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Abstract

We prove that every graph has a canonical tree of tree-decompositions
that distinguishes all principal tangles (these include the ends and various
kinds of large finite dense structures) efficiently.

Here ‘trees of tree-decompositions’ are a slightly weaker notion than
‘tree-decompositions’ but much more well-behaved than ‘tree-like metric
spaces’. This theorem is best possible in the sense that we give an example
that ‘trees of tree-decompositions’ cannot be strengthened to ‘tree-decom-
positions’ in the above theorem.

This implies results of Dunwoody and Krön as well as of Carmesin,
Diestel, Hundertmark and Stein. Beyond that for locally finite graphs our
result gives for each k ∈ N canonical tree-decompositions that distinguish
all k-distinguishable ends efficiently.

1 Introduction
Automorphisms-group invariant tree-decompositions1 of infinite graphs are ap-
plied to study groups via their Cayley graphs (e. g. Krön [13], see also Dunwoody
and Krön [6], for the proof of Stallings’ Theorem) or other highly symmetric
structures; such as [12, 14]. For applications in structural graph theory or ma-
troid theory where canonicity does not play a role, we refer the reader to [1].

Often it is measured how well a tree-decomposition displays the rough struc-
ture of a graph by the highly connected substructures it separates. In our con-
text, the most important highly connected substructures are the ends (or more

∗Supported by the Heisenberg-Programme of the Deutsche Forschungsgemeinschaft (DFG
Grant HA 8257/1-1).

1See Section 2 for a definition.
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generally the tangles, see below). Consequently we are interested in tree-decom-
positions separating lots of ends.

The aim of this paper is to determine when we can find such tree-decompo-
sitions which are canonical, that is, invariant under graph automorphisms.

On one hand, we prove a general decomposition result that implies the ex-
istence of such tree-decompositions in special cases. On the other hand, we
complement this with many counterexamples to various related conjectures,
explaining why we believe that this theorem answers this question in a best
possible way.

Given a graph G, let µ(G) be the minimal size of a separator of G separating
two ends. Dunwoody and Krön [6] showed under ‘mild’ additional assumptions
that every graph has a canonical tree-decomposition separating any two ends
separable by at most µ(G) vertices. And they also provided an example of a
graph that does not have a canonical tree-decomposition separating all ends,
see Figure 1. We remark that this graph is not locally finite. There are such
examples for locally finite graphs, see [1, Example 3.7], but they are more exotic
in the sense that they need to have for every number k two ends that cannot be
separated by at most k vertices (compare Corollary 1.2).

Figure 1: The depicted graph is obtained from the disjoint union of a ray with a
double ray by joining the starting vertex of the ray to all vertices on the double
ray. This graph has no canonical tree-decomposition distinguishing all its ends.

These two examples may seem counter-intuitive as one might expect to be
able to obtain a single canonical tree-decomposition by just iterating the result
of Dunwoody and Krön as follows. Starting with a tree-decomposition of Dun-
woody and Krön, we apply the theorem again to each part of that tree-decom-
position, and then to each part of that and so on. There are some technical
aspects to consider when doing this approach, for example one has to consider
the torsos of the parts and not the parts themselves and one has to take extra
care when constructing the previous tree-decompositions to not spoil a later
one. All this put aside for now, the above examples show that this plan cannot
work.

We have the following perspective on this. Intuitively speaking, we define a
tree of tree-decompositions to be a collection of all these iterative tree-decompo-
sitions – before any sticking together takes place, see Figure 2. The main result
of this paper is that trees of tree-decompositions separating all the ends always
can be constructed canonically.

Hence the above-mentioned obstructions can only occur in the gluing process
from trees of tree-decompositions to a single tree-decomposition. More precisely,
the graph in Figure 1 shows that we cannot always stick two tree-decomposi-
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Figure 2: A tree of tree-decompositions. Trees of tree-decompositions can be
thought of as a family of tree-decompositions, where each part of one of these
tree-decompositions is refined by another tree-decompositions. For finite graphs,
these can be canonically combined into a single tree-decomposition. The main
result of this paper informally says that the tangle tree theorem of Robertson
and Seymour can be extended to infinite graphs, in that we get a canonical tree
of tree-decompositions (that is, a tree-decomposition that is ‘well-defined up to
gluing’) distinguishing the principal tangles.

tions together in a canonical way; [1, Example 3.7] shows that we cannot always
stick together infinitely many tree-decompositions at once.

Our main result is the following. A tree-decomposition, or more generally
a tree of tree-decompositions, distinguishes the set of ends efficiently if for any
two ends it contains a separator of minimal size separating the two ends.

Theorem 1.1. Every graph has a canonical tree of tree-decompositions that
distinguishes the set of ends efficiently.

While the above mentioned result of Dunwoody and Krön is immediately
implied by Theorem 1.1, our theorem also has the following consequence.

Corollary 1.2. For every k ∈ N, every locally finite graph has a canonical
tree-decomposition that distinguishes any two ends distinguishable by at most k
vertices efficiently.

Tangles were invented to describe dense substructures in finite graphs and
play a key role in the Graph Minor Theory of Robertson and Seymour [15]. It is
a simple observation that ends of infinite graphs are also tangles, see Section 6
for details. In the context of our proof it is technically slightly easier to work
with the more general notion of principal tangles than ends. In fact we prove
the following generalisation of Theorem 1.1.

Theorem 1.3. Every graph has a canonical tree of tree-decompositions that
distinguishes the set of principal tangles (or even more generally, the set of
robust profiles2) efficiently.

A side-effect of our general approach is that this theorem also implies recent
works concerning tree-decompositions of finite graphs by Carmesin, Diestel,
Hundertmark and Stein [2] and by Diestel, Hundertmark and Lemanczyk [5].

2See Section 2 for a definition of robust profiles.
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The remainder of this paper is structured as follows. In Section 2, we state
some main definitions (such as profiles or separations) and prove some basic re-
sults on separations of graphs. In Section 3 we explore the relationship between
nested sets of separations and tree-decompositions. Its content is based mainly
on Carmesin, Diestel, Hundertmark and Stein [2], other parts of the paper are
more similar to [1]. Section 4 focuses on how profiles of graphs induce profiles
in the torsos of its tree-decompositions. In Section 5 we prove our key auxiliary
result, which is the existence of nested sets of separations distinguishing certain
profiles under some mild assumption on the graph. In Section 6 we prove our
main theorem. After that we discuss the connections between profiles and ends,
k-blocks and tangles. In Section 7 we deduce our aforementioned results on
locally finite graphs. We conclude the paper with some remarks in Section 8.

2 Sets of separations
For basic notations and terminology for graphs, we refer readers to [4]. Let G
be a graph. A separation of G is an ordered pair (A,B) of vertex sets such that
G[A] ∪G[B] = G; that is, there is no edge between ArB and B rA. The set
of all separations of G is partially ordered by

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D.

A separation (A,B) is proper if neither (A,B) ≤ (B,A) nor (B,A) ≤ (A,B),
that is, if ArB 6= ∅ and B rA 6= ∅. The order of the separation (A,B) is the
size of its separator A ∩B.

It is easy to see that this defines a partial order on the set of all separations. A
separation (A,B) is nested with a separation (C,D), denoted by (A,B) ‖ (C,D),
if (A,B) is comparable with (C,D) or (D,C). If (A,B) is not nested with
(C,D) then these two separations cross. The centre of two separations (A,B)
and (C,D) is A∩B∩C∩D, their four corners are the sets A∩C, B∩C, B∩D,
and A∩D. The corners A∩C and B ∩D are opposite as are the corner B ∩C
and A ∩ D. Corners are adjacent if they are not opposite. The link between
two adjacent corners is their intersection without the centre. For a corner E∩F
with {E,E′} = {A,B} and {F, F ′} = {C,D}, its interior is (E ∩F )r (E′∪F ′)
and its corner separation is the separation (E ∩ F,E′ ∪ F ′). We call the corner
separations (E ∩ F,E′ ∪ F ′) and (E ∪ F,E′ ∩ F ′) opposite.

A set P of separations of a graph G is a profile if it satisfies the following
conditions.

(P1) P is consistent, i. e. if for every two separations (A,B) and (C,D) with
(C,D) ≤ (A,B) and (A,B) ∈ P we have (D,C) /∈ P ;

(P2) if (A,B), (C,D) ∈ P , then (B ∩D,A ∪ C) /∈ P .

If two separations do not form a consistent set we say that they point away from
each other. A profile P is principal if for every family ((Ai, Bi))i∈I in P with
Ai ∩ Bi = Aj ∩ Bj for all i, j ∈ I, we have

⋂
i∈I(Bi r Ai) 6= ∅. A profile P

of G is a k-profile if all separations in P have order less than k and if for every
separation (A,B) of G of order less than k, either (A,B) ∈ P or (B,A) ∈ P .
Note that in a principal k-profile P there is for every vertex set S of size less
than k some component C of G− S such that (V (G) r C,C ∪ S) ∈ P .
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In finite graphs, (P2) ensures that profiles “cannot hide in small separators”.
But this fails for infinite graphs if we ask only (P2) but not that the profiles are
principal as the following example shows.
Example 2.1. Let G be the countably infinite star with vertex set {c, v1, v2, . . .},
where c is the center of the star. Let F be a non-principal ultrafilter on N. Let P
be the set consisting of the separations (AF , BF ), where BF := {c}∪{vi | i ∈ F}
and AF := (V (G) r BF ) ∪ {c}, together with the separations (A, V (G)) with
|A| ≤ 1. We note that we take separations (AF , BF ) only for F ∈ F , not for
all F . It follows from the definition of ultrafilters that P is a profile but not
principal.

A separation (A,B) distinguishes two profiles P , P ′ if (A,B) ∈ P and
(B,A) ∈ P ′ or vice versa and it distinguishes the profiles efficiently if there
is no separation of smaller order distinguishing P and P ′. Two profiles are `-
distinguishable if a separation (A,B) of order at most ` distinguishes them. For
a set P of profiles with at least two distinguishable profiles, let κ(P, G) denote
the minimum order of separations separating two profiles of P i.e. there are two
profiles in P that can be separated by a separation of order κ(P, G).

A separation of a graph G is k-relevant where k ∈ N∪{∞} and with respect
to P if it has finite order of at most k and distinguishes two profiles in P. It
is relevant if it is k-relevant for some k ∈ N ∪ {∞}. It is easy to see that
relevant separations are proper. We denote by R(k,P, G) the set of k-relevant
separations of G with respect to P. We use R(k,P) or R(k) if G and P are
obvious from the context. Let Rκeff(P, G) be the set of all separations of order
κ(P, G) distinguishing two profiles of P efficiently and for two profiles P, P ′ ∈ P
set

Reff(P, P ′) := {(A,B) ∈ Rκeff(P, G) | (A,B) distinguishes P, P ′ efficiently} .

A component C of G− (A ∩ B) for a separation (A,B) of G is degenerated
if N(C) is a proper subset of A ∩ B. We call a separation degenerated relative
to (A,B) if it is of the form (C ∪ N(C), V (G) r C) where C is a degenerated
component of G − (A ∩ B). The degenerator of a set S of separations is the
set of separations that are degenerated relative to some separation in S. We
denote the degenerator of R(k,P, G) by S(k,P, G) and write S(k,P) or S(k) if
G and P are obvious from the context. We call G well-separable (with respect
to a set P of profiles) if for every relevant separation (A,B) of order κ(P, G) no
component of G − (A ∩ B) is degenerated, that is, if S(κ(P, G),P, G) = ∅. A
separation (A,B) is left-connected if ArB is connected.

For n ∈ N, a profile P is n-robust if for every (A,B) ∈ P and every separation
(C,D) of order at most n the following holds: if (B∩C,A∪D) and (B∩D,A∪C)
both have order less than |A∩B|, then one of those corner separations does not
lie in P . It is robust if it n-robust for every n ∈ N.

A separator separates two vertices minimally if no other separator of smaller
size separates them, too. The following result is by Halin [8].

Lemma 2.2. [8, 2.4] Let G be a graph, u, v ∈ V (G) and k ∈ N. Then there are
only finitely many separators of size at most k separating u and v minimally.

For a set S of separations we define the property:

For all (A,B), (C,D) ∈ S, there are only finitely many (E,F ) ∈ S with
(A,B) < (E,F ) < (C,D).

(∗)
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Lemma 2.3. Let G be a graph and let k ∈ N. Then any nested set of left-con-
nected proper separations of order at most k has property (∗).

Proof. Let S be a nested set of left-connected separations of order at most k
and let (A,B), (C,D) ∈ S with (A,B) ≤ (C,D). Let us suppose that S does
not satisfy property (∗). Then there are infinitely many distinct (E,F ) ∈ S
with (A,B) < (E,F ) < (C,D). We note that all of them are left-connected,
and all their separators are different. In addition assume that (E,F ) is one of
these separations. Let {Ci}i∈I be the set of all components of G − (E ∩ F ).
Each N(Ci) separates any vertex in CrD from any vertex in BrA minimally
and E ∩ F = ∪i∈IN(Ci). This contradicts Lemma 2.2 and shows (∗).

Lemma 2.4. Let G be a graph and let (A,B), (C,D) and (E,F ) be three
separations such that (A,B) ∦ (C,D). Then the following statements hold:

(i) [2, Lemma 2.2] If (E,F ) is nested with (A,B) and with (C,D), then every
corner of (A,B) and (C,D) is nested with (E,F );

(ii) if (E,F ) is nested with (A,B), then there are two adjacent corners of
(A,B) and (C,D) which are nested with (E,F ).

Proof. For the proof of (i) we refer readers to [2, Lemma 2.2].
To prove (ii), let us assume that (E,F ) is nested with (A,B). We may

assume (E,F ) ≤ (A,B). In particular, we have E ⊆ A ∪ C and E ⊆ A ∪D as
well as B ∩C ⊆ F and B ∩D ⊆ F . Hence, (E,F ) is nested with (A∩C,B ∪D)
and (A ∩D,B ∪ C).

Let (A,B) be a separation and let S be a set of separations of a graph G.
We set

CS(A,B) := {(C,D) ∈ S | (A,B) ∦ (C,D)},

i. e. CS(A,B) is the set of all separations in S that cross (A,B). We set
cS(A,B) := |CS(A,B)|. If cS(A,B) is finite, then we say that (A,B) has fi-
nite crossing number (with respect to S). Otherwise we say that the crossing
number of (A,B) is infinite.

The following lemma shows that corner separations of crossing separations
are crossing with fewer separations than the crossing ones. This is an adaption
of a result of Dunwoody and Krön [6, Lemma 5.1] to our situation.

Lemma 2.5. Let (A,B) and (C,D) be two crossing separations of a graph G
and let S be a set of separations. If (X1, Y1) and (X2, Y2) are two opposite
corner separations of (A,B) and (C,D), then the following holds:

(i) CS(X1, Y1) ∩ CS(X2, Y2) ⊆ CS(A,B) ∩ CS(C,D);

(ii) CS(X1, Y1) ∪ CS(X2, Y2) ( CS(A,B) ∪ CS(C,D).

In particular, if all sets are finite, then we have

cS(X1, Y1) + cS(X2, Y2) < cS(A,B) + cS(C,D).

Proof. For (i), let (E,F ) be a separation that is nested with either (A,B) or
(C,D). By Lemma 2.4 (ii), there are two adjacent corners of (A,B) and (C,D)
which are nested with (E,F ). Thus, (E,F ) is nested with either (X1, Y1) or
(X2, Y2).
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To prove (ii), let (E,F ) ∈ CS(X1, Y1) ∪ CS(X2, Y2). By Lemma 2.4 (i), the
separation (E,F ) belongs to CS(A,B) ∪ CS(C,D). The inclusion is strict, as
(A,B) belongs to CS(A,B) ∪ CS(C,D) but not to CS(X1, Y1) ∪ CS(X2, Y2).

The additional assertion follows directly from (i) and (ii).

Lemma 2.6. Let G be a graph and P be a set of distinguishable (k+ 1)-profiles
in G with k = κ(P, G). Let (A1, A2), (B1, B2) ∈ R(k,P). Then there are two
opposite corner separations of (A1, A2) and (B1, B2) that lie in R(k,P).

Proof. For i ∈ {1, 2}, let PAi
and PBi

be profiles in P such that (A3−i, Ai) ∈ PAi

and (B3−i, Bi) ∈ PBi . Let P ′ := {PA1 , PA2 , PB1 , PB2}. First, we will show the
following.

There are i, j ∈ {1, 2} and P, P ′ ∈ P ′ such that (A3−i, Ai), (B3−j , Bj) ∈
P and (Ai, A3−i), (Bj , B3−j) ∈ P ′.

(†)

If (B1, B2) distinguishes PA1
and PA2

, then (†) holds for those two profiles. Let
us assume that (B1, B2) does not distinguish PA1

and PA2
. We may assume

that (B1, B2) ∈ PA1
∩ PA2

. Without loss of generality, we may assume that
(A1, A2) ∈ PB1 . Then (†) holds for the profiles PA1 and PB1 .

Let us consider the corner separations (X1, X2) := (A3−i ∪ B3−j , Ai ∩ Bj)
and (Y1, Y2) := (Ai ∪ Bj , A3−i ∩ B3−j). By definition of a profile, we have
(X2, X1) /∈ P and (Y2, Y1) /∈ P ′. It is easy to see that the orders of (X1, X2)
and (Y1, Y2) sum to the sum of the orders of (A1, A2) and (B1, B2), which is 2k.
So if one of those corner separations has order at most k, it follows that it
distinguishes P and P ′, and if its order is less than k, this would contradict
k = κ(P, G). Thus, both corner separations have order at least k and hence
exactly k. So they lie in R(k,P).

Lemma 2.7. Let G be a graph, let P be a set of principal k-profiles, let P, P ′ ∈ P
and let (A,B) ∈ Reff(P, P ′). Then there is a component X of ArB such that
(X ∪N(X), V (G) rX) lies in Reff(P, P ′).

Proof. Let us assume that (A,B) ∈ P and (B,A) ∈ P ′. Let {Ci}i∈I be the
components of ArB. Since (Ci ∪N(Ci), V (G)rCi) ≤ (A,B) and (A,B) ∈ P ,
we conclude that (Ci ∪ N(Ci), V (G) r Ci) ∈ P for all i ∈ I. Since (D ∪
N(D), V (G) rD) ≤ (B,A) for all components D of B r A, it follows by (P1)
and as the profiles are principal that (V (G) r Ci, Ci ∪ N(Ci)) ∈ P ′ for some
i ∈ I. Thus we have (Ci ∪N(Ci), V (G) r Ci) ∈ Reff(P, P ′).

Let G be a graph and P be a set of profiles of G each of which is an `-
profile for some ` > k. Note that for every left-connected separation (A,B)
in R(k,P) its separator separates two vertices minimally: by Lemma 2.7, we
find a component C of B r A such that (C ∪N(C), V (G) r C) lies in R(k,P)
as well and hence we may choose any vertex a in ArB and any vertex b in C;
these two vertices are separated by A∩B minimally. Thus, every left-connected
separation in R(k,P) has a finite crossing number with respect to the subset
Rlc(k,P) of left-connected separations inR(k,P) by Lemma 2.2. LetO(k,P) be
the set of left-connected separations in R(k,P) with minimum crossing number
in Rlc(k,P).

The following lemma is essentially already proved in Dunwoody and Krön [6].
But their result requires the existence of ‘cut systems’ as they call it. Instead of
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showing that we can define a cut system in our case, we briefly prove Lemma 2.8
directly. To state Lemma 2.8, we define canonicity slightly stronger than in the
introduction.

Let G and G′ be graph and ϕ : G → G′ an isomorphism. Let P be a set of
profiles and let S be a set of separations. We set

Sϕ := {(ϕ(A), ϕ(B)) | (A,B) ∈ S}

and Pϕ := {Pϕ | P ∈ P}. Then Sϕ is a set of separations of G′ and Pϕ is a set
of profiles of G′. Let us assume that we obtained S by a construction starting
with G and P, e. g. in a constructive proof. Then we denote S by ψ(G,P) and
call ψ the map associated with that construction. We call S canonical (with
respect to P) if for a fixed construction and for all choices of G, G′, ϕ and P
we have ψ(G′,Pϕ) = (ψ(G,P))ϕ, where ψ is the map associated with that
construction. So roughly speaking, S is canonical if its construction commutes
with isomorphisms.

Lemma 2.8. Let G be a well-separable graph with respect to a set P of robust
principal (k + 1)-profiles of G with k = κ(P, G) such that R(k,P) 6= ∅. Then
the set O(k,P) is nested, canonical with respect to P and not empty.

Proof. Let (A,B) ∈ O(k,P). Let us suppose that (A,B) is not nested with
an another left-connected separation (C,D) in R(k,P). Then there are two
opposite corners whose separations lie in R(k,P) by Lemma 2.6 and one of
these corner separations, call it (E,F ), is crossing with a smaller number of
separations in R(k,P) than (A,B) by Lemma 2.5. If (E,F ) is not left-con-
nected, then there is a component K of E r F such that (E′, F ′) := (K ∪
N(K), V (G) rK) is a left-connected separation in R(k,P) by Lemma 2.7. It
is easy to see that (E′, F ′) is nested with all separations that are nested with
(E,F ) and thus is crossing with less separations in Rlc(k,P) than (A,B), a
contradiction to the choice of (A,B).

3 Tree-decompositions
Carmesin, Diestel, Hundertmark and Stein [2] presented a method for finite
graphs how to build a tree-decomposition from a nested set of separations.
Essentially, their method carries over to infinite graphs but the proofs need a
small adjustment to deal with an additional assumption that we need. In this
section, we will recap their definitions and results. We will omit the proof where
appropriate and highlight the differences from the finite to the infinite case.

A tree-decomposition of a graph G is a pair (T,V) of a tree T , called the
decomposition tree, and a family V = (Vt)t∈V (T ) of vertex sets Vt ⊆ V (G), one
for every node of T , such that:

(T1) V (G) =
⋃
t∈V (T ) Vt,

(T2) for every edge e ∈ E(G), there exists a t ∈ V (T ) with e ⊆ Vt,

(T3) Vt1 ∩ Vt3 ⊆ Vt2 for all t2 that lie on the t1-t3 path in T .

The elements of V are the parts of the tree-decomposition. The sets Vs ∩ Vt
with st ∈ E(T ) are the adhesion sets. The adhesion is the supremum of the
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cardinalities of the adhesion sets. A tree-decomposition is k-balanced if all its
adhesion sets have size k and it is balanced if it is k-balanced for some k ∈ N.

LetN be a nested set of separations such that (B,A) ∈ N for all (A,B) ∈ N .
We construct a tree decomposition (T (N ),V(N )) via N . We define a relation
∼ on N :

(A,B) ∼ (C,D) ⇔
{

(A,B) = (C,D) or
(B,A) is a predecessor of (C,D) in (N ,≤),

where a predecessor of an element z of a partial order (P,≤) is an element x < z
of P such that there is no y ∈ P with x < y < z. By the same argument as
in [2, Lemma 3.1], one can show that ∼ is an equivalence relation on N . The
nodes of T (N ) are the equivalence classes of ∼ on N . We define the set of edges
of T (N ) as

E(T (N )) :=
{
{(A,B), (B,A)} | (A,B) ∈ N

}
and an edge is incident with the two equivalence classes of its elements. Let
V(N ) consists of all

Vt :=
⋂
{A | (A,B) ∈ t}

with t ∈ V (T (N )).

Proposition 3.1. Let G be a graph and N a nested set of separations of G
satisfying (∗). Then T (N ) is a tree.

Proof. The proof of connectedness and lack of having cycles follows the proof
of the analogous result for finite graphs of Carmesin, Diestel, Hundertmark
and Stein [2, Theorem 3.4] almost verbatim. We just have to apply (∗) at the
according place to verify that T (N ) is connected.

If (T,V) is a tree-decomposition of a graph G, e ∈ E(T ) and T1, T2 the
components of T − e, then (

⋃
t∈V (T1)

Vt,
⋃
t∈V (T2)

Vt) is a separation of G and
its order is the size of the adhesion set corresponding to e. The separation is
the separation induced by the edge e.

With Proposition 3.1, the proof of [2, Theorem 4.8] carries over to our situ-
ation.

Theorem 3.2. [2, Theorem 4.8] Let G be a graph and N a nested set of sep-
arations satisfying (∗). Then (T (N ),V(N )) is a tree-decomposition. The sepa-
rations induced by (T (N ),V(N )) are precisely those in N .

We say that a profile P lives in a part Vt of a tree-decomposition (T,V) if for
every separation (A,B) that is induced by (T,V) we have (A,B) ∈ P if Vt ⊆ B.
Note that consistency of P implies that if P lives in a part Vt, then Vt is no
adhesion set.

4 Profiles and parts of tree-decompositions
Let (T,V) be a tree-decomposition of a graph G. For t ∈ V (T ), the torso H
of Vt is the subgraph of G induced by Vt with additional edges xy for all x, y ∈ Vt
that lie in a common adhesion set in Vt. A separation (A,B) of G induces a
separation

(AH , BH) := (A ∩ Vt, B ∩ Vt)
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of H if and only if (A,B) does not separate any adhesion set in H. Note that
proper separations of G need not induce proper separations of H. For a set S
of separations of G let

SH := {(AH , BH) | (A,B) ∈ S, (AH , BH) is a separation of H}

be the set of separations induced by S on H. That way, a profile of G induces
a set of separations of H. In the following proposition, we will see that this
induced set of separations is indeed a profile in the cases we are interested in.
Furthermore, we will prove that the induced separations on a torso separate the
induced profiles in a best possible way.

Proposition 4.1. Let G be a graph and let k ∈ N. Let P be a set of robust
principal profiles of G such that for every P ∈ P there is some ` > k such that
P is an `-profile. Let (T,V) be a tree-decomposition of adhesion at most κ(P, G)
such that N(C) = S for every adhesion set S of (T,V) and every component
C of G − S. Let Vt be a part of (T,V) and H be its torso. Assume that all
separations of G induced by edges of the decomposition tree are proper. Then
the following hold.

(i) For every (robust) principal `-profile P that lives in Vt, where ` is larger
than the adhesion of (T,V), the set PH is a (robust) principal `-profile
of H;

(ii) for all separations (A,B) of G with A ∩ B ⊆ Vt that distinguish profiles
in P that live in Vt, the pair (A ∩ Vt, B ∩ Vt) is a separation of H of the
same order and distinguishes the induced profiles;

(iii) for all distinguishable profiles P1, P2 ∈ PH and all distinguishable pro-
files Q1, Q2 ∈ P such that Qi induces Pi for i = 1, 2, there is a sep-
aration (A,B) of G that distinguishes Q1 and Q2 efficiently such that
(A ∩ Vt, B ∩ Vt) is a separation of order |A ∩ B| that distinguishes P1, P2

efficiently;

(iv) if the subset P ′ of P consisting of all profiles that live in Vt contains at
least two elements, then κ(PH , H) = κ(P ′, G).

Proof. Let (A,B) be a separation of the graph G whose separator lies in Vt.
Set (AH , BH) := (A ∩ Vt, B ∩ Vt). Since the separator A ∩B is included in the
vertex set V (H) of the torso H, we have |AH ∩BH | = |A ∩B|.

Suppose for a contradiction (AH , BH) is not a separation of the torso H.
Then there is an edge ab in H with a ∈ Ar B and b ∈ B r A. This edge does
not lie in G and hence both its end vertices lie in a common adhesion set. Let
x be an edge of the decomposition tree whose adhesion set contains the vertices
a and b. Let (X,Y ) be the separation corresponding to the edge x. Either the
vertex set X r Y or Y rX is disjoint from the part Vt. By symmetry, we may
assume that X r Y is disjoint from Vt. As (X,Y ) is proper by assumption, the
set XrY is nonempty. Let C be a component of G−(X∩Y ) included in XrY .
By the assumptions on (T,V) and its adhesion sets, we have X ∩ Y = N(C).
So C includes a path whose endvertices are adjacent to the vertices a and b.
As this path is disjoint from the separator A ∩B, this violates our assumption
that (A,B) is a separation of the graph G. Hence it must be that (AH , BH) is
a separation of the torso H.
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Let (A,B) be a separation of H. By definition, all adhesion sets of (T,V)
induce complete graphs in H. Thus, every adhesion set lies either in A or
in B. We define a separation of G by adding all components C of G−Vt to A if
N(C) ⊆ A and to B otherwise. It is easy to see that the resulting pair (AG, BG)
is a separation of G. Its order is |A∩B| since we did not add anything to A and
B simultaneously. So if (AG, BG) lies in a profile P ∈ P, then (A,B) ∈ PH .

Let P be an `-profile that lives in Vt such that ` is larger than the ad-
hesion of (T,V). First, we will show that PH is consistent. Let (AH , BH) and
(CH , DH) be separations ofH such that (CH , DH) ≤ (AH , BH) and (AH , BH) ∈
PH . Suppose that (DH , CH) lies in PH . So we may assume that there are
(A,B), (D,C) ∈ P whose induced separations in H are (AH , BH), (DH , CH),
respectively. Note that we have A∩B∩V (H) = AH ∩BH and C ∩D∩V (H) =
CH ∩DH by definition of induced separations. Since P is a principal `-profile,
there is a componentK of CrD with (V (G)rK,K∪N(K)) ∈ P . IfK∩Vt 6= ∅,
then there is a vertex inK∩CH ⊆ K∩(AHrBH). Since A∩B = AH∩BH ⊆ DH ,
we conclude K ⊆ A. As (K ∪N(K), V (G) rK) ≤ (A,B) ∈ P , the separation
(K∪N(K), V (G)rK) lies in P by (P1). This is a contradiction to (P1) for P . So
K contains no vertex of CH . In particular K∩Vt = ∅. Let e be an edge of T that
is incident with t and such that for the separation (Ae, Be) induced by e we have
Vt ⊆ Ae and K ⊆ Be. Then we have (Ae, Be) ≤ (V (G) rK,K ∪ N(K)) ∈ P .
So (P1) implies (Ae, Be) ∈ P and hence P does not live in t, a contradiction to
its choice. This shows that PH is consistent.

Let (AH , BH), (CH , DH) ∈ PH and let (A,B) := (AGH , B
G
H) and (C,D) :=

CGH , D
G
H). Then (A,B), (C,D) ∈ P since PH is consistent and (A,B), (C,D)

induce (AH , BH), (CH , DH), respectively. By (P2), we have (E,F ) := (B ∩
D,A ∪C) /∈ P . If the order of (E,F ) is less than `, then (F,E) ∈ P and hence
(FH , EH) ∈ PH . So consistency of PH implies (EH , FH) /∈ PH . If the order of
(E,F ) is at least `, then the same holds for the order of (EH , FH) and hence it
does not lie in PH . Thus, (P2) follows for PH and PH is a profile.

If a separation (AH , BH) ∈ PH is induced by (A,B) ∈ P , then the order of
(AH , BH) is at most the order of (A,B). Thus, all elements of PH have order at
most `. Let (A,B) be a separation of H of order at most `. Then the order of
(AG, BG) is at most ` and hence either (AG, BG) or (BG, AG) lies in P . Thus,
either (A,B) or (B,A) lies in PH .

As P is a principal `-profile, there is for every vertex set S of size less than k
a component K of G − S such that (A,B) := (V (G) r K,K ∪ N(K)) ∈ P .
As in the proof of (P1) for PH , it follows that (AH , BH) is a proper separation
of H. Then each separation (C,D) with S = C ∩D lies in PH if and only if D
contains BH . It follows that PH is principal.

Now let P be n-robust for some n ∈ N. Let (AH , BH) ∈ PH and let (CH , DH)
be a separation of H of order at most n. Then there are (A,B) ∈ P and a
separation (C,D) of order at most n that induce (AH , BH) and (CH , DH) in H,
respectively. Suppose that (BH ∩CH , AH ∪DH) and (BH ∩DH , AH ∪CH) are
in PH and both have order less than |A∩B|. As P is n-robust, we may assume
that (B∩C,A∪D) /∈ P . As the orders of (B∩C,A∪D) and (BH∩CH , AH∪DH)
coincide, we conclude (A ∪D,B ∩ C) ∈ P . So by definition, (AH ∪DH , BH ∩
CH) ∈ PH which contradicts consistency of PH as (BH ∩CH , AH ∪DH) ∈ PH .
Thus, (i) holds.

We have already seen that separations (A,B) whose separators lie in Vt
induce separations in H and it is obvious from the definitions that, if (A,B)
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distinguishes two profiles, the induced separation distinguishes the induced pro-
files. Thus, (ii) holds.

To prove (iii), let P1, P2 ∈ PH and Q1, Q2 ∈ P such that Qi induces Pi for
i = 1, 2. Let (A,B) be a separation of G such that (AH , BH) distinguishes P1

and P2 efficiently. Since any separation (C,D) of G that separates Q1 and Q2

efficiently, also induces a separation (CH , DH) that distinguishes P1 and P2, we
conclude |A ∩ B| ≤ |C ∩ D| and thus we may assume (A,B) ∈ Q1 and either
(A,B) or (B,A) lies in Q2. If (A,B) ∈ Q2, then we conclude (AH , BH) ∈
P1 ∩ P2. But as it distinguishes P1 and P2, we also have (BH , AH) ∈ P2, a
contradiction to consistency of P2. Thus, (A,B) distinguishes Q1 and Q2. Any
separation of smaller order than (A,B) that distinguishes Q1 and Q2 induces
a separation of smaller order than (AH , BH) distinguishing P1 and P2. Thus,
(A,B) distinguishes Q1 and Q2 efficiently. This shows (iii).

Finally, (iv) follows immediately from (ii) and (iii).

Lemma 4.2. Let G be a well-separable graph with respect to a set P of robust
principal profiles of G of order k + 1 with k = κ(P, G). Let (T,V) be a k-
balanced tree-decomposition such that all separations of G induced by edges of T
are proper. Let X be a torso of (T,V) and let P ′ be the set of profiles of X that
are induced by profiles in P. Then S(k,P ′, X) = ∅ and R(k − 1,P ′, X) = ∅.

Proof. Proposition 4.1 implies R(k − 1,P ′, X) = ∅. Let (A,B) ∈ R(k,P ′, X)
and let C be a component of X − (A ∩ B). By Proposition 4.1 (iii), there is
a separation (AG, BG) that induces (A,B) on X and has the same order as
(A,B). In particular, we have A ∩B = AG ∩BG.

Let us suppose that N(C) ( A ∩ B. Then C lies in a component K of
G− (A∩B) = G− (AG∩BG). Let us show that N(K) ( A∩B, since this leads
to an immediate contradiction to S(k,P) = ∅. Let x ∈ KrC have a neighbour
y in (A∩B)rN(C). Then y lies in an adhesion set S of (T,V). Thus, any path
in K from a vertex in C to x must contain a vertex z of S. Since z lies in S,
it lies in X and hence in C. So by definition of a torso, y has z as a neighbour
and hence y ∈ N(C). So we have N(K) = N(C) ( A ∩B.

Now we are going to construct a tree-decomposition of an arbitrary graph
with a set of profiles such that the tree-decomposition has a unique part in which
all profiles live and whose torso is well-separable with respect to the induced
profiles. We call a tree-decomposition canonical if the set of separations induced
by the edges of the tree-decomposition is canonical.

Proposition 4.3. Let G be a graph and let k ∈ N. Let P be a set of robust
principal profiles of G that are pairwise κ(P, G)-distinguishable and such that for
every P ∈ P there is some ` > κ(P, G) such that P is an `-profile. Then there
exists a tree-decomposition (T,V) of adhesion less than κ(P, G) that is canonical
with respect to P such that there exists a unique part Vt of (T,V) in which all
profiles of P live and such that the torso H of Vt is well-separable with respect
to PH . Moreover, all separations corresponding to edges of the decomposition
tree are proper.

Proof. Let C be the set of all degenerated components of separations (A,B) ∈
Rκeff(P, G). Let T be a star with |C| leaves. Let x be the central vertex of T
and let ϕ be a bijection from the set of leaves of T to C. For a leaf y, we set
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Vy := ϕ(y)∪N(ϕ(y)) and we set Vx := V (G) r
⋃
C. We claim that (T,V) with

V := {Vz | z ∈ V (T )} is a tree-decomposition of adhesion less than κ(P, G).
Since the adhesion set of an edge xy has size at most N(ϕ(y)), it follows

from the choice of C that the adhesion is less than κ(P, G). To show that (T,V)
is a tree-decomposition, it suffices to show (T3). This follows immediately once
we showed the following two properties.

(a) Distinct elements of C are disjoint;

(b) elements of C are disjoint from separators of separations in Rκeff(P, G).

Let (A,B) and (C,D) be two separations in Rκeff(P, G) and let X be a degener-
ated component of G− (A ∩B). If there is also a degenerated component Y of
G− (C ∩D) with X ∩ Y 6= ∅ that is distinct from X, then either X intersects
C ∩D or Y intersects A∩B. Thus, (b) implies (a) and it remains to prove (b).

Let us suppose X ∩ (C ∩D) 6= ∅ for some (C,D) ∈ Rκeff(P, G). Without loss
of generality, we may assume X ⊆ B. Let P, P ′, Q,Q′ ∈ P such that (A,B)
distinguishes P and P ′ efficiently and (C,D) distinguishes Q and Q′ efficiently.
We may assume (A,B) ∈ P and (C,D) ∈ Q. We will show that one corner
separation, either (B ∩C,A∪D) or (B ∩D,A∪C), has order at most |A∩B|.
Let us suppose that both have order at least |A ∩ B| + 1. As the orders of
opposite corner separations sum to 2|A ∩ B|, the orders of (A ∩ C,B ∪D) and
(A ∩ D,B ∪ C) are less than |A ∩ B|. Since these two corner separations are
less than (A,B), they lie in P . But neither (B ∪D,A ∩ C) nor (B ∪ C,A ∩D)
can lie in P ′ as their orders are less than |A ∩ B| but (A,B) ∈ Rκeff(P, G). So
(A∩C,B∪D) and (A∩D,B∪C) lie in P ′. Then robustness implies (B,A) /∈ P ′.
This contradiction shows that either (B∩C,A∪D) or (B∩D,A∪C) has order
at most |A ∩B|.

Next, we will show that either (B ∩ C,A ∪ D) or (B ∩ D,A ∪ C) lies in
Rκeff(P, G). Let us assume that the order of (B ∩ C,A ∪D) is at most |A ∩B|.
We are done if this separation lies in Rκeff(P, G). So let us assume that it does
not lie in Rκeff(P, G). In particular, we have (B ∩C,A∪D) ∈ P ′ ∩Q. Since the
orders of opposite corner separations sum to 2|A∩B|, either (A∩C,B ∪D) or
(B∩D,A∪C) has order at most |A∩B|. In the first case, (A∩C,B∪D) must lie
inRκeff(P, G) since otherwise (A∩C,B∪D) ∈ Q and hence we get a contradiction
to robustness of Q by the three separations (A∩C,B ∪D), (B ∩C,A∪D) and
(C,D). So in each case, the order of (B ∩D,A ∪ C) is at most |A ∩ B|. Using
robustness of P ′, we obtain that (B ∩ D,A ∪ C) lies in Rκeff(P, G). The case
that the order of (B ∩D,A ∪ C) is at most |A ∩ B| is analogous. Thus, either
(B∩C,A∪D) or (B∩D,A∪C) lies in Rκeff(P, G). Let us denote this separation
by (E,F ). Note that X ∩ (C∩D) lies in the separator of (E,F ). By Lemma 2.7
there is a component K of E r F such that (K ∪ N(K), V (G) r K) lies in
Rκeff(P, G). Then we have X ∩ (C ∩ D) ⊆ N(K). This implies K ⊆ X. But
then (X∪N(X), V (G)rX) distinguishes two profiles in P while its order is less
than κ(P, G), which is a contradiction. This shows (b). So we have verified that
(T,V) is a tree-decomposition. It is canonical as the set of separations induced
by its edges is

{(C ∪N(C), V (G) r C) | C ∈ C} ∪ {(V (G) r C,C ∪N(C)) | C ∈ C}.

Since the adhesion of (T,V) is less than κ(G,P), it only remains to show
that the torso H of Vx is well-separable with respect to PH .
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Proposition 4.1 (iv) implies κ(P, G) = κ(PH , H). Let (A,B) ∈ Rκeff(PH , H).
Let (AG, BG) be a separation of G of order |A∩B| that induces (A,B) on H as
constructed in the proof of Proposition 4.1: if N(C) ⊆ A for a component C of
G− Vx, add C to A and otherwise to B. Then (AG, BG) ∈ Rκeff(P, G). Let us
suppose that there is a component C of H − (A ∩B) with N(C) ( A ∩B. Let
CG be the component of G− (A ∩B) that contains C. Since CG ∩ Vx 6= ∅, the
construction of (T,V) implies N(CG) = A ∩ B. Let u ∈ N(CG) r N(C) and
v ∈ CG a neighbour of u. Let u′ ∈ N(C) and v′ be a neighbour of u′ in C. Let
P be a u-u′ path all of whose inner vertices lie in CG and whose first and last
edges are uv, v′u′, respectively. We construct a u-u′ path P ′ in H: whenever P
leaves Vx, it does so through an adhesion set and must reenter Vx through the
same adhesion set by (T3). We then replace this subpath by the edge between
its two end vertices, which lies in H. The resulting path has no vertices outside
of P and thus no vertex of A∩B. But it contains all vertices of P that lie in Vx.
So it contains v′ and, thus, it contains a vertex of C. Hence, all inner vertices
of P ′ lies in C. This contradicts u /∈ N(C) and shows that H is well-separable
with respect to PH .

The ‘Moreover-part’, directly follows from (a) and (b).

5 The case: fixed k

Let N be a set of separations and P be a set of profiles of a graph G. We
call N nice (for P) if it is a nested set of left-connected separations of order k
in R(k,P) and we call N distinguishing if it distinguishes all k-distinguishable
pairs of profiles in P. An N -block X is a maximal subset of V (G) such that
for every (A,B) ∈ N we have either X ⊆ A or X ⊆ B but not both. Note
that X is the intersection of all sides A for (A,B) ∈ N that contain X. For
an N -block X, its torso is the graph induced by X in G with additional edges
xy whenever x and y lie in a separator A ∩ B of a separation (A,B) ∈ N with
A ∩B ⊆ X.

We call N extendable (for P) if for any two (distinct) robust profiles in P of
the same order, there is some separation of G distinguishing these two profiles
efficiently that is nested with N .

Theorem 5.1. Let G be a well-separable graph with respect to a set P of robust
principal (k + 1)-profiles of G with k = κ(P, G). Then G has a tree-decomposi-
tion (T,V) satisfying the following.

1. (T,V) distinguishes any two robust profiles in P;

2. (T,V) is canonical with respect to P;

3. (T,V) is k-balanced.

Proof. Our first aim is to construct a canonical set N that is nice and distin-
guishing.3 We construct the set N by transfinite recursion. We set N0 := ∅.
Assume we already constructed all sets Nα for α < β such that each Nα is nice
and canonical and Nα1

⊆ Nα2
whenever α1 < α2 < β. If β is a limit ordinal we

set Nβ :=
⋃
α<β Nα. This set is nice and canonical as so are all sets Nα.

3The existence of a non-canonical set N follows from [1, Theorem 5.9]. Here we show how
the proof of that theorem can be modified to give a canonical set N .
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Now assume that β = γ + 1 is a successor ordinal. If Nγ is distinguishing,
we stop and set N := Nγ . Otherwise there are robust profiles P,Q ∈ P that are
distinguished by a separation of order k in G but not by Nγ . Hence the profiles
P and Q have to live in the same Nγ-block X. Let X ′ be the torso of X. As
G is well-separable and k = κ(P, G), the assumptions of [1, Theorem 5.9] are
satisfied. So [1, Theorem 5.9]4 says that the set Nγ is extendable for P. Let
P ′ be the set of profiles induced by P on X ′. By Proposition 4.1 (i), the robust
profiles P and Q induce robust profiles in the set P ′; in particular, P ′ is not
empty. By Proposition 4.1 (iii), the set R(k,P ′, X ′) of k-relevant separations is
not empty. By Lemma 4.2 S(k,P ′) = ∅ and R(k − 1,P ′) = ∅. So by Lemma
2.8 the set M(X) of left-connected separations in R(k,P ′, X ′) with minimum
crossing number in Rlc(k,P ′, X ′) is nested and not empty.

Similarly, as in the proof of Proposition 4.1, we extend the set M(X) of
separations of the torso X ′ to a set of separations in the graph G: given (A,B) ∈
M(X), we obtain AG from A by adding all components of G −X that have a
neighbour in ArB and we obtain BG from B by adding all other components.
By construction (AG, BG) is a left-connected separation of G of order k. Let
MG(X) be the set of all separations (AG, BG) for all (A,B) inM(X). We set
Nβ := Nγ ∪

⋃
Y MG(Y ), where the union ranges over all Nγ-blocks Y such that

there are at least two profiles of P living in Y . This definition ensures that Nβ
is canonical. Let us prove

Nβ is nice. (‡)

The separation (AG, BG) is in R(k,P, G) as it distinguishes the two robust
profiles whose induced profiles in P ′ are distinguished by (A,B) in X ′. It
remains to prove that Nβ is nested.

Any separation in MG(X) is nested with any separation in Nγ by [1, Ob-
servation 4.22] (recall that this Observation5 says that given a set N of nested
separations, any separation of theN -torso extended in the natural way to a sepa-
ration of G is nested with N ). The same result [1, Observation 4.22] also implies
that every separation in MG(Y1) is nested with any separation in MG(Y2) if
Y1 6= Y2.

Thus it suffices to show that any two separations (AG1 , B
G
1 ) and (AG2 , B

G
2 ) in

MG(X) are nested. The separations (A1, B1) and (A2, B2) are nested as they
lie inM(X).

Let us consider the case A1 ⊆ A2 and B2 ⊆ B1 first. Let K be a component
of G − X with a neighbour z ∈ A1 r B1. If z /∈ A2 r B2, then we have
z ∈ B2 ⊆ B1, which is a contradiction. Thus, every component of G − X
that has a neighbour in A1 r B1 also has a neighbour in A2 r B2. So we have
AG1 ⊆ AG2 and BG2 ⊆ BG1 .

The case A2 ⊆ A1 and B1 ⊆ B2 is analogous to the previous case.
Let us now consider the case A1 ⊆ B2 and A2 ⊆ B1. Then for every

component K of G−X that has a neighbour in A1rB1 we have N(K) ⊆ A1 ⊆
B2 as (A1, B1) is a separation of the torsoX ′; in particularN(K)∩(A2rB2) = ∅.

4The ‘In particular’part of that theorem is not applied here
5Recall that in that paper there are further technicalities related to [1, Observation 4.22].

These are only important to prove a lemma further below in that paper (where it is shown
that extensions of separations ofM(X) are nested). Here we make use of the assumption that
the separations in the setM(X) are left connected and have the same order as the separations
in the set Nγ and prove an analogue of that later lemma in the other paper ‘by foot’.
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So K does not lie in AG2 but in BG2 . This shows AG1 ⊆ BG2 . An analogous
argument shows AG2 ⊆ BG1 .

The last case to consider is B1 ⊆ A2 and B2 ⊆ A1. If (A1, B1) = (B2, A2),
then we are in the above case A1 ⊆ B2 and A2 ⊆ B1. So we may assume
that those two separations are distinct; in particular B1 ( A2 and B2 ( A1.
First we show that there is a vertex v in (A2 ∩ B2) r B1, see Figure 3. As the
separation (A2, B2) is proper, there is a vertex w in B2 r A2. This vertex w
must be contained in A1 rB1 as B1 ⊆ A2. As the connected set A1 rB1 is not
a subset of B2, there must be a vertex v in the link (A2 ∩B2) rB1.

B1A1

A2

B2

v

w ∅

∅

∅

Figure 3: The corner diagram of (A1, B1) and (A2, B2). By nestedness the
bottom right corner and its two adjacent links are empty. The vertex w exists
as (A2, B2) is proper. The vertex v exists as the connected set A1 r B1 is not
a subset of B2.

Our aim is to show BG2 ⊆ AG1 . So let K be a component of G−X that is a
subset of BG2 . If K has a neighbour in B2 rA2, then it also has a neighbour in
the superset A1rB1, and thus X is included in AG1 . Thus we may assume that
K has no neighbour in B2 rA2. By its choice K has no neighbour in A2 rB2.
So all its neighbours are in the separator A2 ∩ B2. As (A2, B2) is in R(k,P)
and S(k,P) is empty, the component K has the whole separator A2 ∩B2 in its
neighbourhood. Thus the vertex v lies in the neighbourhood of K but also in
A1 r B1. So K is included in AG1 . We have shown BG2 ⊆ AG1 . An analogous
argument shows BG1 ⊆ AG2 . Thus (AG1 , B

G
1 ) and (AG2 , B

G
2 ) are nested.

All cases combined show that Nβ is nested, which proves (‡).
Every separation (AG, BG) inMG(X) distinguishes two robust profiles in P

that are not distinguished by Nγ . Indeed, there are profiles in P inducing
profiles in the torso X ′ such that (A,B) distinguishes these induced profiles.
So MG(X) contains a separation distinguishing two profiles not distinguished
by Nγ . So Nβ is strictly larger than Nγ . As the sequence of the Nα is strictly
increasing but the number of separations of order k is bounded (by a function
of the cardinality of the graph G), this recursions has to stop eventually. So
there is some canonical, nice and distinguishing set N .

Note that all separations in N are proper since they are all relevant. So
by Lemma 2.3 the set N has property (∗) and thus induces by Theorem 3.2 a
canonical tree-decomposition that distinguishes all robust profiles in P. It is
k-balanced by construction.
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6 Trees of tree-decompositions
In this section, we will prove the main theorem of this paper. Before we do that,
we give the formal definition of trees of tree-decompositions.

A rooted tree is a pair (T, r) of a tree T and a vertex r ∈ V (T ), called
the root of T . The level of a vertex t ∈ V (T ) is d(t, r) + 1. A tree of tree-
decompositions of a graph G is a triple ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) of a
rooted tree (T, r), a family (Gt)t∈V (T ) of graphs, one for every node of T with
Gr = G, and a family (Tt,Vt)t∈V (T ) such that for every node t ∈ V (T ) the
pair (Tt,Vt) is a tree-decomposition of Gt such that for every node t ∈ V (T ) the
graphs assigned to its neighbours on the next level are distinct torsos of (Tt,Vt).
The tree of tree-decompositions distinguishes two profiles (efficiently) if there
exists a node t ∈ V (T ) such that some separation of Gt induced by (Tt,Vt)
distinguishes the induced profiles (efficiently) and is induced by a separation
of G that distinguishes the profiles (efficiently).

Remark 6.1. It was proved first in [3] that any tree of tree-decompositions
of a finite graph can be stuck together into a single tree-decomposition in a
canonical way. Our proof of Proposition 7.2 is inspired by the arguments of
that paper (yet with somewhat different notation).

A tree of tree-decompositions ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) is canonical
if every (Tt,Vt) for t ∈ V (T ) is canonical and if the construction of the tree-
decompositions (Ts,Vs) and (Tt,Vt) where s and t have the same level is the
same, e. g. the tree-decompositions are obtained by the same constructive proof.

Theorem 6.2. Let G be a graph and let P a set of distinguishable robust
principal profiles such that for every P ∈ P there is some ` ∈ N ∪ {ℵ0}
such that P is an `-profile. Then there exists a tree of tree-decompositions
((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) that is canonical with respect to P such that
the following hold.

(1) The tree of tree-decompositions distinguishes P efficiently;

(2) if t ∈ V (T ) is on level 2k, then (Tt,Vt) is k-balanced;

(3) nodes t on level 2k have |V (Tt)| neighbours on level 2k + 1 and the graphs
assigned to them are all torsos of (Tt,Vt);

(4) if t ∈ V (T ) is on level 2k + 1, the tree-decomposition (Tt,Vt) has adhesion
at most k;

(5) nodes on level 2k + 1 have at most one neighbour on level 2k + 2; their
associated graphs are well-separable.

Note that Theorem 6.2 (1) implies Theorem 1.3 and hence Theorem 1.1.

Proof of Theorem 6.2. We construct the tree of tree-decompositions recursively.
More precisely, we have one step for every node of the rooted tree (T, r), which
is constructed recursively during the process. Starting with the root r, for each
node of T in its step we define a tree-decomposition of its associated graph and
define its neighbours at the next level of T and their associated graphs.

We start by assigning the graph G to the root; that is, we set Gr := G.
Assume that a node t of T is defined and we already assigned a graph Gt to this
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node. First we consider the case that the node t is on an odd level. We denote its
level by 2k+ 1. Let Pt be the set of (k+ 1)-profiles induced by P on Gt. If Pt is
empty, let (Tt,Vt) be the trivial tree-decomposition with a unique node and let
t have no neighbour on the next level. If Pt is not empty but k+ 1 6= κ(Pt, Gt)
(we note that this always includes the case that the set Pt consists of a single
profile), let (Tt,Vt) be the trivial tree-decomposition of Gt and let t have a
unique neighbour on the next level whose associated graph is Gt. If Pt is not
empty and k + 1 = κ(Pt, Gt), let (Tt,Vt) be the canonical tree-decomposition
of Proposition 4.3. It has adhesion at most k by that proposition. Only the
unique node of (Tt,Vt) whose torso contains the induced profiles of Pt we add a
neighbour on the next level whose associated graph is that torso. Note that this
torso is well-separable by Proposition 4.3. By construction, (4) and (5) hold.

If t ∈ V (T ) is on level 2k, let Pt be the set of (k + 1)-profiles induced by P
on Gt. If k 6= κ(P, G), let (Tt,Vt) be the trivial tree-decomposition of Gt, i. e.
let Tt be a tree with one vertex and Vt = {V (Gt)}. If k = κ(P, G), then Gt
is well-separable by construction. Let (Tt,Vt) be the canonical tree-decompo-
sition from Theorem 5.1 for Gt and Pt. Then t gets |V (Tt)| neighbours on
the next level whose associated graphs are the torsos of (Tt,Vt). Then (2) and
(3) hold for t by construction. This completes the construction of the tree of
tree-decompositions ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )). By Proposition 4.1 (iv),
it distinguishes P efficiently.

Note that the tree of tree-decompositions is canonical since we chose for
nodes on even level the same theorem and for nodes on odd levels the same
proposition to obtain canonical tree-decompositions.

As we already mentioned in the introduction, profiles are a generalisation
of ends, k-blocks and tangles in finite graphs. As a corollary, it will follow
that Theorem 6.2 holds for the set of profiles induced by ends, the set of dis-
tinguishable profiles induced by robust k-blocks and the set of profiles induced
by principal tangles of order k. Here we will give brief definitions of all these
concepts and discuss how they induce profiles.

Let G be a graph. A ray is a one-way infinite path and two rays in G are
equivalent if for every finite S ⊆ V (G) there is a component of G− S such that
both rays have all but finitely many vertices in that component. This is an
equivalence relation whose equivalence classes are the ends of G. Let ω be an
end of G. We say that ω lies in a component of G − S if for every ray R ∈ ω
all but finitely many vertices of ω lie in G−S. Let Pω be the set of separations
(A,B) of finite order such that the component of G− (A ∩ B) that contains ω
lies in B. Then (P1) and (P2) are true by definition. Obviously, Pω is robust
and principal. Thus, sets of ends define sets of robust profiles.

Corollary 6.3. Let G be a graph and let Ω be a set of ends of G. Let P be
the set of profiles defined by Ω. Then there exists a tree of tree-decompositions
distinguishing all ends in Ω.

A k-block of a graph G is a maximal set b of at least k vertices such that
no two of its vertices can be separated in G by fewer than k vertices. Then for
every separation (A,B) of order at most k − 1 we have either b ⊆ A or b ⊆ B.
Let Pb be the set of separations (A,B) of order at most k − 1 with b ⊆ B. It
is easy to see that Pb is a principal profile. We call b robust if Pb is robust and
two k-blocks are distinguishable if their profiles are distinguishable.
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Corollary 6.4. Let G be a graph and let B be a set of distinguishable robust
k-blocks. Let P be the set of profiles defined by B. Then there exists a tree of
tree-decompositions distinguishing all profiles in P.

A principal tangle of order k in a graph G is a set θ of separations of order
at most k − 1 satisfying the following conditions.

(θ1) For all (A1, B1), (A2, B2), (A3, B3) ∈ θ, we have

G 6= G[A1] ∪G[A2] ∪G[A3],

where G[Ai] is the graph induced by the vertex set Ai for i ∈ {1, 2, 3};

(θ2) if X is a set of at most k vertices, there is a component C of G−X such
that (G− C,C ∪X) ∈ θ;

(θ3) for all separations (A,B) of order at most k− 1 we have either (A,B) ∈ θ
or (B,A) ∈ θ.

Recall that two tangles θ1, θ2 are distinguishable if there is a separation (A,B) ∈
θ1 with (B,A) ∈ θ2.

Proposition 6.5. Let G be a graph. Every principal tangle of order k is a
robust principal k-profile.

Proof. Let θ be a principal tangle and let (C,D) ≤ (A,B) with (A,B) ∈ θ. If
(D,C) ∈ θ, then G = G[A] ∪G[D] which violates (θ1). So θ is consistent.

To see (P2), let (A,B), (C,D) ∈ θ. Suppose for a contradiction that (B ∩
D,A ∪ C) is in θ. Then the three small sides A, C and B ∪ D together cover
the whole graph G, a contradiction to property (θ1). Thus (P2) is satisfied.

By assumptions tangles of order k only contain separations of order at most
k − 1. So by property (θ3), the principal tangle θ is a k-profile.

Next we show that θ is principal as a profile. So let ((Ai, Bi))i∈I be a
family of separations in θ with Ai ∩ Bi = Aj ∩ Bj for all i, j ∈ I. Denote the
common separator Ai∩Bi of these separations by X. By property (θ2), there is
a component C of G−X such that (G−C,C ∪X) ∈ θ. By consistency (which
is proved above), we deduce that X ⊆ BirAi for all i ∈ I. Hence θ is principal
as a profile.

To prove robustness of θ, let (A,B) ∈ θ and (C,D) be a separation such that
(B∩C,A∪D) and (B∩D,A∪C) have order less than k. If both (B∩C,A∪D)
and (B ∩D,A ∪ C) belong to θ, then we have

G = G[A] ∪ [B ∩ C] ∪G[B ∩D]

which is impossible by (θ1). Thus, θ is robust.

Corollary 6.6. Let G be a graph and let P be a set of distinguishable principal
tangles of finite order. Then there exists a tree of tree-decompositions distin-
guishing all elements in P.
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7 Locally finite graphs
In this section, we apply Theorem 6.2 to the special case of locally finite graphs.
While we will show that for fixed k ∈ N there is a canonical tree-decomposition
distinguishing all k-distinguishable profiles efficiently (Theorem 7.3), it is not
possible to extend this to all distinguishable profiles as shown directly below
that theorem. But as a further positive result, Theorem 7.4 shows that we
can at least find a nested set of separations distinguishing the distinguishable
profiles. This nested set does not define a tree-decomposition as it does not
satisfy (∗). Note that for locally finite graphs, all profiles are principal. For a
good introduction to tree-like properties that go beyond tree-decompositions we
refer the reader to [7].

This whole section is a straightforward extension of the ideas of [3] from
finite to locally finite graphs. A more detailed analysis of this procedure can be
found in there.

A separation (A,B) of a graph is tight if there are components CA of ArB
and CB of B r A such that every vertex in A ∩ B has neighbours in CA and
in CB . By applying Lemma 2.2 to the pairs of vertices in the neighbourhood of
a vertex v, we get the following corollary.

Proposition 7.1. Let G be a locally finite graph, let v ∈ V (G) and let k ∈ N.
Then there are only finitely many tight separations of order k with v in their
separator.

For a tree T and be a subset E of E(T ), we denote by T/E the tree obtained
by contracting all edges of E. A tree-decomposition (T ′,V ′) of G is a refinement
of a tree-decomposition (T,V) of G if there is a family of disjoint subtrees (Ti)i∈I
of T ′ covering V (T ′) such that the following holds:

(R1) T = T ′/
⋃
i∈I E(Ti);

(R2)
⋃
s∈Ti

V ′s = Vt, where t is the node of T obtained from the contraction
of E(Ti).

If T is a finite tree, then it is well-known that there is either a unique vertex
or unique edge that lies in the middle of every path of maximum length in T .
We call this vertex or edge the central vertex or edge of T . It is preserved by
all automorphisms of T .

Proposition 7.2. Let G be a locally finite graph and (T,V) be a canonical
tree-decomposition of G of finite adhesion. For every torso Ht of (T,V) let
(T t,Vt) be a canonical tree-decomposition of Ht of finite adhesion such that
every separation (A,B) induced by (T t,Vt) is tight and such that no two of these
induced separations have the same separators. Assume that all tree-decomposi-
tion s (T t,Vt) are obtained by the same canonical construction. Then there is a
canonical tree-decomposition (T ′,V ′) that is a refinement of (T,V) with respect
to a family (Rt)t∈V (T ), where Rt is a subdivision of T t, such that every adhesion
set of (T ′,V ′) is an adhesion set of either (T,V) or one of the tree-decomposi-
tions (T t,Vt).

Proof. We are going to construct a new tree-decomposition (T ′, V ′) of G by
gluing together the tree-decompositions (T t,Vt) along the tree T in a canonical
way. Let tt′ ∈ E(T ). Let Stt

′
be the maximal subtree of T t such that all V ts

20



with s ∈ V (Stt
′
) contain Vt ∩ Vt′ . Then also all adhesion sets corresponding to

edges with both its incident vertices in Stt
′
contain Vt ∩ Vt′ . As the induced

separations of these edges are all distinct and tight, Proposition 7.1 implies that
Stt

′
is finite. As we mentioned above, Stt

′
has a unique central vertex or edge,

which is fixed by all automorphisms of Stt
′
.

Let Et, U t be the set of edges, of vertices of T t that are a central edge, a
central vertex, for some tree Stt

′′
with tt′′ ∈ E(T ), respectively. We subdivide

all edges in Et once and obtain a new tree Rt. Let Wt be a set of vertex sets,
one for every s ∈ V (Rt) such that Ws = V ts if s is a vertex of T t and such
that Ws is the adhesion set corresponding to the edge e ∈ E(T t) if s is the
vertex that subdivided e. It directly follows from the fact that (T t,Vt) is a
tree-decomposition that also (Rt,Wt) is one.

Let T ′ be the graph obtained from the disjoint union of all trees Rt for
t ∈ V (T ) by adding for every edge tt′ ∈ E(T ) an edge between the central
vertex or vertex on the subdivided central edge of Stt

′
and that of St

′t. It is
easy to see that contracting the subgraphs Rt of T ′ results in T and hence T ′
is a tree. Let V ′ be the union of the sets Wt for all t ∈ V (T ).

That (T,V) and all (Rt,Wt) are tree-decompositions implies that (T ′,V ′) is
one, too. The tree-decomposition (T ′,V ′) is canonical as the same is true for
(T,V) and all (Rt,Wt) and by construction of T ′. As the properties (R1) and
(R2) hold by construction, the assertion follows.

Now we are able to prove the following, which implies Corollary 1.2 already
mentioned in the Introduction.

Theorem 7.3. Let G be a locally finite graph and let k ∈ N. Let P be a set of k-
distinguishable robust profiles each of which is an `-profile for some ` ∈ N∪{∞}.
Then there is a tree-decomposition that is canonical with respect to P and that
distinguishes P efficiently.

Proof. Let ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) be a tree of tree-decompositions
of G with the properties of Theorem 6.2. Since P is k-distinguishable, the
maximum level of (T, r) is 2k+1 by construction. So 2k+1 iterated applications
of Proposition 7.2, where in each step we use all tree-decomposition of the next
level of T , lead to a tree-decomposition (T ′,V) of G. Since the tree of tree-
decompositions distinguishes all k-distinguishable profiles of P efficiently, so
does (T ′,V).

We cannot omit the condition ’k-distinguishable’ in Theorem 7.3 as [1, Ex-
ample 3.7] shows.

Theorem 7.4. Let G be a locally finite graph and let P be a set of distinguishable
robust profiles such that for every P ∈ P there is some ` ∈ N∪{∞} such that P
is an `-profile. Then there is a nested set of separations that is canonical with
respect to P and that distinguishes P efficiently.

Proof. Let ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) be a tree of tree-decompositions
of G with the properties of Theorem 6.2. For k ∈ N, let (T k,Vk) be the tree-
decomposition obtained by applying Proposition 7.2 iteratively for the the sub-
tree of (T, r) consisting of all vertices on the first 2k levels. By construction,
(T k+1,Vk+1) is a refinement of (T k,Vk). Let N k be the nested set of separa-
tions induced by (T k,Vk). Then N k ⊆ N k+1. Thus,

⋃
n∈NNn is a nested set
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of separations. It distinguishes P efficiently as the tree of tree-decompositions
does so and it is canonical, as all steps in this proof keep this property and the
tree of tree-decompositions we started with is canonical.

Remark 7.5. While it is fairly straightforward to show that any nested set of
separations can be turned into a tree of tree-decompositions, we highlight that
canonical nested sets of separations distinguishing all ends do not always exist
(an example is provided in Figure 1).

8 Concluding remarks
In the exposition in the Introduction we focused on main ideas and gave some
theorems in a more concrete formulation. Here we summarise some results that
are slightly stronger in details than those stated in the Introduction.

Remark 8.1. Theorem 7.3 is also true if we relax ‘locally finite’ to the property
that the removal of finitely many vertices only leaves finitely many components.
The proof is essentially the same.

Remark 8.2. In this paper we proved the strengthening of Theorem 1.3 for
arbitrary subsets of the set of robust principal profiles, and the tree of tree-decom-
positions we obtain is canonical with respect to that subset, compare Theorem
6.2.

Remark 8.3. Theorem 6.2 easily implies the following variant. (To see this
one has to simply ‘move separations of low order at higher levels down to lower
levels’. We leave the details to the reader.)

Let G be a graph and P a set of distinguishable robust principal profiles each
of which is an `-profile for some ` ∈ N ∪ {ℵ0}. Then there exists a tree of tree-
decompositions ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) that is canonical with respect
to P such that the following hold.

(1) The tree of tree-decompositions distinguishes P efficiently;

(2) if t ∈ V (T ) is on level k, then (Tt,Vt) is k-balanced;

(3) nodes t at all levels have |V (Tt)| neighbours on the next level and the graphs
assigned to them are all torsos of (Tt,Vt).

Further related work. If we consider the class of quasi-transitive graphs,
then Hamann, Lehner, Miraftab and Rühmann [12] proved with the aid of our
main result that those graphs that admit a canonical tree-decomposition dis-
tinguishing all their ends are the accessible graphs, that is, the graphs that are
obtained from finite or one-ended quasi-transitive graphs by tree amalgama-
tions of finite adhesion and finite identification respecting the group actions.
This result in turn is used in [9, 10, 11] to investigate quasi-isometry types,
homeomorphism types of hyperbolic boundaries and asymptotic dimension of
quasi-transitive locally finite graphs. Also Miraftab and Stavropoulos [14] used
canonical tree-decompositions to classify all infinite groups which admit cubic
Cayley graphs of connectivity 2 in terms of splittings over a subgroup.
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