the two predecessors of x. If they
lie in the same equivalence class, then this is fixed by ↵ and the same holds for
the equivalence class that contains both successors of x and this extends to all
equivalence classes because of the transitivity of H on V T2(C3). So y and z lie in
distinct equivalence classes. But then ↵ maps the equivalence class of y onto the one
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of z and vice versa, and the same holds for the two equivalence classes of the two
successors of x. By induction on d(x, a) for any vertex a of T2(C3) its equivalence
class is mapped onto the one of the unique vertex b with d(x, b) = d(x, a) and for
which the shortest path from x to b is isomorphic to the shortest path from x to a.
So ↵ acts on all equivalence classes and ⇠ is ↵-invariant. ⇤

To show that D ⇠= T2(C3)⇠ is C-homogeneous, let A,B be isomorphic induced
connected subdigraphs of D and ' : A ! B be an isomorphism. Then there are
induced subdigraphs A0, B0 of T2(C3) with A ⇠= A0, B ⇠= B0 and such that the
equivalence classes of the vertices of A (of B) are the vertices of T2(C3)⇠ that
induce the digraph A (the digraph B, respectively). Let '0 be the isomorphism
A0 ! B0 that maps the equivalence class of x 2 V A to the equivalence class of x'.
We may assume that A contains an edge xy. Let u, v be vertices in T2(C3) such that
uv 2 ET2(C3) and such that the equivalence class of u, v is x, y, respectively. Since
Hx' has order 2 by Claim 12.58, there is an automorphism ↵ 2 H with u↵ = u'0

and with v↵ = v'0 . But then the claim immediately implies A0↵ = B0 and that the
canonical image ↵0 of ↵ maps A onto B like '. Furthermore, ↵0 is an automorphism
of D because ↵ 2 H.

For the other direction, let D satisfy the assumptions of (i). Let ⇡ be the
map T2(C3) ! T2(C3)⇠ that maps x 2 V T (2) onto its equivalence class. We may
assume that D is not isomorphic to C3. Let xy 2 ED, ab 2 ET2(C3). For every
vertex u in T2(C3) there exists a unique shortest path P1 from a to u. In D there
are precisely two paths isomorphic to P1 with the property that no two endvertices
of any subpath of length 2 are adjacent. If the second vertex of the path P1 is b

or is adjacent to b, then let P2 that one of the above described paths in D whose
second vertex is y or is adjacent to y, and in the other case for P1 let P2 also be
the other one in D. Let uD denote the last vertex of P2.

We are now able to define the equivalence relation. Let u ⇠ v for two vertices
u, v 2 V T2(C3) if uD = vD. This is obviously an equivalence relation. It remains to
show that it is Aut(T2(C3))-invariant. So let u and v be arbitrary vertices of T2(C3)
and let  be an automorphism of T2(C3) with u = v. We have to show that the
equivalence class of u is mapped onto the one of v. So let w ⇠ u. It su�ces to
consider the case where the shortest path from u to w does not contain any other
vertex of the equivalence class that contains u. Let P be the shortest path from
u to w. We look at the paths P⇡ and (P )⇡. The path P⇡ starts and ends at
the same vertex. We can map Q'0 for every subpath Q of P that starts in u onto
(Q )⇡ inductively, because on the one hand D is C-homogeneous and on the other
hand for such a Q its succeeding vertex is uniquely determined in D by the two
digraphs Q⇡ and (Q )⇡. So we conclude that also (P )⇡ has the same endvertices.
But then u and w have to be equivalent. It is an immediate consequence that
this holds also for any z ⇠ u.

The only remaining part to show is the additional claim on the multi-ended
digraphs which is a direct consequence of [45, Theorem 7.1]. ⇤
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Figure 8. A finite and an infinite one-ended C-homogeneous digraph

Figure 8 shows two C-homogeneous digraphs that arise as factor digraphs in
Theorem 12.57 one of which is finite and the other being infinite and one-ended. In
the finite digraph every reachability digraph, which is isomorphic to C10, is drawn
in a di↵erent shade of gray. The reachability digraphs of the infinite digraph are
the cycles of length 6.

As the automorphism group of T (2) is a free product of the cyclic groups
C2 and C3, it is isomorphic to the modular group. If we consider the Cayley
graph of C2 ⇤C3 = hxi ⇤ hyi with respect to the two canonical generators x, y (and
with directed edges) and contract the edges by the involution, then we obtain the
digraph T (2). Hence, instead of giving a precise list of the digraphs that may
occur as quotients in Theorem 12.57 it is equivalent to describe all those subgroups
of C2 ⇤ C3 that contain x. By Kurosh’s Subgroup Theorem [68] every subgroup of
the modular group is a free product of cyclic groups of orders 2, 3, or 1. So any
such subgroup with at least one generator of order 2 provides us with an example
of a C-homogeneous digraph that is finite or locally finite and contains the directed
triangle as a subdigraph and whose reachability digraph is either T2,2 or C2m for an
m � 2. Conversely, every such digraph gives us a subgroup of the modular group
that contains an involution.

12.8. The classification result
for locally finite C-homogeneous digraphs with at most one end

Let us now state our main result. We shall prove it by applying all the results
of the previous sections.

Theorem 12.59. Let D be a locally finite connected digraph with at most one
end. Then D is C-homogeneous if and only if one of the following cases holds.

(i) D ⇠= Cm[K̄n] for integers m � 3, n � 1;
(ii) D ⇠= H[K̄n] for an integer n � 1;
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(iii) D ⇠= Yk for an integer k � 3;
(iv) there exists a non-trivial Aut(T2(C3))-invariant equivalence relation ⇠ on

V T2(C3) such that D ⇠= T2(C3)⇠.

Proof. Let D be a connected locally finite C-homogeneous digraph with at
most one end. If the out-neighborhood (or symmetrically the in-neighborhood)
of any vertex of D is not independent, then we conclude from Theorem 12.26,
Lemma 12.27, Lemma 12.29, Lemma 12.34, and Lemma 12.35 that D is finite and
isomorphic to an H[K̄n] for an n � 1. So we may assume that the out-neighborhood
of every vertex is independent. Since D is in particular 1-arc transitive, we con-
clude from Proposition 2.7, Lemma 12.47, and Lemma 12.53 that the reachability
digraph of D is bipartite. Thus one direction of the theorem follows directly from
Lemma 12.43, Lemma 12.50, and Theorem 12.57.

To prove the remaining part of Therorem 12.59 it su�ces to prove that the
digraphs Yk are C-homogeneous, because it is an easy consequence of the fact that
H is homogeneous, that H[K̄n] is C-homogeneous, and, furthermore, an immedi-
ate consequence of the fact that Kn,n is a homogeneous bipartite graph is, that
Cm[K̄n] is C-homogeneous. That the graphs in part (iv) are C-homogeneous was
already proved in Theorem 12.57. To prove that the digraphs Yk with k � 3
are C-homogeneous, let A and B be two isomorphic connected induced subgraphs
of D := Yk. Let V1, V2, V3 be the three vertex sets as in the proof of Lemma 12.43
and let �1,�2,�3 be the corresponding reachability digraphs. Let ↵ be an isomor-
phism from A to B. It is straightforward to see that (V A \ Vi)↵ is precisely the
intersection of V B with a Vj . So we may assume that (V A\ Vi)↵ = V B \ Vi. If A

and B have at most six vertices, then it is easy to see that every isomorphism from
A to B extends to an automorphism of D. So we may assume that there is at least
one Vi, say V1, that contains at least three vertices of A. Then both subdigraphs
�1 \ A and �3 \ A are connected subdigraphs. Let �0

1 be a minimal subdigraph
isomorphic to a CPl with l  k such that A\�1 = A\�0

1. By replacing B by B� ,
for an automorphism � of D, we may assume that also B \ �1 = B \ �0

1 holds.
Since CPl is a C-homogeneous bipartite graph, we can extend every isomorphism
from �0

1 \ A to �0
1 \ B to an automorphism of �0

1 and hence, in particular, the
restriction of ↵. Let ↵0 be the automorphism of �0

1 that extends the above restric-
tion of ↵. Let V 0

3 ✓ V3 be the set of those vertices which are not adjacent to all
vertices of �0

1. As each vertex in V 0
3 is uniquely determined by two non-adjacent

vertices one of which lies in V1 and the other in V2, ↵0 has precisely one extension
� on D0 := D[V �0

1 [ V 0
3 ]. By the construction of � it is easy to see that the re-

striction of ↵ to D0 is again an isomorphism from A \D0 to B \D0 and is equal
to the restriction of � to A \D0. Since all vertices of A \ (V3 \ V 0

3) are adjacent to
all vertices of A \ (V1 [ V2) and since the same holds for B instead of A, � can be
extended to an automorphism of D whose restriction to A is ↵. ⇤
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12.9. Final remarks on C-homogeneous digraphs

Let us take a closer look at two specific kinds of digraphs that occur as ‘building
blocks’ in our classification of the infinitely-ended C-homogeneous digraphs. The
first kind are the homogeneous tournaments, which feature in our classification
of the connected C-homogeneous digraphs of Type I. While Lachlan [71] classi-
fied the countable homogeneous tournaments, no characterization is known for the
uncountable ones. The second kind of building blocks that deserve a closer look
are the generic homogeneous bipartite graphs, which occur in the classification of
the connected C-homogeneous digraphs of Type II. There is exactly one countable
such digraph ([41, Fact 1.2]), but it is shown in [41] that the number of isomor-
phism types of homogeneous generic bipartite graphs with @0 vertices on the one
side of the bipartition and 2@0 vertices on the other side is independent of ZFC.
Hence, classifying the uncountable generic homogeneous bipartite graphs remains
an undecidable problem.

As we mentioned in Chapter 9, we have finished the classification of the lo-
cally finite C-homogeneous digraphs. But the classification of the countable C-
homogeneous digraphs is not yet complete. In fact, it might be that we just have
solved a smaller part of it, because this classification would generalize the classifica-
tion of the countable homogeneous digraphs, that were determined by Cherlin [22].



Bibliography

1. J.M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, and

H. Short, Notes on word hyperbolic groups, Group Theory from a Geometrical Viewpoint

(Trieste, 1990) (E. Ghys, A. Haefliger, and A. Verjovsky, eds.), World Scientific, 1991, pp. 3–

63.

2. D. Amato, Descendants in infinite, primitive, highly arc-transitive digraphs, Discrete Math.

310 (2010), no. 13-14, 2021–2036.

3. D. Amato and J.K. Truss, Crown-free highly arc-transitive digraphs, Forum Mathematicum

(to appear).

4. , Some constructions of highly arc-transitive digraphs, Combinatorica (to appear).

5. P. Assouad, Plongements lipschitziens dans Rn, Bull. Soc. Math. France 111 (1983), no. 4,

429–448.

6. L. Babai, The growth rate of vertex-transitive planar graphs, Proceedings of the Eighth

Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), ACM,

New York, 1997, pp. 564–573.

7. L. Babai and M.E. Watkins, Connectivity of infinite graphs having a transitive torsion group

action, Arch. Math. (Basel) 34 (1980), no. 1, 90–96.

8. G. Bell and A. Dranishnikov, Asymptotic dimension, Topology Appl. 155 (2008), no. 12,

1265–1296.

9. I. Benjamini and O. Schramm, Every graph with a positive Cheeger constant contains a tree

with a positive Cheeger constant, Geom. Funct. Anal. 7 (1997), no. 3, 403–419.

10. M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal.

10 (2000), no. 2, 266–306.

11. M. Bourdon and H. Pajot, Cohomologie `p et espace de Besov, J. Reine Angew. Math. 558

(2003), 85–108.

12. M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag,

1999.

13. J.M. Brochet and R. Diestel, Normal tree orders for infinite graphs, Trans. Am. Math. Soc.

345 (1995), no. 2, 871–895.

14. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, Ergebnisse der Math-

ematik und ihrer Grenzgebiete (3), vol. 18, Springer-Verlag, Berlin, 1989.

15. S. Buyalo, A. Dranishnikov, and V. Schroeder, Embedding of hyperbolic groups into products

of binary trees, Invent. Math. 169 (2007), no. 1, 153–192.

16. S. Buyalo and V. Schroeder, Elements of Asymptotic Geometry, EMS Monographs in Math-

ematics, EMS, Zürich, 2007.
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Zusammenfassung

In der vorliegenden Dissertation untersuchen wir im ersten Teil die Baumähnlichkeit
hyperbolischer Graphen. Dazu konstruieren wir für jeden lokal-endlichen hyper-
bolischen Graphen, dessen hyperbolischer Rand eine endliche Assouad-Dimension
hat, einen Spannbaum, sodass einerseits der hyperbolische Graph selbst durch den
Baum gut dargestellt wird: jeder Strahl des Baumes ist schließlich quasi-geodätisch
und jeder geodätische Strahl des Graphen liegt schließlich in einer konstanten Umge-
bung des unendlichen Gerüsts des Baumes. Andererseits gibt der Rand des Baumes
uns auch eine gute Darstellung des hyperbolischen Randes des Graphens, indem sich
die Einbettung des Baumes stetig auf den Rand zu einer surjektiven Abbildung fort-
setzen lässt, sodass jeder Randpunkt des Graphens beschränkt viele Urbilder unter
dieser Fortsetzung hat.

Im zweiten Teil der Arbeit werden Graphen studiert, die gewisse Gruppenop-
erationen auf ihrem Rand realisieren: zuerst zeigen wir, dass kein lokal-endlicher
ein-endiger hyperbolischer plättbarer Graph existiert, auf dem eine Gruppe derart
opertiert, dass sie einen seiner Randpunkte fixiert und auf seinen Knoten transitiv
operiert. Danach werden zusammenhängende unendlich-endige Graphen charak-
terisiert, auf denen eine Gruppe transitiv operiert und gleichzeitig einen der Enden
fixiert. Wir erhalten, dass diese Graphen quasi-isometrisch zu Bäumen sind. Der
letzte Abschnitt des zweiten Teils charakterisiert Graphen mit unendlich vielen
Enden, sodass die Automorphismgruppe des Graphen transitiv auf dessen Enden
operiert. Auch in diesem Fall erhalten wir eine Bäumähnlichkeit: es existiert ein
Teilgraph, der quasi-isometrisch zu einem Baum ist und dessen Löschung aus dem
ursprünglichen Graphen einen strahlenlosen Graphen übrig lässt.

Im dritten Teil dieser Dissertation erhalten wir Klassifikationsresultate für
Graphen, die spezielle Transitivitäts- oder Homogenitätseigenschaften besitzen. So
werden zunächst mehr-endige Abstands-transitive Graphen klassifiziert und an-
schließend mehr-endige k-CS-transitive für k � 2. Im letzten Kapitel klassifizieren
wir zusammenhängend-homogene Digraphen, die entweder endlich oder lokal-endlich
oder zusammenhängend und mehr-endig sind.
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