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Abstract

The Dwork pencil of quintic threefolds is a 1-parameter family of quintic hypersurfaces in
P4. A general member of the Dwork pencil contains a family of lines, parametrized by two
isomorphic curves of degree 626 that can be constructed as 125:1 covers of blow ups of bidegree
(4, 4) curves in P1 × P1, as well as 375 isolated lines that do not lie in this family. Tropical
geometry is a piecewise linear shadow of algebraic geometry. The tropicalization of a variety
is a polyhedral complex that can be studied combinatorically, carrying much information about
the original variety. The aim of this thesis is to tropicalize the lines on the Dwork pencil of
quintic threefolds. I show that the tropicalizations of the lines in the family give a family of
tropical lines. The tropicalizations of the isolated lines (lying in a codimension 1 toric stratum)
lie in the tropical boundary of the tropicalized Dwork pencil. At the end of the thesis I will
interpret the lines on the Dwork pencils as parametrized tropical lines in the affine manifold
with singularities given by the dual intersection complex of the Dwork pencil.
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1 Introduction

The Dwork pencil of quintic threefolds is the family X of quintic hypersurfaces in P4 given by

t(z5
0 + z5

1 + z5
2 + z5

3 + z5
4) + z0z1z2z3z4 = 0.

In [5] the mirror to a quintic threefold was constructed as a resolution of the quotient X�G
where G �

(
Z�5Z

)3
. This is one of the first examples of mirror symmetry. Using period

calulations on the mirror, they calculated the number of rational curves of degrees up to 10 on a
quintic threefold. The number 2875 of lines was first calculated by H. Schubert in 1877. Using
different methods, we will rederive this number in §7. The number of conics has been calculated
by S. Katz in 1986, and the number of twisted cubics by G. Ellingsrud and S. A. Strømme in
1990, but the other numbers have not been known before.

In the 1980s, B. van Geemen showed that the members of the Dwork pencil contain 5000
special lines that are invariant under a order 3 subgroup of S 5 [2]. In [15] A. Mustaţă describes
the Hilbert scheme of lines in the Dwork pencil. She shows that a general member of the pencil
contains a family of lines, parametrized by two isomorphic curves of genus 626, as well as 375
lines that do not lie in this family. In [6] the authors give an explicit parametrization of the lines
on the Dwork pencil. They describe the parametrizing curves as 125:1 covers of blow ups of
singular bidegree (4, 4) curves in P1 × P1.

Tropical geometry can be viewed as a combinatorial shadow of algebraic geometry. The trop-
icalization of the subvariety of a torus is a polyhedral complex in Rn. This definition can be
extended to subvarieties of toric varieties. The tropicalization is a piecewise linear object that
can be studied combinatorially. Many enumerative problems translate to the tropical world.
There are some correspondence theorems giving connections between enumerative questions
in algebraic geometry and tropical geometry. For example, Mikhalkin [13] has shown that the
number of curves in Pn with given degree and genus through a given number of points (if finite)
coincides with the number of tropical curves of that degree if counted with right multiplicity.
Further, Nishinou and Siebert [16] were able to show that for rational curves the same is true
for any toric variety.

This thesis is separated into three parts. The first part (§2-§4) contains preliminaries of tropical
and affine geometry, as well as the whole procedure of the thesis applied to a much simpler
example. The second part (§5-§7) is concerned with the description of the lines on the Dwork
pencil of quintic threefolds. It is mainly following [6], but with some statements rearranged and
added. The third part (§8-§10) is dedicated to the tropicalization of the lines on the Dwork pen-
cil, as well as the parametrized tropical curves on the dual intersection complex they describe.
This is my own work and I do not know any reference for this.
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2 Tropical Geometry

Tropical geometry essentially can be viewed as algebraic geometry over the tropical semiring

R̄ = (R̄,⊕,�) = (R∪{∞},min,+). Polynomials over R̄ are piecewise linear functions. While in
classical algebraic geometry hypersurfaces are defined as zero sets of irreducible polynomials,
this role is taken tropically by the corner locus of the polynomial, i.e., the locus where the
polynomial is not linear. To get a connection between algebraic geometry over a field k and
tropical geometry, we need a map k → R̄ relating + with ⊕ and · with �. This is done by a
valuation. In order to get a nontrivial valuation we extend our field k to the field K = k{{t}}

of Puiseux series over k and take a valuation ν : K → R ∪ {∞}. Then we can tropicalize a
polynomial over K by replacing + with ⊕ and · with � and taking valuations of the terms. The
tropicalization of a hypersurface is the corner locus of the tropicalized defining polynomial.

A tropical variety in the tropical torus (T?)n = Rn is defined as the tropicalization of some
algebraic variety X = V(I) ⊆ (K?)n, that is, the intersection of all tropical hypersurfaces defined
by tropicalizations of Laurent polynomials in I. This definition can be extended to subvarieties
of toric varieties. Note that we do not tropicalize a varietiy over k but over K = k{{t}} which
can be viewed as tropicalizing a family of varieties over k parametrized by t. The Fundamental

Theorem states that the tropicalization of an algebraic variety X is equal to the image of X under
the valuation map ν. By the Structure Theorem, a tropical variety is the support of a balanced
weighted polyhedral complex of pure dimension, connected through codimension 1.

While the intersection of two algebraic varieties is again an algebraic variety, this need not be
true in tropical geometry. In the definition of a tropical variety, it is not enough to intersect the
tropical hypersurfaces defined by the generators of the ideal I. But one can always find a finite
generating set of I with this property, which we call a tropical basis of I. In some sense this
is a generalization of a Gröbner basis of I. An application of Gröbner bases is the technique
of implicitization. Given an algebraic variety in parametric representation one wants to find
its defining equations. While a solution to this problem is rather simple, its computational
complexity turns out to be very hard. Tropical geometry serves some help for this problem. On
the other hand, using the fundamental theorem, it is possible to calculate the tropicalization of
an algebraic variety directly from its parametric representation.

Many problems of algebraic geometry, especially enumerative questions, translate to the trop-
ical world and have the same answer there. Tropically enumerative problems are of combi-
natorial nature, hence easier to solve. For a given problem one can hope to find the solution
tropically and then lift it back to the classical world. The latter is usually the harder part. An
example is the Correspondence Theorem for tropical curves mentioned in the introduction.
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2.1 Tropical Hypersurfaces

Definition 2.1. The tropical semiring is the semiring

R̄ = (R̄,⊕,�) = (R ∪ {∞},min,+)

with neutral elements of addition and multiplication given by 0R̄ = ∞ and 1R̄ = 0, respectively.
The tropical affine n-space is Tn = R̄n. The n-dimensional tropical torus is (T?)n = Rn. The
multiplicative inverse of x ∈ T? is given by x	1 = −x, but an additive inverse only exists for 0R̄,
since x ⊕ y = 0R̄ = ∞ implies x = y = ∞. We will most likely write tropical expressions with
the usual operations but in quotation marks, e.g. ”x + yz” = x ⊕ y � z = min{x, y + z}.

Definition 2.2. A tropical hypersurface defined by a tropical polynomial f ∈ R̄[x1, . . . , xn] is
the set of points V( f ) ⊆ Tn where the following minimum is achieved at least twice.

f (x) = ”
∑
u∈Zn

cuxu1
1 · · · x

un
n ” = min{cu + u1x1 + . . . + unxn}

Remark 2.3. A tropical polynomial f ∈ R̄[x1, . . . , xn] defines a piecewise linear map R̄n → R̄.
V( f ) is exactly the corner locus of this map, i.e., the set of points where it fails to be linear.

Example 2.4. (a) A general plane tropical line is a hypersurface V( f ) ⊆ T2 defined by
f (x, y) = ”ax + by + c” = min{a + x, b + y, c}. There are three cases in which the min-
imum is achieved at least twice, namely a + x = b + y ≤ c, a + x = c ≤ b + y and
b + y = c ≤ a + x giving the three rays of V( f ) as on the left hand side of Figure 2.1. Note
that two points at infinity (∞, 0) and (0,∞) are contained in V( f ).

(b) The conic V( f ) ⊆ T2 defined by f (x, y) = ”1x2 + 1y2 + 0xy + 0x + 0y + 1” is shown on the
right hand side of Figure 2.1. Note that we can not omit the terms with coefficient 0 here.

y

x
c − a

c − b

x

y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 2.1: A general tropical line and a particular conic.
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2.2 Valuations

Let K be a field.

Definition 2.5. A valuation on K is a map ν : K → R ∪ {∞} such that for all a, b ∈ K,

(1) ν(a) = ∞ ⇔ a = 0;
(2) ν(ab) = ν(a) + ν(b);
(3) ν(a + b) ≥ min{ν(a), ν(b)}.

The image Γν := ν(K?) is an additive subgroup of R called the value group of ν. The valuation

ring R = {a ∈ K | ν(a) ≥ 0} of K is a local ring with maximal ideal mR = {a ∈ R | ν(a) > 0}. The
residue field is k = R/mR.

Proposition 2.6. For all a, b ∈ K we have the following properties.

(a) ν(1) = 0.
(b) ν(−a) = ν(a).
(c) If ν(a) , ν(b), then ν(a + b) = min{ν(a), ν(b)}.

Proof. We have ν(1) = ν(12) = ν(1) + ν(1) implying ν(1) = 0 and 0 = ν(1) = ν((−1)2) = 2ν(−1)
implying ν(−1) = 0. Furthermore, ν(−a) = ν((−1) · a) = ν(−1) + ν(a) = ν(a).
To prove (c), assume ν(b) > ν(a). Then we have ν(a) ≥ min{ν(a+b), ν(−b)} = min{ν(a+b), ν(b)}.
But we also have ν(a + b) ≥ min{ν(a), ν(b)} = ν(a), proving equality.

Example 2.7. (a) Every field K has a trivial valuation, defined by ν(a) = 0 for all a ∈ K?.
(b) Let p ∈ Z be a prime number. The p-adic valuation on Q is defined by νp(q) = r, for

q = pra/b , 0 where a, b ∈ Z are not divisible by p.

Definition 2.8. The field of Puiseux series with coefficients in C is the field

C{{t}} =
⋃
n≥1

C((t1/n))

where C((t1/n)) is the field of Laurent series in t1/n. The elements of C{{t}} are formal power
series c(t) =

∑∞
i=1 citai where ci ∈ C

? and a1 < a2 < a3 < . . . ∈ Q have a common denominator.
C{{t}} has a valuation given by ν : C{{t}}? → R, c(t) 7→ a1.

Remark 2.9. C{{t}} is algebraically closed. It is the algebraic closure of C((t)). In fact, k{{t}} is
the algebraic closure of k((t)) when k is an algebraically closed field of characteristics zero. For
a proof, see [14], Theorem 2.1.5.

Remark 2.10. The field of rational functions C(t) is a subfield of C{{t}}. The valuation on
C{{t}} restricted to C(t) gives the order of the pole or zero at t = 0, hence is an integer.
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2.3 Tropicalization

We will first define the tropicalization for subvarieties of the torus T n = (K?)n. The case of
affine varieties will be given along with the general treatment of tropicalizing toric varieties and
their subvarieties in §2.9. Recall (K?)n = V(K[x±1

1 , . . . , x
±1
n ]) and (T?)n = Rn.

Let K be a field with valuation, e.g. K = C{{t}}.

Definition 2.11. The tropicalization of a Laurent polynomial f =
∑

u∈Zn cuxu ∈ K[x±1
1 , . . . , x

±1
n ]

is the tropical Laurent polynomial Trop( f ) ∈ T[x±1
1 , . . . , x

±1
n ] given by

Trop( f )(w) = ”
∑
u∈Z

ν(cu)xu” = minu∈Zn

ν(cu) +

n∑
i=1

uiwi

 .
The tropicalization of the hypersurface V( f ) ⊂ (K?)n is the tropical variety defined by Trop( f ),
i.e.,

Trop(V( f )) = V(Trop( f )) ⊂ (T?)n.

Definition 2.12. Let I be an ideal in K[x±1
1 , . . . , x

±1
n ]. Then the tropicalization of X = V(I) ⊂

(K?)n is
Trop(X) =

⋂
f∈I

Trop(V( f )).

Remark 2.13. Note that in the definition of tropicalization we have to intersect the hypersur-
faces defined by all polynomials in I, not just its generators. However, in §2.7 we will show
that one can always find a finite generating set T(I) of I, called a tropical basis, such that
intersection of hypersurfaces defined by the finite number of polynomials in T(I) suffices.

Remark 2.14. In case K = k{{t}} we can think of a subvariety of (K?)n as a family of subvari-
eties of (k?)n parametrized by t. In this case we can say we tropicalize a family of varieties.

Example 2.15. The tropical curves from §2.1, restricted to the tropical torusR2, can be viewed
as the tropicalization of certain subvarieties of (K?)2. This choice is not unique, since multipli-
cation of a term in the defining equations with some a ∈ C? does not change the tropicalization.

(a) The tropicalization of the family of lines in (C?)2 defined by tax + tby + tc = 0 is the tropical
line from Example 2.15, (a), restricted to R2.

(b) The tropicalization of the family of conics in (C?)2 defined by t(x2 + y2 + 1) + xy + x + y = 0
is the tropical conic in Example 2.15, (b), restricted to R2.

Definition 2.16. A tropical variety in (T?)n is a subset of (T?)n = Rn of the form Trop(X),
where X is an algebraic subvariety of the torus (K?)n.
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2.4 Polyhedral Geometry

Definition 2.17. A polyhedron P ⊂ Rn is the intersection of finitely many closed half-spaces:

P = {x ∈ Rn | Ax ≤ b},

where A is a d × n-matrix, and b ∈ Rd. Let Γ be a subgroup of (R,+). Then P is Γ-rational if A

has entries in Q, and b ∈ Γd. A polytope is a bounded polyhedron. If Γ = Q, we simply write
rational instead of Q-rational.

Definition 2.18. A face of a polyhedron is the intersection with the boundary of one of its
defining half-spaces. A face of P that is not contained in any larger proper face is called facet.
The dimension of P is the dimension of the smallest affine subspace containing P.

Definition 2.19. A polyhedral complex is a collection Σ of polyhedra satisfying two conditions:

(1) if P is in Σ, then so is any face of both P and Q;
(2) if P and Q lie in Σ, then P ∩ Q is either empty or a face of both P and Q.

The polyhedra in Σ are called the cells of Σ. The union of the cells is called the support |Σ| of
Σ. The lineality space of a polyhedral complex is the intersection of all lineality spaces of the
polyhedra in the complex. A polyhedral complex Σ is pure of dimension d if every facet of Σ

has dimension d.

Definition 2.20. A (polyhedral) cone C ⊆ Rn is a polyhedron with exactly one vertex, which
is 0 ∈ Rn. It is given by the positive hull of a finite subset of Rn:

C = pos(v1, . . . , vr) =

 r∑
i=1

λivi ∈ R
n | λi ≥ 0 for all i

 .
A polyhedral complex consisting of polyhedral cones is called a (polyhedral) fan.

Definition 2.21. Let f =
∑

u∈Zn cuxu ∈ K[x±1
1 , . . . , x

±1
n ] be a Laurent polynomial. The Newton

polytope of f is
Newt( f ) = Conv{u ∈ Zn | cu , 0} ⊂ Rn.

Definition 2.22. A weight vector w ∈ Rr induces a regular subdivision of a polytope P =

conv{u1, . . . , ur} by the projection of the lower faces of the polytope

Pw = conv{(ui,wi) ∈ Rn+1 | i = 1, . . . , r}

to P. This is a polyhedral complex with support P.
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2.5 Gröbner Bases

Let k be a field. The following definitions are taken from [12].

Definition 2.23. A term order on k[x1, . . . , xn] is a total ordering � on all monomials such that

(1) 1 ≺ xα for all α ∈ Nn \ {0};
(2) xα ≺ xβ ⇒ xαxγ ≺ xβxγ for all α, β, γ ∈ Nn.

A term is a monomial together with its coefficient. By ≺ we mean xα ≺ xβ ⇔ xα � xβ∧ xα , xβ.
We prefer the symbol ≺ over the symbol � when denoting term orders.

Definition 2.24. Given a weight vector w ∈ kn we can define a refined term order by

xα ≺w xβ ⇔ 〈w, α〉 < 〈w, β〉 ∨ (〈w, α〉 = 〈w, β〉 ∧ xα ≺ xβ).

Definition 2.25. The initial term in≺( f ) of a polynomial f =
∑

u∈Nn cuxu ∈ k[x1, . . . , xn] is its
unique maximal term with respect to ≺. The initial ideal is

in≺(I) = 〈in≺( f ) | f ∈ I〉 ⊆ k[x1, . . . , xn],

A Gröbner basis of I with respect to ≺ is a finite subset G≺(I) = {g1, . . . , gs} ⊆ I such that

in≺w(I) = 〈in≺w(g1), . . . , in≺w(gs))〉

or equivalently if for any f ∈ I there is a polynomial g ∈ Gsuch that inw(g) divides inw( f ).

The latter definition of a Gröbner basis gives a way to decide wheter a polynomial f ∈

k[x1, . . . , xn] is contained in an ideal I ⊂ k[x1, . . . , xn] or not:

Proposition 2.26. Let I ⊂ K[x1, . . . , xn] be an ideal. Let G = {g1, . . . , gs} be a Gröbner basis
for I with respect to w ∈ Γn

ν. Then f ∈ K[x1, . . . , xn] is contained in I if and only if there are
k1, . . . , ks ∈ K such that

f = k1g1 + . . . + ksgs.

This means the multivariate polynomial division of f by Ggives the remainder 0.

Proof. Assume the multivariate polynomial division by Ggives f = k1g1 + . . . + ksgs + r. Then
r = 0 or inw(r) is not divisible by inw(g1), . . . , inw(gs). Since g1, . . . , gs ∈ I we have f ∈ I if and
only if r ∈ I. If r = 0, then clearly r ∈ I and thus f ∈ I. Conversely, assume r ∈ I. Since G is a
Gröbner basis, there is a g ∈ Gsuch that inw(g) divides inw(r). But then r = 0.

Proposition 2.27. For any term order ≺ on k[x1, . . . , xn], every ideal I ⊆ k[x1, . . . , xn] has a
Gröbner basis G≺(I).
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Proof. The Buchberger algorithm for calculating Gröbner bases is the following.

Take a finite generating set Fof I.

1. For each pair f , g ∈ F, f , g, calculate

S ≺( f , g) =
lcm{in≺( f ), in≺(g)}

in≺( f )
f −

lcm{in≺( f ), in≺(g)}
in≺(g)

g.

2. Let s be the remainder of the multivariate polynomial division of S ≺( f , g) relative to F.
3. If s , 0, add s to Fand go to 1.

The motivation is the following. If f , g ∈ Fand f ′, g′ ∈ k[x1, . . . , xn] it may be that f f ′−gg′ ∈ I

has a initial form not divisible by in≺( f ) and in≺(g). In this case in≺( f f ′) = in≺(gg′). But
this case is precisely covered by S ≺( f , g) above, and adding the remainder of the multivariate
polynomial division to F avoids this case. Since the algorithm above terminates after a finite
number of steps, the resulting set F is finite, hence a Gröbner basis.

Let K be a field with valuation ν and assume ν has a splitting denoted by φ : Γν → K?,w 7→ tw.
If K = C{{t}} such a splitting is indeed given by φ : Q → C{{t}},w 7→ tw. For a in the valuation
ring R = {a ∈ K | ν(a) ≥ 0} of K denote by ā the image of a in the residue field k = R/mR.
The splitting φ induces a homomorphism of multiplicative groups K? → k?, a 7→ t−ν(a)a. For
f ∈ R[x1, . . . , xn] let f̄ ∈ k[x1, . . . , xn] be given by replacing every coefficient a in f by ā.

Definition 2.28. The initial form of f =
∑

u∈Nn cuxu ∈ K[x1, . . . , xn] with respect to a weight

vector w ∈ Γn
ν is

inw( f ) =
∑
u∈Nn

ν(cu)+〈w,u〉=trop( f )(w)

cut−ν(cu)xu ∈ k[x1, . . . , xn].

The initial ideal of an ideal I ⊆ K[x1, . . . , xn] is

inw(I) = 〈inw( f ) | f ∈ I〉 ⊆ k[x1, . . . , xn].

A set Gw(I) = {g1, . . . , gs} ⊆ I is a Gröbner basis for I with respect to w if

inw(I) = 〈inw(gi), . . . , inw(gs)〉 ,

Lemma 2.29. Let I ⊂ K[x1, . . . , xn] be an ideal with homogenization Ih ⊂ K[x0, . . . , xn] and
w ∈ Rn. Then inw(I) contains a monomial if and only if in(0,w)(Ih) contains a monomial.

Proof. This is Lemma 2.2 in [3].
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2.6 Gröbner Complexes

Let K be as in §2.5, and let I ⊆ K[x0, . . . , xn] be a homogeneous ideal.

Definition 2.30. For w ∈ Rn+1 define

Cw(I) = {w′ ∈ Rn+1 | inw′(I) = inw(I)}.

Let Cw(I) be the closure of Cw(I) ⊂ Rn+1 in Euclidean topology.

Proposition 2.31. The set Cw(I) is a Γν-rational polyhedron. If inw(I) is not a monomial ideal,
then there exists w′ ∈ Γn+1

ν sucht that inw′(I) is a monomial ideal and Cw(I) is a proper face of
the polyhedron Cw′(I).

Proof. This is Proposition 2.5.2 in [14].

Theorem 2.32. The polyhedra Cw(I) as w varies over Rn+1 form a Γν-rational polyhedral com-
plex Σ(I), called the Gröbner complex of I.

Proof. This is Theorem 2.5.3 in [14].

Definition 2.33. A universal Gröbner basis for a homogeneous ideal I ⊂ K[x0, . . . , xn] is a
finite subset G(I) of I such that, for all w ∈ Rn+1, the set inw(G(I)) = {inw( f ) | f ∈ G(I)}
generates the initial ideal inw(I) in k[x0, . . . , xn].

Corollary 2.34. Every homogeneous ideal I ⊂ K[x0, . . . , xn] has a universal Gröbner basis.

Proof. This is Corollary 2.5.11 in [14].

2.7 Tropical Bases

A tropical basis is the natural analogue to the notion of a universal Gröbner basis for an ideal
in the Laurent polynomial ring K[x±1

1 , . . . , x
±1
n ]. Again, assume that the valuation on K has a

splitting w 7→ tw.

Definition 2.35. The initial form of f =
∑

u∈Zn cuxu ∈ K[x±1
1 , . . . , x

±1
n ] with respect to a weight

vector w ∈ Rn is
inw( f ) =

∑
u∈Zn

ν(cu+〈w,u〉)=trop( f )(w)

cut−ν(cu)xu.

The initial ideal of an ideal I ⊆ K[x±1
1 , . . . , x

±1
n ] is

inw(I) = 〈inw( f ) | f ∈ I〉 ⊆ k[x1, . . . , xn].

9



Remark 2.36. For generic choices of w, the initial form inw( f ) is a unit in k[x±1
1 , . . . , x

±1
n ], and

the initial ideal inw(I) is the whole ring, hence contains no information. Tropical geometry is
concerned with the study of those weight vectors w ∈ Rn for which the initial ideal inw(I) is
actually a proper ideal in k[x±1

1 , . . . , x
±1
n ].

Definition 2.37. A finite generating set T(I) of I is a tropical basis if, for all vectors w ∈ Rn,
there is a Laurent polynomial f ∈ I for which the minimum in trop( f )(w) is achieved only once
if and only if there is g ∈ T(I) for which the minimum in trop(g)(w) is achieved only once.

This is equivalent with saying that in the definition of tropical variety it suffices to intersect over
all tropical hypersurfaces defined by elements of T:

Trop(V(I)) =
⋂

f∈T(I)

Trop(V( f )).

If K has a splitting, this is equivalent with the condition that, for any w ∈ Rn, the initial ideal
inw(I) contains a unit if and only if the finite set inw(T) = {inw( f ) | f ∈ T} contains a unit.

Theorem 2.38. Every ideal I in K[x±1
1 , . . . , x

±1
n ] has a tropical basis.

Proof. This is Theorem 2.6.6 in [14].

Example 2.39. The tropical basis of a principal ideal 〈 f 〉 is { f }. Indeed, suppose that inw(I)
contains a unit. Then there exists g ∈ K[x±1

1 , . . . , x
±1
n ] such that inw( f g) = inw( f ) · inw(g) is a

unit, and this implies that inw( f ) is a unit.

2.8 The Fundamental Theorem and the Structure Theorem

Now we come to the two main theorems of tropical geometry. The Fundamental Theorem gives
three analogous characterizations of the tropicalization of an algebraic subvariety X of (K?)n.
The Structure Theorem states that Trop(X) is the support of a balanced polyhedral complex.

Theorem 2.40 (Fundamental Theorem of Tropical Algebraic Geometry). Let K be an alge-
braically closed field with a nontrivial valuation, let I be an ideal in K[x±1

1 , . . . , x
±1
n ], and let

X = V(I) be its variety in the algebraic torus (K?)n. The following three subsets of Rn coin-
cide:

(1) the tropical variety Trop(X) as in Definition 2.12;
(2) the set of all vectors w ∈ Rn with inw(I) , 〈1〉;
(3) the closure of the set of coordinate valuations of points in X,

ν(X) = {(ν(y1), . . . , ν(yn) | (y1, . . . , yn) ∈ X}.
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Proof. This is Theorem 3.2.3 in [14].

Theorem 2.41 (Structure Theorem for Tropical Varieties). Let X be an irreducible d-
dimensional subvariety of (K?)n. Then Trop(X) is the support of a balanced weighted Γν-rational
polyhedral complex pure of dimension d. Moreover, that polyhedral complex is connected
through codimension d.

Proof. This is Theorem 3.3.5 in [14].

In the special case of tropical hypersurface we can give an alternative description of this poly-
hedral complex.

Proposition 2.42. Let f ∈ K[x±1
1 , . . . , x

±1
n ] be a Laurent polynomial. The tropical hypersurface

Trop(V( f )) is the support of a pure Γν-rational polyhedral complex of dimension n− 1 in Rn. It
is the (n−1)-skeleton of the polyhedral complex Σ dual to the regular subdivision of the Newton
polytope of f induced by the weights ν(cu) on the lattice points in Newt( f ).

Proof. This is Proposition 3.1.6 in [14].

Example 2.43. Let f = t(x2 + x2 + 1) + xy + x + y as in Example 2.15, (b). Figure 2.2 shows
the Newton polytope Newt( f ) of f together with the weights given by ν(cu) and the regular
subdivision induced by the projection from Pw as in Definition 2.22. On the right hand side it
shows the dual complex which is supported on Trop(V( f )).

1 1

1

0

00

Figure 2.2: The regular subdivision of Newt( f ) and its dual supported on Trop(V( f )).

Using this dual description, one can define multiplicities of the maximal cells in the polyhedral
complex on which Trop(V( f )) is supported.

Definition 2.44. The multiplicity of a maximal cell σ in Σ as in Proposition 2.42 is the affine
length of the edge dual to σ.
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Remark 2.45. Definition 3.4.3 in [14] gives a more general definition of multiplicities of the
cells in this polyhedral complex, but we won’t need it here. Lemma 3.4.6 in [14] gives the
compatibility with our definition.

2.9 Tropicalizing Toric Varieties

Now we want to extend the notion of tropicalization to subvarieties of toric varieties. This
general definition includes the cases of affine spaces An and projective spaces Pn.

A toric variety is an algebraic variety containing a torus as an open dense subset, such that the
action of the torus on itself extends to the variety. A normal toric variety is defined by a rational
fan Σ in NR = N ⊗ R � Rn for a lattice N � Zn. The torus T n of a toric variety XΣ over a field
K is N ⊗K? � (K?)n. Each cone σ ∈ Σ determines a local chart Uσ = Spec(K[σ∨ ∩M]), where
M = Hom(N,Z) is the dual lattice and σ∨ = {u ∈ M | 〈u, v〉 ≥ 0 for all v ∈ σ} is the dual cone.
The charts are glued along the varieties defined by their common faces. For σ = {0}, we have
σ∨ = MR = M ⊗R � Rn, so K[σ∨ ∩ M] = K[M] is the Laurent polynomial ring and Uσ � T n.

Definition 2.46. Let Σ be a rational polyhedral fan in NR. For each cone σ ∈ Σ, we consider the
(n − dim(σ))-dimensional vector space N(σ) = NR/span(σ). As a set, the tropical toric variety
Xtrop

Σ
is the disjoint union

Xtrop
Σ

=
∐
σ∈Σ

N(σ).

To place a topology on Xtrop
Σ

, we associate to each cone σ ∈ Σ the space

U trop
σ = Hom(σ∨ ∩ M, R̄).

of semigroup homomorphisms from (σ∨∩M,+) to (R̄,�). We place the pointwise convergence
topology on U trop

σ . This is the topology induced from the product topology on products of R̄,
where we identify U trop

σ as a subset of the product space (R̄)σ
∨∩M.

Example 2.47. Let σ = pos(e1, . . . , en) in NR. Then σ∨ = pos(e1, . . . , en) in MR, Uσ � A
n, and

U trop
σ = Hom(Nn, R̄) = R̄n. This shows that Definition 2.46 is compatible with the definition of

tropical affine n-space from §1.1. The basis of its topology consists of open balls inRn together
with balls closed at tropical strata at infinity.

Example 2.48. The tropical projective variety TPn is obtained as usually as the union of n

copies of Tn glued along their tori (T?)n = Rn, or as the quotient of (T?)n+1 by the diagonal
(tropical) multiplicative action. For example, P1 consists of R together with two points at
infinity, one on each affine chart. This is shown in Figure 2.3 which is taken from [14].

The Fundamental Theorem extends to subvarieties of toric varieties. For An this is:
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Figure 2.3: The tropical projective line TP1 obtained from gluing affine charts.

Theorem 2.49 (Extended Fundamental Theorem). Let Y be a subvariety of An, and let I be its
ideal in K[x1, . . . , xn]. The the following subsets of Tn coincide:

(1) ∩ f∈ITrop(V(I));
(2) the set of all vectors w ∈ R̄n for which inw(I) ⊆ k[x1, . . . , xn] does not contain a monomial;
(3) the set ⋃

σ⊆{1,...,n}

Trop(Y ∪ Oσ) ×∞σ,

where Oσ = {x ∈ An | xi = 0⇔ i ∈ σ}.

Proof. This is Theorem 6.2.15 in [14].

Theorem 2.50. Let Y ⊆ (K?)n, and let Ȳ be the closure of Y in a toric variety XΣ. Then Trop(Ȳ)
is the closure of Trop(Y) ⊆ Rn in Trop(XΣ).

Proof. This is Theorem 6.2.18 in [14].

For the case of affine varieties, we can give an analogous definition of tropical basis as for
subvarieties of a torus. Moreover, we can give a simple construction of a tropical basis in this
case.

Theorem 2.51. Every ideal I ⊆ K[x1, . . . , xn] has a tropical basis.

Proof. This (constructive) proof is traken from [3]. By Lemma 2.29 we can assume I is homo-
geneous. Otherwise just take its homogenization and dehomogenize the tropical basis obtained
by the following construction.

Let Fbe any finite generating set of I which is not a tropical basis. Pick a Gröbner cone Cw(I)
whose relative interior intersects ∩ f∈FTrop(V( f )) nontrivially and whose initial ideal inw(I)
contains a monomial xu. Compute the reduced Gröbner basis G≺w(I) for a refinement ≺w of w,
and let h be the normal form of xu with respect to G≺w(I). Let f = xu − h.

Since the normal form of xu with respect to G≺(inw(I)) = {inw(g) | g ∈ G≺w(I)} is 0 and h is the
normal form of xu with respect to G≺w(I), every monomial occuring in h has higher w-weight
than xu. Moreover, h depends only on the reduced Gröbner basis G≺w(I) and is independent of
the particular choice of w in Cw(I). Hence for any w′ in the relative interior of Cw(I), we have
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xu = inw′( f ). This implies that the polynomial f = xu − h is a witness for the cone Cw(I) not
being in the tropical variety Trop(V(I)).

We now add the witness f to the current basis Fand repeat the process. Since the Gröbner fan
has only finitely many cones, this process will terminate after finitely many steps. It removes
all cones of the Gröbner fan which violate the condition for F to be a tropical basis.

2.10 Parametric Tropicalization of Lines

Consider an affine line in an affine toric variety X over K given by an embedding

A1
K ↪→ X

u 7→ (x1(u, v), . . . , xn(u, v))

where xi(u, v) are linear functions in u. By tropicalization we get

T1 ↪→ Trop(X)

ν(u) 7→ (ν(x1), . . . , ν(xn))

where ν(xi) depend on the valuations of terms of u.

Example 2.52. Consider the affine line in A3
C{{t}} given by

x1 = u, x2 = tu + 1, x3 = u − t.

The defining equations of this line are clearly x − z − t = 0 and tx − y + 1 = 0. The valuations
of the coordinates are

ν(x1) = ν(u), ν(x2) = ν(tu + 1), ν(x3) = ν(u − t).

We have five cases, depending on the value of ν(u).

• If ν(u) < −1, then ν(x1) = ν(u), ν(x2) = 1 + ν(u), ν(x3) = ν(u).
• If ν(u) = −1, then ν(x1) = −1, ν(x2) ≥ 0, ν(x3) = −1.
• If −1 < ν(u) < 1, then ν(x1) = ν(u), ν(x2) = 0, ν(x3) = ν(u).
• If ν(u) = 1, then ν(x1) = 1, ν(x2) = 0, ν(x3) ≥ 1.
• If ν(u) > 1, then ν(x1) = ν(u), ν(x2) = 0, ν(x3) = 1.

This gives the tropical affine line inT3 given by the edge connecting the vertices (−1, 0,−1) and
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(1, 0, 1) together with the four rays

(−1, 0,−1) + (−1,−1,−1)R̄≥0,

(−1, 0,−1) + (0, 1, 0)R̄≥0,

(1, 0, 1) + (0, 0, 1)R̄≥0,

(1, 0, 1) + (1, 0, 0)R̄≥0.

One can easily obtain the same tropical line from the defining equations.

Now consider a projective line in a projective toric variety X over K given by an embedding

P1
K ↪→ X

(u, v) 7→ (z0(u, v), . . . , zn(u, v))

where zi(u, v) are linear functions in u and v. Here we get

TP1 ↪→ Trop(X)

(ν(u), ν(v)) 7→ (ν(z0), . . . , ν(zn))

where ν(zi) depend on valuations of u and v. From the description of TP1 in Example 2.48 we
know that if ν(u) , ∞, we can dehomogenize by setting ν(u) = 0, and get the affine chart T1

with coordinate ν(v) ∈ R̄. Similarly, if ν(v) , ∞, we obtain T1 with coordinate ν(u) ∈ R̄.

We will give an example of this procedure in §4.3, and we will use it to tropicalize the lines on
the Dwork pencil of quintic threefolds in §8.2, §8.3 and §10.3.
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3 Affine Manifolds and Parametrized Tropical Curves

By the Structure Theorem, tropical curves are balanced 1-dimensional polyedral complexes.
This suggests the description of a tropical curves as a map from a graph to some ambient
space satisfying the balancing condition. The ambient space must locally look like Rn with
transition function respecting the polyhedral structure. This is called an affine manifold. Under
some condition for the tropical curves we can allow the affine manifold to have codimension 2
singularities. In this section we will give this more general definition of parametrized tropical

curves. Then we show that such curves arise naturally on the dual intersection complex of
(families with central fiber) a union of toric varieties.

For the rest of this section we fix a lattice M � Zn, its dual lattice N = Hom(M,Z) � Zn and
the corresponding vector spaces MR = M ⊗Z R � Rn and NR = N ⊗Z R � Rn.

3.1 Affine Manifolds with Singularities

Affine manifolds locally look like MR with charts respecting the affine structure.

Definition 3.1. Let B be an n-dimensional manifold. An affine structure on B is given by
an open cover {Ui} along with coordinate charts ψi : Ui → MR, whose transition functions
ψi ◦ ψ

−1
j lie in the group of affine transformations Aff(MR) = MR o GLn(R) of MR. The affine

structure is integral resp. tropical if the transition functions lie in the subgroup M o GLn(Z)
resp. MR o GLn(Z) of Aff(MR).

Definition 3.2. A (tropical, integral) affine manifold with singularities is a manifold B with an
open subset B0 ⊆ B which carries a (tropical, integral) affine structure such that the discriminant

locus Γ := B \ B0 is a locally finite union of locally closed submanifolds of codimension ≥ 2.

Definition 3.3. A polyhedral decomposition P of a topological manifold B is a set of subsets
σ of B such that B = ∪σ∈Pσ and

1. Each σ ∈ P is equipped with a homeomorphisms to a polyhedron in MR with faces of
rational slope and at least one vertex. In particular, we can speak of the faces of σ as the
inverse images of faces of the polyhedron in MR.

2. If σ ∈ P and τ ⊆ σ is a face, then τ ∈ P.
3. If σ1, σ2 ∈ P, σ1 ∩ σ2 , ∅, then σ1 ∩ σ2 is a face of both σ1 and σ2.

We want to define a structure of tropical affine manifold with singularities on a topological
manifold B from a polyhedral decomposition P of B. We have a natural affine stucture on the
interior Int(σ) of each cell σ ∈ P giving an affine structure on ∪σ∈PmaxInt(σ). We can extend
this affine structure to all of B by giving a fan structure at each vertex v of P.
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Definition 3.4. Let P be a polyhedral decomposition of a topological manifold B. The open

star of τ ∈ P is
Uτ =

⋃
σ∈P
τ⊆σ

Int(σ).

A fan structure along τ ∈ P is a continuous map S τ : Uτ → Rk where k = dim B − dim τ,
satisfying

1. S −1
τ (0) = Int(τ).

2. If τ ⊆ σ ∈ P, then S τ|Int(σ) is an integral affine submersion onto its image, with
dim S τ(σ) = dim σ − dim τ.

3. For τ ⊆ σ, define Kτ,σ to be the cone generated by S τ(σ ∩ Uτ). Then

Στ = {Kτ,σ | τ ⊆ σ ∈ P}

is a fan with |Στ| convex.

Two fan structures S τ, S τ′ are considered equivalent if S τ = α ◦ S τ′ for some α ∈ GLk(Z).

Remark 3.5. A fan structure S τ along τ can be viewed as describing an affine structure in a
direction transversal to τ.

Definition 3.6. If S τ : Uτ → Rk is a fan structure along τ ∈ P and σ ⊇ τ, then Uσ ⊆ Uτ. We
then obtain a fan structure along σ induced by S τ given by the composition

Uσ ↪→ Uτ

S τ
→ Rk → Rk/Lσ � Rl

where Lσ ⊆ Rk is the linear span of Kτ,σ. This is well-defined up to equivalence.

Remark 3.7. The most important case is when τ = v is a vertex of P. Then a fan structure is an
identification of a neighborhood of v in B with a neighborhood of the origin in Rn, identifying
Pwith a fan Σv in Rn.

Construction 3.8. Let B be a topological manifold (possibly with boundary) equipped with a
polyhedral decomposition P such that all σ ∈ P have faces of rational slope. We construct a
structure of tropical affine manifold with singularities on B. The interior of each cell σ ∈ P

carries a natural tropical affine structure. Indeed, σ is equipped with a homeomorphism to a
polyhedron in MR, which is embedded in the affine space it spans in MR. Since the faces of σ
have rational slope, this defines a tropical affine structure on⋃

σ∈Pmax

Int(σ) ⊆ B.
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Given a fan structure S v at each vertex v ∈ P, we can construct a tropical structure on B as
follows. First we choose a discriminant locus Γ ⊆ B subject to the following conditions:

1. Γ does not contain any vertex of P.
2. Γ is disjoint from the interior of any maximal cell of P.
3. For any ρ ∈ P which is a codimension one cell not contained in ∂B, the connected

components of ρ\Γ are in one-to-one correspondence with vertices of ρ, with each vertex
contained in the corresponding connected component.

For a vertex v of P, let Wv denote a choice of open neighborhood of v with Wv ⊆ Uv satisfying
that if v ∈ ρ with ρ a codimension one cell then Wv ∩ ρ is the connected component of ρ \ Γ

containing v. Then
{Int(σ) | σ ∈ P} ∪ {Wv | v ∈ P[0]}

form an open cover of B0 = B \ Γ. We define an affine structure on B0 via the given affine
structure on Int(σ) for σ ∈ Pmax,

ψσ : Int(σ) ↪→ MR

and the composed maps
ψv : Wv ↪→ Uv

S v
→ Rdim B

where the first map is the inclusion.

Example 3.9. If B is compact without boundary of any dimension, we can take Γ to be the
union of all simplices in the first barycentric subdivision of Pwhich neither contain a vertex of
P nor intersect the interior of a maximal cell of P.

Proposition 3.10. Construction 3.8 gives B the structure of a tropical affine manifold with
singularities. If furthermore all polyhedra in P are lattice polytopes, then in fact the affine
structure is integral.

Proof. The crucial point is that the affine charts ψv induced by the choice of fan structure are
compatible with the charts ψσ on the interior of maximal cells of P, but this follows precisely
from item (2) in the definition of a fan structure.

Definition 3.11. A collection of fan structures {S v | v ∈ P[0]} is compatible if, for any two
vertices v,w of τ ∈ P, the fan structures on τ induced by S v and S w are equivalent. Given such
a compatible set of fan structures, we obtain a well-defined fan structure along every τ ∈ P.

Definition 3.12. A tropical manifold is a pair (B,P) where B is a tropical affine manifold with
singularities obtained from the polyhedral decomposition P of B and a compatible collection
{S v | v ∈ P[0]} of fan structures. (B,P) is an integral tropical manifold if in addition all polyhe-
dra in P are lattice polyhedra.
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Examples 3.13. Consider the following special cases.

(1) Any lattice polyhedron σ (bounded or not) with at least one vertex supplies an example of
an integral tropical manifold with B = σ and P the set of faces of σ. In this case the affine
structure on Int(σ) extends to give the structure of an affine manifold on σ. Here Γ = ∅.

(2) Let ∆ ⊆ MR be a reflexive lattice polytope. Then B = ∂∆ carries the obvious polyhedral
decomposition P consisting of the proper faces of ∆. These faces are lattice polytopes. So,
to specify an integral tropical manifold structure on B, we need only specify a fan structure
at each vertex v of ∆. This is done via the projection S v : Uv → MR/Rv. Compatibility is
easily checked, as the induced fan structure on a cell ω ∈ P containing v is the projection
Uω → MR/Rω, where Rω now denotes the subspace of MR spanned by ω.

(3) In the case of (2), let P′ be a refinement of Pby integral lattice polytopes. Then we can use
the same prescription as in (2) for the fan structure at the vertices. The discriminant locus
Γ′ ⊆ B determined by P′ may be much bigger, with Γ′ ∩ Int(σ) , ∅ for some maximal
proper face σ of ∆. However, the affine structure induced by P′ on Int(σ) is compatible
with the obvious affine structure on Int(σ), so it extends across points of Γ′ ∩ Int(σ). Thus
we can replace Γ′ with Γ′ ∩

⋃
τ∈P

dim τ=dim ∆−2
τ.

3.2 Tropical Curves on Tropical Manifolds

Fix a tropical manifold (B,P). Let Γ̄ be a weighted connected graph with no bivalent vertices
and all weights positive. Let Γ̄[0] and Γ̄[1] denote the sets of vertices and edges of Γ̄. Let
w : Γ̄[1] → N \ {0} be the weight function. Let Γ̄

[0]
∞ be a subset of the set of univalent vertices of

Γ̄, and write Γ = Γ̄ \ Γ
[0]
∞ .

Remark 3.14. B0 \ ∂B0 is a tropical affine manifold, and hence carries a local system Λ. Let
u : B0 \ ∂B0 ↪→ B be the inclusion. For U a contractible open set in B0, Γ(U, i?Λ) � Zn. But if
U is a small neighborhood of a point of ∆, and the affine structure can’t be extended across this
point, then

Γ(U, i?Λ) � Zk (3.1)

with k < n, the monodromy invariant part of Λ on U.

Definition 3.15. A parametrized tropical curve is a proper continuous map h : Γ→ B with:

(1) For each edge E of Γ, h|E is an immersion (the image can self-intersect). Furthermore, there
is a section u ∈ Γ(E, h−1(i?Λ)) which is tangent to every point of h(E).

(2) For every vertex V of Γ, let E1, . . . , Em ∈ Γ[1] be the edges adjacent to V . If h(V) ∈ ∆, there
is no further condition. Otherwise, let u1, . . . , um be integral tangent vectors at h(V), i.e.,
elements of the stalk (i?Λ)h(V), with ui primitive, tangent to h(Ei), and pointing away from
h(V). Then

∑m
j=1 w(E j)u j = 0.
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Remark 3.16. Condition (1) means that locally h(E) is a line of rational slope. If h(E) contains
a point of ∆ with non-trivial monodromy, the tangent direction to h(E) near this point is com-
pletely determined by (3.1). In particular, h(E) must pass that point in a monodromy invariant
direction. Condition (2) tells us that, besides the usual balancing condition, we can have edges
terminating at singular points. Even if an edge terminates at a singular point, however, it still
must be tangent to a monodromy invariant direction at the singular point.

3.3 The Dual Intersection Complex

We describe the dual intersection complex of a toric degneration X→ D, following [11], §7.

Definition 3.17. Let R be a discrete valuation ring over an algebraically closed field k. A toric

degeneration is a normal algebraic space X flat over Spec R such that

(1) The general fiber is irreducible and normal.
(2) If ν : X̃0 → X0 is the normalization, then X̃0 is a disjoint union of toric varieties, the

conductor locus C ⊆ X̃0 is reduced, and the map C → ν(C) is unramified and generically
two-to-one. The square

C //

��

X̃0

ν

��
ν(C) // X0

is cartesian and cocartesian. For simplicity, we assume that every irreducible component of
X0 is itself normal so that ν : Xi → ν(Xi) is an isomorphism.

(3) X0 is a reduced Gorenstein space and C restricted to each irreducible component of X̃0 is
the union of all toric Weil divisors of that component.

(4) There exists a closed subset Z ⊆ X of relative codimension ≥ 2 such that Z satisfies the
following properties: Z does not contain the image under ν of any toric stratum of X̃0, and
for any point x ∈ X \ Z, there is a neighborhood Ũx (in the analytic topology) of x, an
(n + 1)-dimensional affine toric variety Yx, a regular function fx on Yx given by a monomial,
and a commutative diagram

Ũx
ψx //

f |Ũx
��

Yx

fx
��

D′
ϕx // C

where ψx and ϕx are open embeddings and D′ ⊆ D. Furthermore, fx vanishes precisely
once on each toric divisor of Yx.

The strata of X0 are the elements of the set

Strata(X0) = {ν(S ) | S is a toric stratum of Xi for some i}.
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Definition 3.18. The dual intersection complex of X → D is the following integral tropical
manifold (B,P). We construct (1) the topological manifold B, (2) a polyhedral decomposition
P of B, and (3) a fan structure at each vertex of P, giving (B,P) the structure of an integral
affine manifold with singularities.

(1) Let {x} ∈ Strata(X0) be a zero-dimensional stratum. Applying Definition 3.17, (4), to a
neighborhood of x, there is a toric variety Yx such that in a neighborhood of x, f : X→ D is
locally isomorphic to fx : Yx → C, where fx is given by a monomial. Then there is a lattice
polytope σx ⊆ MR such that C(σx) = {(rm, r) | m ∈ σ, r ≥ 0} is the cone defining the toric
variety Yx. We construct B by gluing together the polytopes

{σx | {x} ∈ Strata(X0)}.

By our assumption that every irreducible component of X0 is itself normal, there is a one-
to-one inclusion reversing correspondence between faces of σx and elements of Strata(X0)
containing x. We can then identify faces of σx and σx′ if they correspond to the same strata
of X0.

(2) Let
P = {σ ⊆ B | σ is a face of σx for some zero-dimensional stratum x}.

There is a one-to-one inclusion reversing correspondence between strata of X0 and elements
of P.

(3) Each vertex v ∈ P corresponds to an irreducible component Xv of X0 and this irreducible
component is a toric variety with fan Σv in Rn. Furthermore, there is a one-to-one corre-
spondence between p-dimensional cones of Σv and p-dimensional cells of Pcontaining v as
a vertex, as thex both correspond to strata of X0 contained in Xv. There is then a continuous
map

ψv : Uv → Rn

which takes Uv∩σ, for anyσ ∈ Pcontaining v as a vertex, into the corresponding cone of Σv

integral affine linearly. These maps define fan structures at each vertex that are compatible
(see Definition 3.11). This follows because there is a well-defined fan Στ defining the
stratum corresponding to τ.

Construction 3.8 gives (B,P) the structure of an integral affine manifold with singularities.

Remark 3.19. One can also define the intersection complex of a toric degeneration. The aim of
the Gross-Siebert program is to describe the phenomenom of mirror symmetry via these tropical
manifolds. The dual intersection complex of a toric degeneration of Calabi-Yau varieties is the
intersection complex of its mirror, and vice versa. Moreover, the intersection complex and its
dual are related via the discrete Legendre transform. Reconstructing the toric degeneration from
its (dual) intersection complex, one can hope to find the mirror partner to a given degeneration.
For an overview of this program, see [10][11] and references therein.
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Given a curve C in a toric variety or a toric degeneration, we can define the associated tropical

curve in the dual intersection complex. This is a parametrized tropical curve in an affine mani-
fold with singularities. In fact, what we need is a torically transverse log curve, but we will not
worry about this issue here (some of our lines are not torically transverse!). Further, we restrict
to the case of irreducible curves. For the general definition, see Definition 4.10 in [10].

Definition 3.20. Let X be a toric degeneration and f : C → X0 (an embedding of) a curve in X0.
Let Γ f be the weighted graph with one vertex VC such that the set of (unbounded) edges of Γ f is
in one-to-one correspondence with the set f −1(∂X0), where ∂X0 is the toric boundary of X0, i.e.,
the union of codimension 1 toric strata of the Xi. Let p ∈ f −1(∂X0) correspond to an unbounded
edge Ep. Then the weight w(Ep) is the intersection multiplicity of C with ∂X0 at f (p).

We then define the tropical curve associated to f : C → X as h : Γ f → MR with

(1) h(VC) = v ∈ P if f (C) ⊆ Dv.
(2) h(Ep) lies in cell σ ∈ P corresponding to the maximal-dimensional toric stratum of ∂X0

containing f (p).

Proposition 3.21. If f : C† → X† is a torically transverse log curve, then h : Γ f → MR is a
parametrized tropical curve.

Proof. This is Proposition 4.11 in [10].
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4 Example: A Family of Cubic Surfaces

Before considering the Dwork pencil of quintic threefolds we will look at a simpler two-
dimensional example where everything can be presented in 3-dimensional space.

4.1 A Pencil of Cubic Surfaces and the Lines on it

Consider the pencil X where Xt is the cubic surface in P3 given by

t(z3
0 + z3

1 + z3
2 + z3

2) + z1z2z3 = 0. (4.1)

The central fiber X0 ist just the union of three of the four coordinate hyperplanes in P3, hence
contains infinitely many lines. Now assume t , 0.

A line lying on Xt has clearly at least two coordinates not equal to zero. Let this line be
parametrized by coordinates (u, v) ∈ P1. Each coordinate is a linear combination of (u, v).
At least two functions must be linearly independent as functions of u and v. Taking z2 and z3 to
be these cooridiates, a line may be written as

z = (bu + qv, cu + rv, u, v), (u, v) ∈ P1. (4.2)

Inserting (4.2) into (4.1) we get a system of equations with the 27 solutions

b = 0, c = −ω, q =
γ

3t
, r =

1
3tω

;

b =
γ

3t
, c =

1
3tω

, q = 0, r = −ω;

b = γ, c = 3tω, q = ωγ, r = 3tω2;

with ω a third root of unity and γ a solution of

γ3 = −1 − 27t3.

For each row we have 9 ways to choose ω and γ giving a total number of 27 lines. Note that the
second row is obtained from the first one by b ↔ q and c ↔ r corresponding to the change of
coordinates z2 ↔ z3 and the reparametrization u↔ v.

A Gröbner basis calculation leads to the defining equations for these lines. For the first row we
get

3tz0 − γz3 = 0,

3tz1 + 3tωz2 − ω
2z3 = 0,

(4.3)
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for the second row

3tz0 − γz2 = 0,

3tz1 − ω
2z2 + 3tωz3 = 0,

(4.4)

and for the third row

z0 − γz2 − ωγz3 = 0,

z1 − 3tωz2 − 3tω2z3 = 0.
(4.5)

Another way to get the defining equations is the following. A line in P3 is given by two linear
equations

c0z0 + c1z1 + c2z2 + c3z3 = 0.

Inserting different values (u, v) = (1, 0) and (u, v) = (1, 0) into (4.2) gives two points on the line.
For the first row this gives the system of linear equations

0 −ω 1 0
γ

3t
1

3tω 0 1



c0

c1

c2

c3

 = 0.

The matrix has rank 2 and a basis of its kernel is given by {b1, b2} where

b1 =


3t

0
0
−γ

 , b2 =


0
3t

3tω

−ω2

 .

This gives the defining equations as in (4.3). For the other rows the calculation is similar.

4.2 Tropicalization of the Family of Cubic Surfaces

On the toric stratum of P3 where all coordinates are nonzero we may set z0 = 1 and tropicalize
(4.1) to

min{1, 3x1 + 1, 3x2 + 1, 3x3 + 3, x1 + x2 + x3}.

The tropical hypersurface in R3 defined by this tropical polynomial consists of the polytope

Conv{(1, 0, 0), (0, 1, 0), (0, 0, 1)},

together with the nine unbounded parts
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Ui =

(x1, x2, x3) ∈ R3
∣∣∣ xi = 0,

∑
k,i

xk ≥ 1,∀k , i : xk ≥ 0

 , i = 1, 2, 3,

U′i =

(x1, x2, x3) ∈ R3
∣∣∣ 2xi + 1 =

∑
k,i

xk ≤ 1,∀k , i : xk ≥ xi

 , i = 1, 2, 3,

Ui j =
{
(x1, x2, x3) ∈ R3 | xi = x j ≤ 0,∀k , i, j : xk ≥ xi + 1

}
, i , j ∈ {1, 2, 3}.

x1

x2

x3

Figure 4.1: Tropicalization of the family of cubic surfaces in R3.

On the toric stratum where only z0 = 0, we may set z3 = 1 and get the tropicalization

min{3x1 + 1, 3x2 + 1, 1, x1 + x2},

giving the tropical hypersurface in R2 shown in Figure 4.2.

x1

x2

Figure 4.2: Tropicalization of the family of cubic surfaces for z0 = 0.
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On the stratum where only z3 = 0, we may set z0 = 1 and tropicalize (4.1) to

min{1, 3x + 1, 3x + 2}.

This gives the tropical hypersurface in R2 as shown in Figure 4.3.

x1

x2

Figure 4.3: Tropicalization of a family of cubic surfaces for z3 = 0.

On the strata where z1 = 0 or z2 = 0 we get the same picture as in Figure 4.3.

4.3 Tropicalization of the Lines

We have two different ways to tropicalize the lines on Xt. First, we tropicalize the polynomials
in the defining equations and calculate the tropical lines they define. Then we tropicalize the
lines from their parametric representation. Of course, both ways lead to the same tropical lines.

The lines do not lie in a lower-dimensional toric stratum of P3. Hence, we may assume z0 = 1.

For z0 = 1, the polynomials in (4.3) tropicalize to

min{1, x3}, min{x1 + 1, x2 + 1, x3}.

These tropical polynomials define the tropical line in R2 consisting of the three rays

x1 ≥ 0, x2 = 0, x3 = 1;

x1 = 0, x2 ≥ 0, x3 = 1;

x1 = x2 ≤ 0, x3 = 1.

(4.6)

This is shown in Figure 4.4.

26



Note that the nine lines defined by (4.3) tropicalize to the same tropical line (4.6).

x1

x2

x3

Figure 4.4: Tropicalization of nine lines on the family of cubics.

The polynomials in (4.4) tropicalize to

min{1, x2}, min{x1 + 1, x2, x3 + 1},

giving the tropical line in Figure 4.5.

x1

x2

x3

Figure 4.5: Tropicalization of nine lines on the family of cubics.

As already noted, this can be obtained from 4.4 by the change of coordinates x2 ↔ x3.
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From the symmetry of (4.1) it should be clear that the tropicalization of the lines given by (4.5)
should be the same as Figure 4.4 under the change x1 ↔ x3 or as Figure 4.5 under the change
x1 ↔ x2. However, this tropicalization appears to be harder, since the polynomials in (4.5) do
not give a tropical basis for I = 〈z0 − γz2 − ωγz3, z1 − 3tωz2 − 3tω2z3〉.

Define

g1 = z0 − γz2 − ωγz3,

g2 = z1 − 3tωz2 − 3tω2z3,

and F= {g1, g2}. Then, for z0 = 1,

Trop(g1) = min{0, x2, x3},

Trop(g2) = min{x1, x2 + 1, x3 + 1}.

The finite intersection ∪ f∈FTrop(V( f )) of tropical hypersurfaces is shown in Figure 4.6. This is
not a tropical variety, since the polyhedral complex is not of pure dimension.

x1

x2

x3

Figure 4.6: The finite intersection ∪ f∈FTrop(V( f )) of tropical hypersurfaces.

We will use the technique from the proof of Theorem 2.51 to calculate a tropical basis of I to
be

T=

{
z0 − γz2 − ωγz3, z1 − 3tωz2 − 3tω2z3, z1 −

3tω
γ

z0

}
. (4.7)

For w ∈ R4 in the interior of a zero- or one-dimensional polyhedron of ∪ f∈FTrop(V( f )), the
initial ideal inw(I) does not contain a monomial.
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Take w = (0, 2, 1, 1). Define

g = 3tωg1 − γg2 = 3tωz0 − γz1.

The initial ideal inw(I) contains inw(g) = −γz1, hence the monomial z1.

We take the lexicographical term order given by

zα0 ≺ zβ1, zα1 ≺ zβ2, zα2 ≺ zβ3, for all α, β ∈ N \ {0}.

Then

in≺w(g1) = −ωγz3,

in≺w(g2) = −3tω2z3.

We use the Buchberger algorithm as in the proof of Proposition 2.27 to calculate G≺w(I). We
have

S ≺w(g1, g2) = 3tωz0 − γz1.

This is not divisible by in≺w(g1) and in≺w(g2), so it the remainder of the multivariate polynomial
division of itself relative to {g1, g2}, and we have to add it to G≺w(I).

Running the Buchberger algorithm again gives nothing new, so

G≺w(I) = {g1, g2, S ≺w(g1, g2)}.

The normal form to z1 with respect to G≺w(I) is

h =
3tω
γ

z0.

Adding z1 − h to F this gives the tropical basis T(I) as claimed in (4.7).

For z0 = 1, the polynomials in T tropicalize to

min{0, x2, x3}, min{x1, x2 + 1, x3 + 1}, min{x1, 1}.

The third minimum is not unique precisely if x1 = 1. Then the first and second minimum are
achieved at least twice in the same points, giving the tropical line in Figure 4.7.
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x1

x2

x3

Figure 4.7: Tropicalization of nine lines on the family of cubics.

We may also calculate the tropicalizations from the parametric representation. We will do this
for the first row. The valuations of the coordinates are

ν(z0) = −1 + ν(v)

ν(z1) = ν

(
−ωu +

1
3tw

v
)

ν(z2) = ν(u)

ν(z3) = ν(v).

We dehomogenize tropically by setting ν(z0) = 0, i.e., ν(v) = 1. Then

ν(z1) = ν

(
−ωu +

1
3tw

v
)

ν(z2) = ν(u)

ν(z3) = 1.

If ν(u) < 0 then
ν(z1) = ν(u), ν(z2) = ν(u), ν(z3) = 1.

If ν(u) = 0 then
ν(z1) ≥ 0, ν(z2) = 0, ν(z3) = 1.

If ν(u) > 0 then
ν(z1) = 0, ν(z2) = ν(u), ν(z3) = 1.

This gives the same tropical lines as before, shown in Figure 4.4.
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4.4 Lines in the Dual Intersection Complex

The central fiber X0 consists of 3 coordinate hyperplanes of P3. This gives a picture roughly as
in Figure 4.8. (The three unbounded edges are in fact parallel!) Furthermore, the fan structure
at each vertex is the normal fan to the standard simplex, i.e., the fan for P2.

Figure 4.8: The dual intersection complex of the family of cubics.

The monodromy of Λ around the three singular points, and one finds at each point that it is
given by

( 1 0
3 1

)
in a suitable basis see [11] and [9].. As a result, it is possible to pull apart each

singular point into three singular points, each with monodromy
( 1 0

1 1
)
, as in Figure 4.9.

Figure 4.9: The darker lines give one of the 27 parametrized tropical curves.

Figure 4.9 also shows a parametrized tropical curve. There are 27 such tropical curves: 3
choices of unbounded edge, and 32 choices for the endpoints. Morally, these tropical curves
correspond to the 27 lines on the cubic surface. Indeed, each line on the central fiber X0 lies in
a coordinate hyperplane meets two codimension 1 strata of it.
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5 Lines on the Dwork Pencil of Quintic Threefolds

The Dwork pencil of quintic threefolds is the family X consisting of quintic hypersurfaces in P4

given by
t(z5

0 + z5
1 + z5

2 + z5
3 + z5

4) + z0z1z2z3z4 = 0 (5.1)

where t ∈ P1 is a complex parameter. We want to find all lines lying in such a hypersurface.

Remark 5.1. Sometimes the Dwork family is defined to be parametrized by ψ = − 1
5t . Note that

in this case the central fiber is not a union of toric varieties.

5.1 Explicit parametrization

The central fiber X0 is the union of the five coordinate hyperplanes in P4. Each hyperplane is a
P3 and the space of lines lying in such a hyperplane is the Grassmannian G(2, 4) = G(1, 3) � P2.
Hence, there are infinitely many lines on X0. Now assume t , 0. We want to find the lines in Xt.

We want to parametrize the coordinates of a line on the Dwork pencil by (u, v) ∈ P1. At least
two coordinates must be linearly independent as functions of u and v. Taking u and v for the
first two coordinates, the most general form of z lying on that line is

z = (u, v, bu + qv, cu + rv, du + sv), (u, v) ∈ P1, (5.2)

with b, c, d, r, s, t complex parameters. In order for the lines to lie on the quintic Xt the parame-
ters must satisfy the equations

b5 + c5 + d5 + 1 = 0

5t(b4q + c4r + d4s) + bcd = 0

10t(b3q2 + c3r2 + d3s2) + cdq + bdr + bcs = 0

10t(b2q3 + c2r3 + d2s3) + dqr + brs + cqs = 0

5t(bq4 + cr4 + ds4) + qrs = 0

q5 + r5 + s5 + 1 = 0.

(5.3)

This can be seen by inserting (5.2) into (5.1) and setting the coefficients in u and v equal to zero.

Proposition 5.2. Assume two parameters in (5.2) are zero. Then the lines in (5.2) are of the
form

z = (u, v,−ζku,−ζ lv, 0), (u, v) ∈ P1 (5.4)

where 1 ≤ k, l ≤ 5 and ζ is a nontrivial fifth root of unity. There are 375 such isolated lines.
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Proof. The proof is a straightforward computation. Three cases can occur.

First case: First, it may be that two parameters appearing in the same coordinate of z are zero.
So let e.g. d = s = 0. Then the above equation simplifies to

z = (u, v, bu + rv, cu + sv, 0), (u, v) ∈ P1

with b, c, q, r satisfying

b5 + c5 + 1 = 0

b4q + c4r = 0

b3q2 + c3r2 = 0

b2q3 + c2r3 = 0

bq4 + cr4 = 0

q5 + r5 + 1 = 0

By the third and fourth equation we have b3q3 = −bc2r3 = −qc3r2 implying br = qc. One
of our parameters must be nonzero, since otherwise we would have z = (u, v, 0, 0, 0) not
lying on Xt. So assume r , 0. Then

b =
qc
r

(5.5)

and the first equation gives (q
r

)5
c5 + c5 + 1 = 0. (5.6)

Multiplying (5.6) with r5 gives (q5 + r5)c5r5 + r5 = 0. By the last equation, q5 + r5 = −1,
so (1− c5)r5 = 0. But since r , 0, we have c5 = −1. Now by (5.6) and (5.5) it follows that
q = 0, b = 0 and the last equation again implies r5 = −1. This leads to (5.4).

Second case: Now consider the case when two parameters of the same coordinate u or v are
zero, e.g. q = s = 0. Then (5.4) gets

z = (u, v, bu, cu + rv, du), (u, v) ∈ P1

with b, c, d, r satisfying

b5 + c5 + d5 + 1 = 0

5tc4r + bcd = 0

10tc3r2 + bdr = 0

c2r3 = 0

cr4 = 0

r5 + 1 = 0.
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From the last equation it immediately follows that r5 = −1. Then the fifth equation gives
c = 0 and the third equation gives b = 0 or d = 0. Without loss of generality take d = 0.
Then by the first equation b5 = −1 giving (5.4).

Third case: Assume that two parameters of different coordinates in z and different variables u, v

are zero, e.g. c = s = 0. Then

z = (u, v, bu + qv, rv, du), (u, v) ∈ P1

with b, d, q, r satisfying

b5 + d5 + 1 = 0

b4q = 0

10tb3q2 + bdr = 0

10tb2q3 + dqr = 0

bq4 = 0

q5 + r5 + 1 = 0

From the second or fifth equation it follows that b = 0 or q = 0. Without loss of generality
take q = 0. Then the last equation gives r5 = −1.The third equation gives b = 0 or d = 0.
Take d = 0. The first equation now gives b5 = −1 leading to (5.4).

Number of lines: We have 25 ways of choosing k and l. There are 5 ways to choose the zero
coordinate and 3 ways of distributing u and v. This gives 15 coordinate permutations
leading to different lines. Hence, there are 5 · 15 = 375 lines of this form.

Proposition 5.3. Assume exactly one parameter in (5.2) is zero. Then up to permutations the
lines in (5.2) are the 5000 van Geemen lines of the form

z = (u, v, ζ−k−lbu, ζk(cu + ωv),−ζ lω2(cu − v)), (u, v) ∈ P1 (5.7)

where 1 ≤ k, l ≤ 5 and
b = −

3
10t

γ2, c = −
1

10t
(1 − ω)iγ

where ζ is a nontrivial fifth root of unity, ω is a nontrivial third root of unity, and γ is a solution
of

γ10 −
1
9
γ5 −

(
10t
3

)5

= 0. (5.8)

Proof. First we note that multiplying z2, z3 or z4 with a fifth root of unity doesn’t change (5.3).
Moreover, the product of these fifth roots of unity must be one. Hence, by abuse of notation we
can write

z = (u, v, ζ−k−lbu, ζk(cu + rv), ζ l(du + sv)).
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Write d = cd̃. By the second, third and fourth equation we see that we can write b = − 1
10t b̃γ

2 and
c = − 1

10t (1−ω)γ with ω a nontrivial third root of unity. The factors are chosen for convenience.
Note that (1 − ω)2 = −3ω. After cancellation (5.3) becomes

b̃5γ10 − 27(1 + d̃5)γ5 − (10t)5 = 0

3ωr + 3ωd̃4s + 2b̃d̃ = 0

3ωr2 + 3ωd̃3s2 + b̃d̃r + b̃s = 0

3ωr3 + 3ωd̃2s3 + b̃rs = 0

r4 + d̃s4 = 0

r5 + s5 + 1 = 0.

(5.9)

The second and fourth equation of (5.9) together give

b̃
3ω

=
r + d̃4s

2d̃
=

r3 + d̃2s3

rs
. (5.10)

Solving the second equality together with the fifth and sixth equation of (5.9) under the assump-
tion that all parameters are nonzero gives (up to fifth roots of unity) exactly

d̃ = −ω2, r = ω, s = ω2

Now (5.10) gives b̃ = 3 and the first equation of (5.9) gives the desired equation

γ10 −
1
9
γ5 −

(
10t
3

)5

= 0.

We have 5 ways to choose γ, given γ5, 2 ways to choose ω and 25 ways to choose k, l. 20
permutations lead to different lines. Hence, there are 25 ·5 ·2 ·20 = 5000 van Geemen lines.

Remark 5.4. In §5 we will show that on a generic quintic threefold there are 2875 lines. Since
the number of van Geemen lines exceeds this number, they have to lie in a family of lines.
Indeed, the next proposition shows that the general lines on the Dwork pencil come in a family.
The van Geemen lines are special lines in this family.

Proposition 5.5. Assume all parameters in (5.2) are nonzero. These general lines come in a
family of lines. Up to permutations they are of the form

z =
(
α(σ, τ)u, α(τ, σ)v,−τ4/5β(σ)(σu + v), β(στ)(σu + τv),−σ4/5β(τ)(u + τv)

)
, (5.11)

where

α(σ, τ)5 = σ4(1 − σ)(1 − τ)(1 − στ)
(
1 − τ(1 + σ) + τ2(1 − σ + σ2)

)
β(σ)5 = (1 − σ)(1 − σ + σ2)

(5.12)
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and σ, τ are complex parameters satisfying F(σ, τ) = 0 with

F(σ, τ) = 105t5σ2τ2(1 − σ)2(1 − τ)2(1 − στ)2

− (1 − σ + σ2)(1 − τ + τ2)(1 − στ + σ2τ2)
(
1 − τ(1 + σ) + τ2(1 − σ + σ2)

)
·
(
1 − σ(1 + τ) + σ2(1 − τ + τ2)

)
.

(5.13)

Definition 5.6. We denote the curve in C2 given by F(σ, τ) = 0 by C0
t .

Remark 5.7. In §6.1 we will show that C0
t consists of two irreducible components C0

±ϕ of genus
6 that are isomorphic to each other. In §6.4 we describe the curves parametrizing the lines in
the family as a 125:1 cover of the desingularizations C±ϕ of these components.

Proof. Making the transformations

q = rκ, b = cκτ, d = cκτδ, s = rκτδσ, t =
δκ2τ

cr
t̃,

after cancellation, the equations 5.3 become

1 + c5
(
1 + κ5τ5(1 + δ5)

)
= 0

5t̃(1 + κ5τ4(1 + δ5στ)) + τ = 0

10t̃(1 + κ5τ3(1 + δ5σ2τ2)) + 1 + τ + στ = 0

10t̃(1 + κ5τ2(1 + δ5σ3τ3)) + 1 + σ + στ = 0

5t̃(1 + κ5τ(1 + δ5σ4τ4)) + σ = 0

1 + s5
(
1 + κ5(1 + δ5σ5τ5)

)
= 0

and depend on δ and κ only through δ5 and κ5. Combining the second, third, fourth and fifth
relations with multiplicities (1,−1, 1,−1) results in the cancellation of the constant terms. The
remaining equation gives

δ5 =
(1 − τ)(1 − τ + τ2)

στ4(1 − σ)(1 − σ + σ2)
.

Solving the central four relations also for κ5 and t̃, we find

κ5 = −
(1 − σ)(1 − σ − σ2)

τ(1 − στ)(1 − στ + σ2τ2)
, t̃ =

1
10

1 − στ + σ2τ2

(1 − σ)(1 − τ)
.

Moreover, these three relations exhaust the content of the four central relations in (5.9). The
first and last relations in (5.9) now give c and s in terms of σ and τ. Finally, on substituting
what we know into the relation

t5 =
δ5κ10τ5

c5r5 t̃5,

we obtain a constraint F(σ, τ) = 0 with F as in (5.13) and z are as in (5.11).
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5.2 Implicitization

Any line in P4 is a complete intersection of hypersurfaces of degree 1, i.e., is given by three
linear equations

c0z0 + c1z1 + c2z2 + c3z3 + c4z4 = 0. (5.14)

For the isolated lines from Proposition 5.2 this is clearly

z0 + ζkz2 = 0, z1 + ζ lz3 = 0, z4 = 0. (5.15)

Proposition 5.8. The defining equations for the van Geemen line as in (5.7) are

bz0 − ζ
k+lz2 = 0

cz0 + ζ−kωz3 − ζ
−lz4 = 0

ωz1 + ζ−kω2z3 + ζ−lz4 = 0.

(5.16)

Proof. Setting (u, v) = (1, 0) and (u, v) = (0, 1) gives two points spanning the van Geemen line.
Inserting into (5.14) gives a linear system of two equations for the ci:

1 0 ζ−k−lb ζkc −ζ lω2c

0 1 0 ζkω ζ lω2




c0

c1

c2

c3

c4


= 0.

The matrix has rank 2 and a basis of its kernel is given by b1, b2, b3 where

b1 =



b

0
−ζk+l

0
0


, b2 =



c

0
0

ζ−kω

−ζ−l


, b3 =



0
ω

0
ζ−kω2

ζ−l


This gives the coefficients in the defining equations as stated.

Proposition 5.9. The defining equations for the familiy of lines are

στ4/5β(σ)α(τ, σ)z0 + τ4/5β(σ)α(σ, τ)z1 + α(σ, τ)α(τ, σ)z2 = 0

σβ(στ)α(τ, σ)z0 + τβ(στ)α(σ, τ)z1 − α(σ, τ)α(τ, σ)z3 = 0

σ4/5β(τ)α(τ, σ)z0 + σ4/5τβ(τ)α(σ, τ)z1 + α(σ, τ)α(τ, σ)z4 = 0.

(5.17)

with F(σ, τ) = 0 as in Proposition 5.5.
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Proof. Fix σ, τ and t. Choosing different values (1, 0), (0, 1) for (u, v) gives two different points
lying on the curve with parameters σ, τ on Xt. Inserting into (5.14) gives a linear system of two
equations for the ci:

α(σ, τ) 0 −στ4/5β(σ) σβ(στ) −σ4/5β(τ)
0 α(τ, σ) −τ4/5β(σ) τβ(στ) −σ4/5τβ(τ)




c0

c1

c2

c3

c4


= 0.

The matrix has rank 2 and a basis of its kernel is given by b1, b2, b3 where

b1 =



στ4/5β(σ)α(τ, σ)
τ4/5β(σ)α(σ, τ)
α(σ, τ)α(τ, σ)

0
0


, b2 =



σβ(στ)α(τ, σ)
τβ(στ)α(σ, τ)

0
−α(σ, τ)α(τ, σ)

0


, b3 =



σ4/5β(τ)α(τ, σ)
σ4/5τβ(τ)α(σ, τ)

0
0

α(σ, τ)α(τ, σ)


.

This gives the coefficients in the defining equations as stated.

5.3 Plücker Coordinates

The Grassmannian G(2, 5) = G(1, 4) parametrizing lines in P4 is isomorphic to the intersection
of five quadric hypersurfaces in P9 via the Plücker map.

Let the line corresponding to a point l ∈ G(2, 5) be spanned by the rows of the matrixx0 x1 x2 x3 x4

y0 y1 y2 y3 y4

 .
The Plücker coordinates πi j = xiy j − x jyi, 0 ≤ i < j ≤ 4 are the 2× 2-minors of this matrix. The
Plücker map

G(2, 5) → P9

l 7→ (πi j)0≤i< j≤4

is an embedding. Its image is the intersection of five quadrics in P9 given by the Plücker

relations

πabπcd − πacπbd + πadπbc = 0, 0 ≤ a < b < c < d ≤ 4.

This can be found e.g. in [7].

We want to describe the Plücker coordinates of the lines we found in §5.1.
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Proposition 5.10. Any isolated line has exactly six Plücker coordinates equal to zero.

Proof. The isolated line (u, v,−ζku,−ζ lv, 0) is spanned by the rows of1 0 −ζk 0 0
0 1 0 −ζ l 0

 .
The Plücker coordinates are

π01 = 1

π02 = 0 π12 = ζk

π03 = −ζ l π13 = 0 π23 = ζk+l

π04 = 0 π14 = 0 π24 = 0 π34 = 0.

The other isolated lines are obtained via other choices of k, l and permutations of the coordi-
nates. In any case 6 Plücker coordinates are equal to zero.

Proposition 5.11. Any van Geemen line has exactly one Plücker coordinate equal to zero. For
each Plücker coordinate πi j there are 500 van Geemen lines with πi j = 0.

Proof. The van Geemen line (u, v, ζ−k−lbu, ζk(cu + ωv),−ζ lω2(cu − v)) is spanned by the rows
of 1 0 ζ−k−lb ζkc −ζ lω2c

0 1 0 ζkω ζ lω2

 .
The only 2 × 2-minor that is zero is π02. All other van Geemen lines are obtained via different
choices of k, l, ω, γ and permutations. Only 10 permutations give a different zero Plücker coor-
dinate. For each such permutation there are 25 choices for k and l and 20 choices for ω and γ.
This gives 500 van Geemen lines with πi j = 0.

Proposition 5.12. A general member of the family of lines has no Plücker coordinate that is
equal to zero.

Proof. A line in this family is spanned by the rows ofα(σ, τ) 0 −τ4/5β(σ)σ β(στ)σ −σ4/5β(τ)
0 α(τ, σ) −τ4/5β(σ) β(στ)τ −σ4/5β(τ)τ)

 (5.18)

with σ, τ, α(σ, τ), α(τ, σ), β(σ), β(τ) and β(στ) all nonzero for general choices of σ and τ.
Hence, no 2 × 2-minor is equal to zero.
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5.4 Symmetries and the Action of S 5 o G

The manifolds of the Dwork pencil have a group of isomorphisms isomorphic to GoS 5, where
S 5 is the permutation group acting on the five coordinates and

G=

{
(n0, n1, n2, n3, n4) ∈

(
Z�5Z

)5 ∣∣∣ ∑5
i=1 ni ≡ 0 mod 5

} /{
(n, n, n, n, n)

∣∣∣ n ∈ Z�5Z
}
�

(
Z�5Z

)3
.

This group has order 5! · 53 = 15000. The product in Go S 5 is given by

(σ, (n0, n1, n2, n3, n3)) · (τ, (m0,m1,m2,m3,m4)) =
(
σ ◦ τ, (nτ(0) + m0, . . . , nτ(4) + m4

)
.

The action of (σ, (n0, n1, n2, n3, n4)) ∈ Go S 5 on P4 is given by

(z0, z1, z2, z3, z4) 7→
(
ζn0zσ(0), ζ

n1zσ(1), ζ
n2zσ(2), ζ

n3zσ(3), ζ
n4zσ(4)

)
.

In what follows we will discover the symmetries of the lines we found.

Proposition 5.13. Each isolated line is invariant under a subgroup of order 40 of S 5 o G. This
subgroup is isomorphic to Z/5Zo D4 where D4 is the dihedral group of the square. The other
elements of S 5 o Ggive other isolated lines.

Proof. Of course, the action of Go S 5 on an isolated line gives another isolated line. Since
there are 375 isolated lines isomorphic to each other, each line must be invariant under a sub-
group of order 15000/375 = 40. Table 5.1 gives the generators of the group of isomorphisms of
the isolated line (u, v,−ζku,−ζ lv, 0) together with the reparametrization of (u, v) that yields the
same parametric representation. Consider the square with vertices labeled by 0, 1, 2, 3 in coun-
terclockwise direction. Any of the elements (02), (13), (01)(23) gives a reflection of this square.
Two adjacent reflections generate D4, hence 〈(02), (13), (01)(23)〉 = 〈(02), (01)(23)〉 � D4. For
each element of 〈(02), (01)(23)〉 ⊂ S 5 there is a subgroup of Gisomorphic toZ/5Z. The second
and fourth element in Table 5.1 together generate Z�5Z o D4. The group of isomorphisms is
isomorphic to D4 o Z/5Z and indeed has order |D4| · |Z/5Z| = 8 · 5 = 40.

Elements of Z�5Zo D4 with n ∈ Z5 (u, v) trafnsformation(
id, (n,−n, n,−n, 0)

)
(ζnu, ζ−nv)(

(02), (n − k,−n, n + k,−n, 0)
)

(−ζnu, ζ−nv)(
(13), (n,−n − k, n,−n + k, 0)

)
(ζnu,−ζ−nv)(

(01)(23), (n,−n, n + k − l,−n − k + l, 0)
)

(v, u)

Table 5.1: Elements of Z/5Z o D4 and their corresponding reparametrizations of (u, v). The
second and fourth element together generate Z/5Zo D4.

40



Proposition 5.14. A van Geemen line with πi j = 0 is invariant under an order 3 subgroup
{g}o 〈(klm)〉 of Go S 5 where g ∈ Gand {i, j, k, l,m} = {0, 1, 2, 3, 4}.

Proof. A van Geemen line with π02 = 0 isz = (u, v, ζ−k−lbu, ζk(cu + ωv),−ζ lω2(cu − v)). In this
case g = (0,−k, 0,−l, k + l). This is shown in Table 5.2. Note that 15000/3 = 5000.

Generator of {g}o 〈(klm)〉 (u, v) trafnsformation(
(134), (0,−k, 0,−l, k + l)

) (
u,−ω2(cu − v)

)
Table 5.2: The generator of the group of isomorphisms for a van Geemen line with π02 = 0 and
its corresponding reparametrization of (u, v).

Remark 5.15. In fact, this invariance was van Geemen’s initial motivation to study these lines.
It was known that a general quintic threefold contains 2875 lines. 375 of these lines are isolated
lines. Now the number 2500 of missing lines is not divisible by 3, so a subgroup of order 3 has
to fix some of these lines.

A general member in the family of lines of course has no stabilizer. But the action of S 5 o G

on such a line should give another line in the family. In other words, for each permutation
σ ∈ S 5 of the coordinates there should be a reparametrization of (σ, τ) and (u, v) yielding the
same effect.

Proposition 5.16. Table 5.3 gives the reparametrizations of (σ, τ) and (u, v) yielding permuta-
tions of the coordinates of P4 generating S 5.

S 5 generator (σ, τ) trafo. (u, v) trafo.

(01)(24) (τ, σ) (v, u)

(01)
(

1
σ
, 1
τ

)
(−1)

1
5 (στ)

8
5 (v, u)

(34)
(

1
σ
, στ

)
(−σ

9
5 u,−σ−

1
5 v)

(12)
(

1−στ
1−τ , 1 − τ

) (
(1−τ)(σu+v)

(στ)
1
5 (1−στ)

4
5
,− (1−στ)

1
5 v

(στ)
1
5

)
Table 5.3: Generators of S 5 and their corresponding reparametrizations of (σ, τ) and (u, v).

Proof. This can be checked easily. The table is taken from [6].
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6 The Parametrizing Curves

6.1 The Curves C0
±ϕ in C2 and P1 × P1

Proposition 6.1. The polynomial F from (5.13) factorizes to

F =
1

(5t)5 F+F− with F± = G ± ϕH (6.1)

where
ϕ2 = −105t5 −

3
4

(6.2)

and

G = 3σ2τ2 −
1
2
στ(1 + σ)(1 + τ)(1 + στ) + (1 − σ + σ2)(1 − τ + τ2)(1 − στ + σ2τ2)

H = στ(1 − σ)(1 − τ)(1 − στ).
(6.3)

Proof. This is a simple calculation and can be most easily checked from the right to the left.

This defines curves C0
±ϕ in C2 given by F±(σ, τ) = 0. Compactifying to P1 × P1 we obtain

curves
C0
±ϕ =

{(
(σ1 : σ2), (τ1 : τ2)

)
∈ P1 × P1

∣∣∣ σ4
2τ

4
2F±

(
σ1

σ2
,
τ1

τ2

)
= 0

}
.

These are projective bidegree (4, 4) curves. We write∞ for (1 : 0) ∈ P1 and x for (x : 1) ∈ P1.

Proposition 6.2. For (1/5t)5 , 1,∞, the curves C0
±ϕ each have three singular points (1, 1),

(0,∞) and (∞, 0), all of them ordinary double points, and the geometric genus of C0
±ϕ is 6.

Proof. Using computer algebra one can calculate the Gröbner basis of the ideal generated by
F+, ∂

∂σ
F+ and ∂

∂τ
F+ to be {t− 1, s− 1}. Hence the singular locus of F+ is exactly the point (1, 1).

The same is true for F−. Expanding F± as a series around (1, 1) one can see

F± = (σ − 1)2 + (σ − 1)(τ − 1) + (τ − 1)2 + R±

where R± is a polynomial in σ and τwith all terms of degree at least 3. Thus (1, 1) is an ordinary
double point of C0

±ϕ. The points at infinity lying on C0
±ϕ are

(∞,−ω), (∞,−ω2), (∞, 0), (−ω,∞), (−ω2,∞), (0,∞).

Only the points (0,∞) and (∞, 0) are singular. Since the three singular points are related by the
operations of Table 5.3, they all are ordinary double points. C0

±ϕ are curves of bidegree (4, 4)
with 3 ordinary double points. Hence, their geometric genus is 9 − 3 = 6.
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Proposition 6.3. The curves C0
+ϕ and C0

−ϕ intersect in the 17 points

(0,∞), (∞, 0), (1, 1),

(0,−ω), (0,−ω2), (1,−ω), (1,−ω2), (−ω,−ω2), (−ω,∞), (−ω2,∞),

(−ω, 0), (−ω2, 0), (−ω, 1), (−ω2, 1), (−ω2,−ω), (∞,−ω), (∞,−ω2).

Proof. These are the solutions of (the bihomogenization) of G = H = 0.

Proposition 6.4. The van Geemen lines appear precisely as limits, as we approach the points
in which the curves C0

±ϕ intersect. Some of these limits are shown in Table 6.1. The other cases
are obtained by acting with the elements of Table 5.3.

(σ?, τ?) τ for σ = σ? + ε (u, v) Line

(0,−ω) −ω + 9γ5ε
(

cũ
ε
,−ṽ

) (
ũ, ṽ,−ω2(cũ − ṽ), cũ + ωṽ, bũ

)
(1,−ω) −ω + 9ωγ5ε

(
−ω

2ṽ
ε1/5 ,−

cũ+ωṽ
ε1/5

) (
ṽ, cũ + ωṽ,−ω2(cũ − ṽ), bũ, ũ

)
(−ω,−ω2) −ω2 + ω

(
10t
3

)5
ε
γ10

(
cũ+ωṽ

(1−ω2)1/5ε1/5 ,−
ω2(cũ−ṽ)

(1−ω2)1/5ε1/5

) (
cũ + ωṽ,−ω2(cũ − ṽ, bũ, ṽ, ũ

)
(1, 1) 1 + ω2ε + (ω + 9γ5)ε2

(
ωcũ
ε6/5 −

ωcũ−ṽ
2ε1/5 ,−

ωcũ
ε6/5 −

ωcũ−ṽ
2ε1/5

) (
bũ, ũ, ṽ,−ω2(cũ − ṽ), cũ + ωṽ

)
(1, 1) 1 + ωε − (ω + 9γ5)ε2

(
−ωcũ
ε6/5 + ωcũ+ṽ

2ε1/5 ,
ωcũ
ε6/5 + ωcũ+ṽ

2ε1/5

) (
ũ, bũ, ṽ, cũ + ωṽ,−ω2(cũ − ṽ)

)
Table 6.1: The limiting process that gives rise to the van Geemen lines.

Proof. We will do this for the first row in Table 6.1. The other cases are similar. Write σ = 0+ε

and τ = −ω + τεε with τε left to determine. Then

F(σ, τ) = (105t5 − 3(1 − τε)τε)ε2 + O(ε3).

The condition for the coefficient of ε2 to vanish is precisely (5.8) for τε = 9γ5.

Remark 6.5. Note that for the intersection in nonsingular points of C0
±ϕ we get two van Geemen

lines, one for each curve, for the singular points we get four. This gives a total of 40 lines which
under the action of Gbecome the 40 · 125 = 5000 van Geemen lines.

6.2 The quintic del Pezzo Surface dP5

To resolve the singularities of C0
±ϕ ⊂ P

1 × P1 we have to blow up in the three singular points.
These points do not lie on a line in P1 × P1, hence are in general position. The blow up of
P1 ×P1 at three general points is the del Pezzo surface dP5 of degree 5, which is isomorphic to
P2 blown up at 4 points in general position. Before giving the blow ups of the curves C0

±ϕ we
will further look at dP5 and its group of isomorphisms.
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Proposition 6.6. The blow up of P1 × P1 at (1, 1), (0,∞) and (∞, 0) can be given by

Ψ : P1 × P1 99K dP5 ⊂ P
5

(σ, τ) 7→ (z0, . . . , z5)
(6.4)

with the 6 polynomials (written inhomogeneously for simplicity)

z0 = σ2τ2 − 1, z1 = στ2 − 1, z2 = σ2τ − 1, z3 = στ − 1, z4 = τ − 1, z5 = σ − 1.

Proof. The blow up is given by the polynomials of bidegree (2, 2) which are zero in the three
points (1, 1), (0,∞) and (∞, 0). The polynomials of bidegree (2, 2) are a 9-dimensional vector
space with basis σa

1σ
b
2τ

c
1τ

d
2, a + b = c + d = 2. Hence, if we find 6 independent bidegree (2, 2)

polynomials satisfying the 3 relations of being zero at these points, we have found the blow up
map. The polynomials above are clearly linearly independent.

The group of automorphisms of dP5 is S 5. The action of S 5 on P1 × P1, given by the transfor-
mations of (σ, τ) as in Table 5.3, induces these automorphisms on dP5.

Proposition 6.7. The action of the generators of S 5 on dP5 extend to an action on C6 given by
the unique irreducible 6-dimensional representation of S 5. This is given in Table 6.2.

S 5 generator action on (z0, z1, z2, z3, z4, z5) trace

(01)(24) (−z0,−z2,−z1,−z3,−z5,−z4) −2

(01) (−z0,−z0 + z5,−z0 + z4,−z0 + z3,−z0 + z2,−z0 + z1) 0

(34) (−z1 + z5,−z0 + z5,−z4 + z5,−z3 + z5,−z2 + z5, z5) 0

(12) (−z0 + z2 + 2z3 − 2z5,−z1 + 2z3 + z4 − z5, z2 − 2z5, z3 − z5, z4,−z5) 0

Table 6.2: Generators of S 5 and the image of their action on z ∈ C6.

Proof. This is a simple calculation. For example (01)(24) acts as (σ, τ) 7→ (τ, σ) on P1 × P1.
By (6.4) this induces the action

z 7→ (z0, z2, z1, z3, z5, z4) = (−z0,−z2,−z1,−z3,−z5,−z4)

on dP5 ⊂ P
5. Making the choices as in Table 6.2 the action extends to C6. All elements of S 5

act linearly, hence we get a representation of S 5 on C6. Comparing the traces with the character
table of S 5 we see this is the unique irreducible 6-dimensional representation of S 5.
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6.3 The Blow Ups C±ϕ of C0
±ϕ

Proposition 6.8. The blow up C±ϕ of C0
±ϕ is defined by Gz ± ϕHz = 0 in dP5 where

Gz = 2z2
0 − 2z0z1 − 2z0z2 − 2z0z3 + z0z4 + z0z5 + 2z2

1 + z1z2 − 2z1z3 − 2z1z4

+2z2
2 − 2z2z3 − 2z2z5 + 6z2

3 − 2z3z4 − 2z3z5 + 2z2
4 + z4z5 + 2z2

5,

and
Hz =

1
3

(−2z0z3 + z0z4 + z0z5 − z1z2 + 2z1z3 + 2z2z3 − 2z3z4 − 2z3z5 + z4z5).

Proof. Let C±ϕ be defined by Gz ± ϕHz = 0 in dP5 ⊂ P
5. Then Gz has to be invariant under the

S 5-action given in Table 6.2, and Hz has to be invariant up to a sign. Such polynomials can be
found as Gz =

∑
g∈S 5

g(z0z1) and Hz =
∑

g∈S 5
g(z0z1). The unique S 5 invariant quadratic polyno-

mial with variables z0, . . . , z5 is Gz as above, and the unique S 5 invariant quadratic polynomial,
up to a sign, is Hz as above. One can verifiy that

Ψ?Gz = G(σ, τ), Ψ?Hz = H(σ, τ),

where Ψ denotes the blow up map (6.4). Hence, the curves C0
ϕ are the images under the blow

down Φ : dP5 99K P1 × P1 of the curves C±ϕ.

Remark 6.9. The pencil of curves {Cϕ}ϕ∈P1 is known as the Wiman pencil. The curve C0 is
smooth and has automorphism group S 5. It is knows as the Wiman curve.

6.4 The 125:1 Cover C̃ϕ of Cϕ

In (5.11) we have to choose of fifth root unity for each of σ, τ, α(σ, τ) and β(σ). Multiplying
all the coordinates zi by a common factor gives the same point, so there is a Z3

5 covering of the
parametrizing curve C±ϕ and we can allow for different branches of solutions by acting with G

on a given branch.

From (5.18) we can compute the Plücker coordinates of the lines in the family. For example,

π34 = σ4/5τβ(στ)β(τ)(1 − σ).

Define the follwing meromorphic functions on Cϕ:

fi j :=
πi j

π34
, gi j :=

(
πi j

π34

)5

.

The polynomial T 5 − gi j ∈M(Cϕ)[T ] has the roots ζk fi j for k = 1, . . . , 5.

45



From T 5 − gi j we can construct a 5:1 cover of Cϕ as in §4.2 of [6]. See [8], Proposition 8.9, for
the general statement. Choose a coordinate neighborhood Ux biholomorphic to a disc ∆ ⊂ C,
with 0 ∈ ∆ and local complex chart zx : Ux → ∆ with zx(x) = 0. If x ∈ Cϕ and gi j has no poles
or zeroes on Ux, this Riemann surface is locally the disjoint union of 5 copies of Ux. If x is a
zero of gi j, we can write

gi j = z5
x(1 + a1zx + a2z2

x + . . .).

Restricting the open subset, we may assume that 1 + a1zx + . . . = h5 for a holomorphic function
h on Ux without zeroes and poles. On Ux the polynomial is T 5 − (zxh)5 =

∏5
a=1(T − ζazxh),

showing that the Riemann surface is still a disjoint union of 5 copies of Ux. Thus the fact
that each zero and pole of gi j has multiplicity 5 guarantees that the Riemann surface Xi j of the
polynomial T 5−gi j is an unramified covering of Cϕ. Since the fi j are meromorphic on C̃ϕ, there
must exist holomorphic maps

C̃ϕ → Xi j → Cϕ

with the first map of degree 25. The second map, of degree 5, is obtained from T 5 − gi j.

This construction can be iterated by considering the polynomial T 5 − gpq on Xi j, for example,
or by considering the fiber product of the Riemann surfaces Xi j and Xpq over Cϕ. The cover C̃ϕ

can be obtained with this construction from three suitably chosen gi j, for example, g15, g25, g35.

6.5 The Central Fiber X0

The central fiber X0 is the union of the five coordinate hyperplanes in P4.

Proposition 6.10. In the case t = 0 the polynomial F from (5.13) becomes F = F+F− where

F+ = (σ + ω2)(τ + ω2)(στ + ω)(στ + ωσ + ω2)(στ + ωτ + ω2) (6.5)

and F− is obtained by ω↔ ω2.

Proof. The i-th factor of F+ and F− together give the i-th factor of F for t = 0. For example,
(σ + ω2)(σ + ω) = ω3 + (ω + ω2)σ + σ2 = 1 − σ + σ2, since ω3 = 1 and 1 + ω + ω2 = 0.

This shows that the curves C0
±ϕ both become reducible. Each component of C0

+ϕ, resp. C0
−ϕ,

parametrizes lines in one of the hyperplanes. For example, the first factor of (6.5) gives lines in
the hyperplane z2 = 0.
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7 Counting the Lines - The Number 2875

We have seen that the general members of the Dwork pencil contain a family of lines. However,
under a general deformation these family splits up into a finite number of lines. Using different
methods we will show that this number is 2875.

7.1 A Chern Class Computation

Let X ⊆ P4 be a quintic threefold. The space parametrizing lines on X is called the Fano scheme

F1(X) of lines on X. It is zero dimensional if the number of lines on X is finite. The lines on X in
particular live in P4 so F1(X) is a subset of the Grassmannian G(2, 5) = G(1, 4) parametrizing
lines in P4. If X is given by g = 0, then a line L lies on X if and only if g|L = 0, i.e., if g is sent
to 0 by the restriction map

H0(OPn(5))→ H0(OL(5)).

The following statements give a way to calculate the class of F1(X) in the Chow ring A(G(1, 4)).

Definition 7.1. The tautological rank-k subbundle on G(k,V) is the subbundle of the trivial
bundle G(k,V) × V whose fiber at a point [Λ] ∈ G(k,V) is the subspace Λ itself.

Proposition 7.2. Let V be an (n + 1)-dimensional vector space, and let S ⊂ V ⊗ OG be the
tautological rank-(k+1) subbundle on the Grassmannian G = G(k,PV) of k-planes inPV � Pn.
A form g of degree d on PV gives rise to a global section σg of SymdS? whose zero locus is
Fk(X), where X is the hypersurface g = 0.

Thus, when Fk(X) has expected codimension
(

k+d
k

)
= rank(SymdS?) in G, we have

[Fk(X)] = c(k+d
k )(SymdS?) ∈ A(G).

Proof. This is Proposition 6.4 in [7]

Theorem 7.3. If X ⊂ Pn is a general hypersurface of degree d ≥ 1, then the Fano scheme F1(X)
of lines on X is reduced and has the expected dimension 2n − d − 3.

Proof. This is Theorem 6.34 in [7].

Definition 7.4. Choose a complete flag V in V , that is, a nested sequence of subspaces

0 ⊂ V1 ⊂ . . . ⊂ Vn = V
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with dim Vi = i. For a sequence a = (a1, . . . , ak) of integers with

n − k ≥ a1 ≥ . . . ≥ ak ≥ 0

define the Schubert cycle Σa(V) ⊂ G(k, n) to be the closed subset

Σa(V) = {Λ ∈ G(k, n) | dim(Vn−k+i−ai ∩ Λ) ≥ i for all i}.

The Schubert classes

σa = [Σa(V)] ∈ A(G(k, n))

do not depend on the choice of flag.

Proposition 7.5. The class of the Fano variety F1(X) of lines on a quintic threefold X in P4 is

[F1(X)] = 2875σ3,3.

Hence, the number of lines on a quintic threefold in P4 is 2875.

Proof. By Theorem 7.3 and Proposition 7.2 we have

[F1(X)] = c6(Sym5S?)

where S? is the tautological rank-2 subbundle on G(2, 5). The Chern class of S? is

c(S?) = 1 + σ1 + σ1,1.

Suppose S? splits into a direct sum of two lines bundles with c(L) = 1 + α and c(M) = 1 + β.
By the Whitney formula,

c(S?) = (1 + α)(1 + β),

hence
α + β = σ1 and α · β = σ1,1.

Now Sym3S? splits as well as

Sym3S? = L3 ⊕ (L2 ⊗M) ⊕ (L⊗M2) ⊕M3,

and we have

c(Sym3S?) = (1 + 5α)(1 + 4α + β)(1 + 3α + 2β)(1 + 2α + 3β)(1 + α + 4β)(1 + 5β).
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The top Chern class then could be written as

c6(Sym6S?) = 5α(4α + β)(3α + 2β)(2α + 3β)(α + 4β)5β

= 25αβ(24α4 + 154α3β + 369α2β2 + 154αβ3 + 24β4)

= 25αβ(24(α + β)4 + 58αβ(α + β)2 + 9(αβ)2

= 25σ1,1(24σ4
1 + 58σ1,1σ

2
1 + 9σ2

1,1)

Using Pieri’s formula for lines (Proposition 4.11 of [7]) we calculate

σ1,1σ
4
1 = 2σ3,3, σ2

1,1σ
2
1 = σ3,3, and σ3

1,1 = σ3,3.

This gives us
c6(Sym6S?) = 25(24 · 2σ3,3 + 58σ3,3 + 9σ3,3) = 2875σ3,3.

This shows that F1(X) consists of 2875 points, i.e., X contains 2875 lines.

7.2 Deforming the Fermat Quintic

We describe the lines on a particular member of the Dwork pencil - the Fermat quintic X∞ - and
see which lines deform under a general deformation. This is described in [1].

Proposition 7.6. The lines on the Fermat quintic X∞ given by z5
0 + z5

1 + z5
2 + z5

3 + z5
4 = 0 in P4

are given by 50 cones of lines of the form

z = (u,−ζku, av, bv, cv) with a5 + b5 + c5 = 0, (u, v) ∈ P1.

The isolated lines from Proposition 5.2 are the lines in which the cones intersect. Each cone
contains 15 isolated lines and meets 15 other cones in these lines.

Proof. The isolated lines do not depend on t, so they have the same form as in Proposition (5.2).
A line in P4 has the form

(u, v, bu + qv, cu + rv, du + sv).

In order for this line to lie in X∞ the parameters must satisfy

b5 + c5 + d5 + 1 = 0

b4q + c4r + d4s = 0

b3q2 + c3r2 + d3s2 = 0

b2q3 + c2r3 + d2s3 = 0

bq4 + cr4 + ds4 = 0

q5 + r5 + s5 + 1 = 0.
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Assume one parameter is zero, e.g. b = 0. Then if c = 0 from the first equation we obtain
d = −ζk for ζ a nontrivial fifth root of unity. Now the second equation gives d4s = 0 implying
s = 0. The last equation gives q5 + r5 + 1 = 0 which after reparametrization of v 7→ av,
permutation and renaming of the parameters becomes the wanted equation.

Proposition 7.7. Let ΘX be the tangent bundle of X and let ρ ∈ H1(ΘX) be generic. Then no line
l moves in the direction of ρ, i.e., all pairs (l, X) are obstructed to first oder. There are exactly
10 lines on each cone that deform (to second oder) in the direction of ρ with monodromy Z2.
The lines that lie on more than one cone deform in the direction of ρ with monodromy Z5.

Proof. This is the content of Propositions 2.1, 2.2 and 2.3 of [1].

Corollary 7.8. On a generic quintic threefold there are 2875 lines.

Proof. By Proposition 7.7, on each of the 50 cones there are 10 lines splitting into 2 lines under
a general deformation. The 375 lines on the intersection points split into 5 lines.

7.3 Using the Abel-Jacobi Map

The following argumentation is taken from §1.5 of [6].

We have seen that the family of lines is parametrized by two isomorphic curves C̃±ϕ. Anca
Mustaţă has shown in [15] that they both have genus 626. A loop γ ∈ H1(C̃±ϕ) determines a
3-cycle T (γ) ∈ Xt which is the union of the lines corresponding to the points of γ. The dual map
H3(Xt)→ H1(C̃±ϕ) has a Hodge component map

α : H1(Ω2
Xt

)→ H0(Ω1
C̃±ϕ

).

The first space can be interpreted as the 101-dimensional space of infinitesimal deformations of
Xt, thought of as the space of degree 5 polynomials P modulo the Jacobian ideal. It is shown
in [4] that zeroes of the holomorphic 1-form α(P) on C̃±ϕ correspond precisely to the lines that
can be infinitesimally lifted over the deformation of Xt determined by P.

Since the curves C̃±ϕ both have genus 626, a differential form has 2 · 626 − 2 = 1250 zeroes.
Hence, 2500 lines in the family can be infinitesimally lifted. Together with the 375 isolated
lines this again gives the number 2875 of lines.
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8 Tropicalization of the Isolated Lines and the van Geemen
Lines

In §5 we found the lines on the Dwork pencil in parametric representation, as well as their
defining equations. In §7 we calculated their number (under a genral deformation) to be 2875.
In this section and the next one we want to use the methods from §2 to tropicalize these lines.

8.1 Tropicalization of the Dwork Pencil

Before we tropicalize the Dwork pencil of quintic threefolds (5.1), let us consider an analogous
lower-dimensional example that can be presented in two dimensions.

Example 8.1. Consider the family of cubic curves in P2 defined by

t(z3
0 + z3

1 + z3
2) + z0z1z2 = 0.

To dehomogenize look at the open subset U0 where z0 , 0. Dividing by z0 we may assume that
z0 = 1, so on U0 the family is defined by t(1 + z3

1 + z3
2) + z1z2 = 0. This polynomial tropicalizes

to
min {1, 3x1 + 1, 3x2 + 1, x1 + x2}

Hence, the tropicalization of the family on U0 is the locus in R2 given by the six parts where

1 = 3x1 + 1 ≤ 3x2 + 1, x1 + x2

1 = 3x2 + 1 ≤ 3x1 + 1, x1 + x2

1 = x1 + x2 ≤ 3x1 + 1, 3x2 + 1

3x1 + 1 = 3x2 + 1 ≤ 1, x1 + x2

3x1 + 1 = x1 + x2 ≤ 1, 3x2 + 1

3x2 + 1 = x1 + x2 ≤ 1, 3x1 + 1

giving

x1 = 0, 0 ≤ x2

x2 = 0, 0 ≤ x1

x2 = 1 − x1, 0 ≤ x1 ≤ 1

x2 = x1, x1 ≤ −1

x2 = 2x1 + 1, 0 ≤ x1 ≤ 1

x2 =
1
2

(x1 − 1), 0 ≤ x1 ≤ 1.
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The tropicalization consists of the boundary of the polytope Conv{(−1,−1), (1, 0), (0, 1)} and
three unbounded parts. It is depicted in Figure 8.1.

x1

x2

Figure 8.1: The tropicalization of a family of cubic curves in R2.

One the tropical stratum where z0 = 0 and z1, z2 , 0 we can take z1 = 1 and the defining
equation becomes

1 + z3
2 = 0.

The tropicalization of this part is the set where

min{0, 3x2}

is not unique, i.e., the set where x2 = 0. This is the point (0, 0, 0) in Trop(P2). Hence, the
tropicalizations on this stratum is just one point. Similarly, one the other one-dimensional strata
we get one point. Figure 8.2 shows the whole tropicalization in TP2.

Figure 8.2: The tropicalization of a family of cubic curves in P2.
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Example 8.2. Repeating Example 8.1 in two dimensions higher we calculate the tropicalization
of the Dwork pencil

t(z5
0 + z5

1 +5
2 +z5

3 + z5
4) + z0z1z2z3z4 = 0 (8.1)

in the tropical torus (T?)4 = R4 to be the boundary of the polytope

Conv{(−1,−1,−1,−1), (1, 0, 0, 0), . . . , (0, 0, 0, 1)}

plus the ten unbounded parts

Ui =
{
x ∈ R4 | xi = 0, x j ≥ 0∀ j , i

}
, i ∈ {1, 2, 3, 4},

Ui j =

x ∈ R4
∣∣∣ xi = x j ≤ 0,

∑
k,i, j

xk ≥ 3xi + 1, xk ≥ xi∀k , i, j

 , i , j ∈ {1, 2, 3, 4}.

x1

x2

x3, x4

Figure 8.3: The tropicalization of the Dwork pencil in the tropical torus R4.

On the toric stratum where z0 = 0 we can set z4 = 1 and tropicalize (8.1) to

min{5x1 + 1, 5x2 + 1, 5x3 + 1, 1}

giving the union of the six parts

{(x1, x2, x3) ∈ R3 | xi = 0, xk ≥ xi}, i ∈ {1, 2, 3}

{(x1, x2, x3) ∈ R3 | xi = x j ≤ 0, xk ≥ xi}, i , j ∈ {1, 2, 3}

and analogously for the other strata. This is shown in Figure 8.4, together with the tropical lines
lying on it. Each of the dots in Figure 8.2 is now a union of six 2-dimensional parts.
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8.2 Tropicalization of the Isolated Lines

Proposition 8.3. The tropicalizations of the isolated lines are given by permutations of

(0, 0, 0, 0,∞) + (0, 1, 0, 1, 0)R̄.

In particular, they lie in a tropical stratum with one coorinate equal to∞.

Proof. Consider the isolated line (u, v,−ζku,−ζ lv, 0) from (5.4). Its defining polynomials (5.15)
clearly form a tropical basis. The line lies in the toric stratum where z4 = 0 so its tropicalization
lies in the stratum of Trop(X) where x4 = ∞. In this stratum we can set z0 = 1 and the defining
equations tropicalize to

min{0, x2}, min{x1, x3}.

This defines the tropical line given by x0 = 0, x2 = 0, x1 = x3, shown in Figure 8.4.

We can also tropicalize from the parametric representation (5.4). Setting ν(z0) = ν(u) = 0,

ν(z1) = ν(v),

ν(z2) = 0,

ν(z3) = ν(v),

ν(z4) = ∞.

All other tropical lines are given by permutations. In each of the 5 tropical strata there are 3
different lines, and for each tropical line there are 25 lines tropicalizing to it.

x1

x2

x3

Figure 8.4: The three tropical lines in the stratum where z4 = 0.
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8.3 Tropicalization of the van Geemen Lines

Proposition 8.4. The tropicalizations of the van Geemen lines are permutations of the tropical
line shown in Figure 8.5, consisting of the vertex (0, 0, 1, 0, 0) ∈ TP4 and the rays

(0, 0, 1, 0, 0) + (0, 1, 0, 0, 0)R̄≥0

(0, 0, 1, 0, 0) + (0, 0, 0, 1, 0)R̄≥0

(0, 0, 1, 0, 0) + (0, 0, 0, 0, 1)R̄≥0

(0, 0, 1, 0, 0) + (1, 0, 1, 0, 0)R̄≥0,

x1

x2

x3, x4

Figure 8.5: The tropicalization of a van Geemen line.

Proof. We have
ν(b) = 2ν(γ) − 1, ν(c) = ν(γ) − 1.

The equation (5.8) for γ tropicalizes to

min{10ν(γ), 5ν(γ), 5}

giving ν(γ) = 0, 1 and thus
(ν(b), ν(c)) ∈ {(−1,−1), (1, 0)}.

Hence, the lines
(u, v, ζ−k−lbu, ζk(cu + ωv),−ζ lω2(cu − v))

have two possible tropicalizations, depending on the choice of γ.

Let us consider the case ν(γ) = 1, i.e., ν(b) = 1, ν(c) = 0.
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Let

g1 = bz0 − ζ
k+lz2,

g2 = cz0 + ζ−kωz3 − ζ
−lz4,

g3 = ωz1 + ζ−kω2z3 + ζ−lz4,

be the polynomials in the defining equations (5.16) and F = {g1, g2, g3}. For z0 = 1, they
tropicalize to

Trop(g1) = min{1, x2},

Trop(g2) = min{0, x3, x4},

Trop(g3) = min{x1, x3, x4}.

The finite intersection ∩ f∈FTrop(V( f )) of tropical hypersurfaces is shown in Figure 8.6.

x1

x2

x3, x4

Figure 8.6: The finite intersection ∩ f∈FTrop(V( f )).

Let w = (0, 0, 1,−1,−1). Then, with ω + ω2 = −1,

g2 + g3 = cz0 + ωz1 − ζ
−kz3 ∈ I

and inw(g2 + g3) = −ζ−kz3. Hence, inw(I) contains the monomial z3.

To get a witness for Cw(I) we have to calculate G≺w(I) for a term order ≺. Take for example the
lexicographic order

zα0 ≺ zβ1, zα1 ≺ zβ2, zα2 ≺ zβ3, ≺ zα3 ≺ zβ4 for all α, β ∈ Nn \ {0}.
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Then

in≺w(g1) = −ζk+lz2,

in≺w(g2) = −ζ−lz4,

in≺w(g3) = ζ−lz4.

and
S ≺w(g2, g3) = g2 + g3 = cz0 + ωz1 − ζ

−kz3.

This is not divisible by any in≺w(gi), so G≺w(I) = {g1, g2, g3, S ≺w(g2, g3)}.

The normal form to z3 with respect to G≺w(I) is

h = ζkcz0 + ζkωz1.

Adding z3 − h to Fwe obtain the tropical basis

T(I) = {g1, g2, g3, z3 − ζ
kcz0 + ζkωz1}.

For z0 = 1, the polynomials in T(I) tropicalize to

min{1, x2}, min{0, x3, x4}, min{x1, x3, x4}, min{x3, 0, x1}.

This gives precisely the line in the proposition.

We can also tropicalize from the parametric representation. The valuations of the coordinates
in (5.7) are

ν(z0) = ν(u),

ν(z1) = ν(v),

ν(z2) = ν(u),

ν(z3) = ν(cu + ωv),

ν(z4) = ν(cu − v).

Dehomogenizing by setting ν(z0) = ν(u) = 0, we get

ν(z1) = ν(v),

ν(z2) = 1,

ν(z3) = ν(c + ωv),

ν(z4) = ν(c − v).

We have three cases, depending on the value of ν(v).
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• If ν(v) < 0 then

ν(z1) = ν(v), ν(z2) = 1, ν(z3) = ν(v), ν(z4) = ν(v).

Note that (0,−1, 0,−1,−1) = (1, 0, 1, 0, 0) ∈ TP4, so this give the fourth ray of the claim.
• If ν(v) > −1 then

ν(z1) = ν(v), ν(z2) = 1, ν(z3) = 0, ν(z4) = 0.

• If ν(v) = 0 then ν(c + ωv) ≥ 0 and ν(c − v) ≥ 0.

ν(z1) = 0, ν(z2) = 1, ν(z3) = ν(c + ωv) ≥ 0, ν(z4) = ν(c − v) ≥ 0.

Moreover, we have ν(c + ωv) = ν((c − v) + (1 + ω)v). Since ν(1 + ω) = 0, by Proposition
2.6, we have ν(c − v) > 0 ⇒ ν(c + ωv) = 0, and vice versa. Hence, this part gives two
rays extending in the directions of x3 and x4.

The second case is similar and gives the same tropical line under the permutation x0 ↔ x2.
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9 Tropicalization of the Parametrizing Curves

In order to tropicalize the lines in the family, we need the valuations of the terms appearing
in their defining equations (5.17), resp. their parametric representations (5.11). To find the
valuations of the parameters σ and τ we will tropicalize the curves C0

t and C0
±ϕ in C2. Then, for

the different cases for ν(σ) and ν(τ), we will calculate the valuations of all terms we need.

9.1 Tropicalization of C0
±ϕ

Proposition 9.1. The tropicalization of the curve C0
t , shown in Figure 9.1, is

Trop(C0
t ) = {(s, t) ∈ T2 | s = 0 ∨ t = 0 ∨ s + t = 0},

where each edge has weight 4.

ν(σ)

ν(τ)

4)

1)

6)3)

5)

2)

Figure 9.1: Trop(C0
t ) together with the labelling used in §9.2.

Proof. Using min{0, x, 2x} = 2min{0, x} and min{x + y, x + z} = x + min{y + z} we get

Trop(F)(s, t) =2
(
min{5/2 + s + t + min{0, s} + min{0, t} + min{0, s + t},

min{0, s} + min{0, t} + min{0, s + t} + min{0, t, s + t} + min{0, s, s + t}
)

=2
(
min{0, s} + min{0, t} + min{0, s + t}

+ min{5/2 + s + t,min{0, t, s + t} + min{0, s, s + t}}
)

=2
(
min{0, s} + min{0, t} + min{0, s + t} + min{0, t, s + t} + min{0, s, s + t}

)
(9.1)

The set of points where Trop(F) is not unique is clearly the set above.
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The exponents of σ and τ in F determine the Newton polytope of F to be

Newt(F) = Conv{(0, 0), (4, 0), (8, 4), (8, 8), (8, 4), (4, 0)}.

Looking at Trop(C0
t ) we see that this is already the Newton subdivision dual to the polyhedral

complex on which Trop(C0
t is supported. Since all edges in this polytope have affine length 4,

the weights of the rays of Trop(C0
t ) are all equal to 4.

By the Fundamental Theorem this gives the possible values for ν(σ) and ν(τ).

Remark 9.2. Note that Trop(C0
t ) = Trop(C0

0). We have

Trop(F) = ”(0 + s)2(0 + t)2(0 + st)2(0 + s + st)2(0 + t + st)2”.

Proposition 9.3. The tropicalizations of the curves C0
±ϕ in C2 are the same as Trop(C0

t ):

Trop(C0
±ϕ) = {(s, t) ∈ T2 | s = 0 ∨ t = 0 ∨ s + t = 0},

but with all edges of weight 2.

Proof. Since the defining equations of C0
+ϕ and C0

−ϕ only differ by a change of sign in one
summand, their tropicalizations are equal. Using min{2x, x + y, 2y} = 2min{x, y} we get

Trop(F+)(s, t) =min{2s + 2t, s + t + min{0, s} + min{0, t} + min{0, s + t},

2min{0, s} + 2min{0, t} + 2min{0, s + t}}

=min{2s + 2t, 2min{0, s} + 2min{0, t} + 2min{0, s + t}}

=2
(
min{0, s} + min{0, t} + min{0, s + t}

)
.

The set where this minimum is not unique is clearly Trop(C0
±ϕ) as above. This time the Newtom

polytope is
Newt(F) = Conv{(0, 0), (2, 0), (4, 2), (4, 4), (4, 2), (2, 0)}.

This shows that each edge has weight 2.

Proposition 9.4. The action of S 5 on C0
±ϕ from Table 5.3 induces an action on Trop(C0

±ϕ). There
is a subgroup 〈(01)(24), (01), (34)〉 = 〈(01)(24), (34)〉 � S 2 × S 3 � D6 of S 5 which acts as the
dihedral group D6 on the rays of Trop(C0

±ϕ). See Figure 9.2 for a picture of this action.

Proof. Consider Table 5.3 and Figure 9.1. The element (01)(24) acts as (σ, τ) 7→ (τ, σ), hence
as the reflection 1 ↔ 6, 2 ↔ 5, 3 ↔ 4 on the rays of Trop(C0

±ϕ), where we used the labelling
as in Figure 9.1. The element (34) acts as 2 ↔ 6, 3 ↔ 5. Together they generate the subgroup
S 2 × S 3 � D6 where S 2 permutes {0, 1} and S 3 permutes {2, 3, 4}.
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As a consequence it suffices to know the tropicalization of a line parametrized by one ray of
Trop(C0

±ϕ). Then the cases for all other rays simply follow by permutation of coordinates.

6

5

4

3

2

1
(34) (01)(24)(01)(243)

Figure 9.2: The tropicalization of a line in the family.

9.2 Valuations of the Terms for the Rays of Trop(C0
±ϕ)

The following table shows the valuations of the terms in (5.11) and (5.17) for the rays of
Trop(C0

±ϕ), with the labelling as in Figure 9.1.

case ν(1 − σ) ν(1 − σ + σ2) ν(1 − τ) ν(1 − τ + τ2) ν(1 − στ) ν(1 − στ + σ2τ2)

1) 0 5 + ν(τ) 0 0 0 0

2) −ν(τ) −2ν(τ) 0 0 0 5 + ν(τ)

3) ν(σ) 2ν(σ) 0 5 − ν(σ) ν(σ) 2ν(σ)

4) 0 5 − ν(τ) ν(τ) 2ν(τ) ν(τ) 2ν(τ)

5) 0 0 −ν(σ) −2ν(σ) 0 5 + ν(σ)

6) 0 0 0 5 + ν(σ) 0 0

case ν(1 − τ(1 + σ) + τ2(1 − σ + σ2)) ν(1 − σ(1 + τ) + σ2(1 − τ + τ2))

1) 0 ν(τ)

2) ν(τ) −2ν(τ)

3) 2ν(σ) ν(σ)

4) ν(τ) 2ν(τ)

5) −2ν(σ) ν(σ)

6) ν(σ) 0

Table 9.1: Valuations of the terms for the different rays of Figure 9.1.

Lemma 9.5. If ν(σ) = 0 and ν(τ) > 0, then ν(1 − τ), ν(1 − τ + τ2), ν(1 − στ), ν(1 − στ + σ2τ2)
and ν(1 − τ(1 + σ) + τ2(1 − σ + σ2)) are all zero.

Proof. This is clear from Definition 2.5 and Proposition 2.6.
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Lemma 9.6. If ν(σ) = 0 and ν(τ) > 0, then ν(1 − σ) = 0 and ν(1 − σ + σ2) = ν(τ) + 5.

Proof. Assume ν(σ) = 0, ν(τ) > 0 and write

σ = σ0 + σ1tα + σ̃

τ = τ0tν(τ) + τ̃

with σ0, σ1, τ0 , 0, ν(σ̃) > α > 0 and ν(τ̃) > ν(τ). Then the t-constant term in F(σ, τ) is

F(σ, τ)0 = −(1 − σ0 + σ2
0)2.

In order to have F(σ, τ) = 0 we must have F(σ, τ)0 = 0, hence

1 − σ0 + σ2
0 = 0.

This implies ν(1 − σ) = 0 and

1 − σ + σ2 = σ1(2σ0 − 1)tα + (higher order terms), (9.2)

showing ν(1 − σ + σ2) > 0. We show that ν(1 − σ + σ2) = 5 + ν(τ).

• Assume α < 5 + ν(τ). If α , ν(τ), then

F(σ, τ)2α = 3σ2
1

implying σ1 = 0. If α = ν(τ), then the coefficients of t2α and t3α in F(σ, τ) are

F(σ, τ)2α = 3σ1(σ1 − τ0),

F(σ, τ)3α =
1
2
σ1(−4i

√
3σ2

1 − 24σ1τ0 + 7(3 + i
√

3)τ2
0),

again implying σ1 = 0. This is a contradiction to σ1 , 0.
• Assume α > 5 + ν(τ). Then the coefficient of t5+2ν(τ) in F(σ, τ) is

F(σ, τ)5+2ν(τ) = 105τ2
0 , 0,

a contradiction to F(σ, τ) = 0.
• Assume α = ν(τ) + 5. Then the lowest t-order term in F(σ, τ) is

F(σ, τ)2ν(τ)+5 = τ0(105τ0 − 3σ1)

implying σ1 = 105/3τ0 , 0. Now by (9.2), ν(1 − σ + σ2) = α = 5 + ν(τ).

This proves ν(1 − σ + σ2) = 5 + ν(τ).
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Lemma 9.7. If ν(σ) = 0 and ν(τ) > 0, then ν(1 − σ(1 + τ) + σ2(1 − τ + τ2)) = ν(τ).

Proof. Write

ν(1 − σ(1 + τ) + σ2(1 − τ + τ2)) = ν((1 − σ + σ2) − τ(σ + σ2) + τ2σ2).

We have ν(τ(σ+σ2)) = ν(τ), which is smaller than ν(τ2σ2) = 2ν(τ) and ν(1−σ+σ2) = ν(τ)+5.
Now the claim follows from Proposition 2.6.

Proposition 9.8. The valuations of the terms appearing in (5.11) and (5.17) are as in Table 9.1.

Proof. For the first row of Table 9.1 this is the content of the last three lemmas. All other rows
follow from Proposition 9.4. For example, according to Table 5.3, we can switch from case 1)
to case 2) by the transformation

C0
±ϕ → C0

±ϕ

(σ, τ) 7→ (σ̃, τ̃) =

(
1
τ
, στ

)
Now for ν(σ̃) = −ν(τ̃) < 0, i.e. ν(σ) = 0, ν(τ) > 0, we get for example

ν(1 − σ̃) = ν(1 −
1
τ

) = ν(−
1
τ

(1 − τ)) = −ν(τ) + ν(1 − τ) = −ν(τ),

ν(1 − σ̃τ̃ + σ̃2τ̃2) = ν(1 − σ + σ2) = 5 + ν(τ).

One could also do similar calculations as in the lemmas, and I did this just to check.

9.3 Valuations of the Terms for the Vertex of Trop(C0
±ϕ)

Consider the vertex ν(σ) = ν(τ) = 0 of Trop(C0
±ϕ). We can write

σ = σ0 + σ1tα + σ̃,

τ = τ0 + τ1tν(1−τ) + τ̃,

with σ0, σ1, τ0, τ1 , 0, 0 < α < ν(σ̃) and 0 < β < ν(τ̃). Then the t-constant term of F(σ, τ) is

F(σ, τ)0 = − (1 − σ0 + σ2
0)(1 − τ0 + τ2

0)(1 − σ0τ0 + σ2
0τ

2
0)

· (1 − τ0(1 + σ0) + τ2
0(1 − σ0 + σ2

0))(1 − σ0(1 + τ0) + σ2
0(1 − τ0 + τ2

0)).
(9.3)

The factors in (9.3) are related by the transformations of (σ, τ) induced by coordinate permu-
tations, as in Table 5.3, so it is enough to consider the factor. The lines parametrized by the
vanishing of the other factors are just given by coordinate transformations.
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The first factor is zero if σ0 = −ω for ω a nontrivial third root of unity. This immediately
implies ν(1 − σ) = 0 and ν(1 − σ + σ2) > 0. The results of this subsection can be summarized
in the following table, giving all possible valuations of the terms in (5.11) in this case.

case ν(1 − σ) ν(1 − σ + σ2) ν(1 − τ) ν(1 − τ + τ2) ν(1 − στ) ν(1 − στ + σ2τ2)

1) 0 λ λ 0 0 5 + λ

2) 0 5 + λ λ 0 0 λ

3) 0 λ 0 5 + λ λ 0

4) 0 5 + λ 0 λ λ 0

5) 0 µ 0 5 − µ 0 0

case ν(1 − τ(1 + σ) + τ2(1 − σ + σ2)) ν(1 − σ(1 + τ) + σ2(1 − τ + τ2))

1) 0 0

2) 0 0

3) 0 0

4) 0 0

5) 0 0

Table 9.2: Possible valuations for the vertex of Figure 9.1. Here λ ∈ (0,∞) and µ ∈ (0, 5).

Lemma 9.9. If ν(1−σ) > 0, then ν(1− τ+ τ2), ν(1−στ), ν(1− τ(1 +σ) + τ2(1−σ+σ2)) and
ν(1 − σ(1 + τ) + σ2(1 − τ + τ2)) are all zero.

Proof. If ν(1 − τ) > 0, then τ0 = 1. The t-constant terms are all nonzero:

1 − τ0 + τ2
0 = 1, 1 − σ0τ0 = 1 + ω,

1 − τ0(1 + σ0) + τ2
0(1 − σ0 + σ2

0) = ω,

1 − σ0(1 + τ0) + σ2
0(1 − τ0 + τ2

0) = ω.

This implies their valuations are zero.

Lemma 9.10. If ν(1−τ) > 0, then either ν(1−σ+σ2) = ν(1−τ) and ν(1−στ+σ2τ2) = 5+ν(1−τ)
or ν(1 − σ + σ2) = 5 + ν(1 − τ) and ν(1 − στ + σ2τ2) = ν(1 − τ).

Proof. If ν(1 − τ) > 0, then τ0 = 1. We show that α = ν(1 − τ) or α = 5 + ν(1 − τ).

• Assume α < ν(1 − τ). Then the lowest t-order term in F(σ, τ) is

F(σ, τ)2α = −3ωσ2
1.

But σ1 , 0 by assumptions, so this contradicts F(σ, τ) = 0.
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• Assume α = ν(1 − τ). Then 2α = α + ν(1 − τ) and the lowest t-order term is

F(σ, τ)2α = −3σ1(τ1 − ωσ1)

This is zero if τ1 = ωσ1 , 0, so α = ν(1 − τ) gives no contradiction.
• Assume ν(1 − τ) < α < 5 + ν(1 − τ). Then the lowest t-order term is

F(σ, τ)α+ν(1−τ) = −3σ1τ1.

But again σ1, τ1 , 0, in contradiction to F(σ, τ) = 0.
• Assume α = 5 + ν(1 − τ). Then the lowest t-order term is

F(σ, τ)α+ν(1−τ) = −τ1(3σ1 − 105ωτ1).

This is zero if σ1 = 105

3 ωτ1, not in contradiction.
• Assume α > 5 + ν(1 − τ). Then the lowest t-order term is

F(σ, τ)5+2ν(1−τ) = 105ωτ2
1.

But since τ1 , 0 this contradicts F(σ, τ) = 0.

Now we have
1 − στ + σ2τ2 = ωτ1tν(1−τ) − σ1tα + (higher order terms)

For ν(1 − σ + σ2) = 5 + ν(τ) we have σ1 = 105

3 ωτ1, hence ν(1 − στ + σ2τ2) = ν(1 − τ). For
ν(1−σ+σ2) = ν(τ) we use the symmetry of F(σ, τ) under the transformation (σ, τ) 7→

(
στ, 1

σ

)
,

corresponding to z2 ↔ x3, to get ν(1 − σ + σ2) = 5 + ν(τ). Note that τ0 = 1, so 1
τ0

= τ0.

Lemma 9.11. If ν(1−τ+τ2) > 0, then ν(1−τ), ν(1−στ+σ2τ2), ν(1−τ(1+σ)+τ2(1−σ+σ2))
and ν(1 − σ(1 + τ) + σ2(1 − τ + τ2)) are all zero.

Proof. If ν(1 − τ + τ2) > 0, then τ0 ∈ {−ω,−ω
2}. The t-constant terms are all nonzero.

For τ0 = −ω,
1 − τ0 = 1 + ω, 1 − σ0τ0 + σ2

0τ
2
0 = −2ω2,

1 − τ0(1 + σ0) + τ2
0(1 − σ0 + σ2

0) = −2ω2,

1 − σ0(1 + τ0) + σ2
0(1 − τ0 + τ2

0) = −2ω2.

For τ0 = −ω2,
1 − τ0 = 1 + ω2, 1 − σ0τ0 + σ2

0 + τ2
0 = 1,

1 − τ0(1 + σ0) + τ2
0(1 − σ0 + σ2

0) = ω2,

1 − σ0(1 + τ0) + σ2
0(1 − τ0 + τ2

0) = ω.

This implies their valuations are zero.
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Lemma 9.12. If ν(1 − τ + τ2) > 0, then ν(1 − τ) = 0 and we have one of the three cases

ν(1 − σ + σ2) = 5 + ν(1 − τ + τ2), ν(1 − στ) = ν(1 − τ + τ2);

ν(1 − τ + τ2) = 5 + ν(1 − σ + σ2), ν(1 − στ) = ν(1 − σ + σ2);

ν(1 − σ + σ2) + ν(1 − τ + τ2) = 5, ν(1 − στ) = 0.

Proof. If ν(1 − τ + τ2) > 0, then τ0 ∈ {−ω,−ω
2}.

Let τ0 = −ω. Then 1 − σ0τ0 = 1 + σ2, hence ν(1 − στ) = 0. We show that α + β = 5.

• Assume α + β > 5. Then the lowest t-order term in F(σ, τ) is

F(σ, τ)0 = −3 · 105ω.

This nonzero in contradiction with F(σ, τ) = 0.
• Assume α + β < 5. Then the lowest t-order term is

F(σ, τ)α+β = −24σ1τ1.

By the assumptions σ1, τ1 , 0, this contradicts F(σ, τ) = 0.
• Assume β = 5 − α. Then α + β = 5 and the lowest t-order term is

F(σ, τ)5 = −24(σ1τ1 − 55ω2).

This is zero if σ1τ1 = 55ω2, not contradicting the assumptions.

Let τ0 = −ω2, then 1 − σ0τ0 = 0, hence ν(1 − στ) > 0. We show that α = 5 + β or β = 5 + α.

• Assume α = β < 5. Then the lowest t-order term in F(σ, τ) is

F(σ, τ)2α = −3σ1τ1.

By the assumptions σ1, τ1 , 0 this contradicts F(σ, τ) = 0.
• Assume β < α < 5 + β. Then the lowest t-order term is

F(σ, τ)α+β = −3σ1τ1.

This again contradicts F(σ, τ) = 0.
• Assume α > 5 + β. Then the lowest t-order term is

F(σ, τ)5+2β = −105ωτ2
1.

By τ1 , 0 this again contradicts F(σ, τ) = 0.

66



• Assume α = 5 + β. Then α + β = 5 + 2β and the lowest t-order term is

F(σ, τ)α+β = −τ1(3σ1 + 105ωτ1).

The solution σ1 = −105

3 ωτ1 does not contradict the assumptions.
• The same arguments show that if β > α, then β = 5 + α.

Moreover,
1 − στ = ω2σ1tα + ωτ1tβ + (higher order terms),

hence ν(1 − στ) = min{α, β}.

Lemma 9.13. If ν(1 − τ) = ν(1 − τ + τ2) = 0, then one of the other factors in (9.3) is also zero.
Hence, this is just a permutation of one of the former cases.

Proof. Assume α > 5. Then the lowest t-order term in F(σ, τ) is

F(σ, τ)5 = 105τ2
0(1 − τ0)2(1 + ωτ0)2.

By assumptions τ0 < {0, 1,−ω,−ω2}, so this is nonzero in contradiction with F(σ, τ) = 0.

Assume α < 5. Then the lowest t-order term in F(σ, τ) is

F(σ, τ)0 = − (1 − 2ω)σ1(1 − τ0 + τ2
0)(1 − σ0τ0 + σ2

0τ
2
0)

· (1 − τ0(1 + σ0) + τ2
0(1 − σ0 + σ2

0))(1 − σ0(1 + τ0) + σ2
0(1 − τ0 + τ2

0)).

with σ0 = −ω. Hence, σ0, τ0 cancel one of the other factors of (9.3).

Proposition 9.14. The first four rows of Table 9.2 are mapped to a row in Table 9.1 under the
reparametrization

(σ, τ) 7→ (σ̃, τ̃) =

(
1 − στ
1 − τ

, 1 − τ
)

corresponding the the coordinate permutation z0 ↔ z2.

Proof. For the first and second row in Table 9.2 we have

ν(σ̃) = ν

(
1 − στ
1 − τ

)
= −λ, ν(τ̃) = ν(1 − τ) = λ.

This gives the second row in Table 9.1. Similarly, for the third and fourth row in Table 9.1 we
have

ν(σ̃) = ν

(
1 − στ
1 − τ

)
= λ, ν(τ̃ = ν(1 − τ) = 0.

giving the sixth row in Table 9.1. Of course, one can also check that all other entries in Table
9.1 are obtained correctly from this procedure.
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10 Tropicalization of the Family of Lines

10.1 The Main Theorem

The main theorem of this section is the following. It gives the possible tropicalizations for the
lines in the family and follows from Propositions 9.4, 9.14, 10.3 and 10.5.

Theorem 10.1. Any tropicalization of a member in the family of lines is given by a permutation
of coordinates from one of the following tropical lines in TP4, shwon in Figure 10.1.

The first one consist of the edge connecting the vectices (0, 0, 1, 0, 0) and (0, λ, 1+λ, 0, 0), where
λ ∈ R, together with the five rays

(0, 0, 1, 0, 0) + (1, 0, 0, 0, 0)R≥0

(0, 0, 1, 0, 0) + (0, 0, 0, 1, 0)R≥0

(0, 0, 1, 0, 0) + (0, 0, 0, 0, 1)R≥0

(0, λ, 1 + λ, 0, 0) + (0, 1, 0, 0, 0)R≥0

(0, λ, 1 + λ, 0, 0) + (0, 0, 1, 0, 0)R≥0.

(10.1)

The second one has one vertex (0, 1, 1 − λ, 0, 0), where λ ∈ [0, 1], and five rays

(0, 1, 1 − λ, 0, 0) + (1, 0, 0, 0, 0)R≥0

(0, 1, 1 − λ, 0, 0) + (0, 1, 0, 0, 0)R≥0

(0, 1, 1 − λ, 0, 0) + (0, 0, 1, 0, 0)R≥0

(0, 1, 1 − λ, 0, 0) + (0, 0, 0, 1, 0)R≥0

(0, 1, 1 − λ, 0, 0) + (0, 0, 0, 0, 1)R≥0.

(10.2)

x1

x2

x3, x4

x1

x2

x3, x4

Figure 10.1: The possible tropicalizations of a line in the family.
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10.2 Tropicalization from the Defining Equations

Proposition 10.2. For ν(σ) = 0, ν(τ) > 0, a tropical basis for the ideal I ⊆ C{{t}}[z0, z1, z2, z3, z4]
generated by the polynomials in the defining equations (5.17) for a line in the family is

T(I) =
{
στ4/5β(σ)α(τ, σ)z0 + τ4/5β(σ)α(σ, τ)z1 + α(σ, τ)α(τ, σ)z2,

σβ(στ)α(τ, σ)z0 + τβ(στ)α(σ, τ)z1 − α(σ, τ)α(τ, σ)z3,

σ4/5β(τ)α(τ, σ)z0 + σ4/5τβ(τ)α(σ, τ)z1 + α(σ, τ)α(τ, σ)z4,

(1 − σ)σ4/5β(τ)β(στ)z0 − σ
4/5β(τ)α(σ, τ)z3 + β(στ)α(σ, τ)z4

}
.

(10.3)

Proof. Let g1, g2, g3, g4 be the polynomials in T(I) as above. Then I = 〈g1, g2, g3〉. This ideal
is homogeneous, so we can apply the construction from the proof of Theorem 2.51. Take F=

{g1, g2, g3}. Using the valuations in the first row of Table 9.1 we tropicalize these polynomials
to

Trop(g1) = min{1 + 2ν(τ) + x0, 1 + ν(τ) + x1, x2},

Trop(g2) = min{ν(τ) + x0, ν(τ) + x1, ν(τ) + x3},

Trop(g3) = min{ν(τ) + x0, ν(τ) + x1, ν(τ) + x4}.

The finite intersection ∪ f∈FTrop(V( f )) in the affine chart z0 = 1 is shown in Figure 10.2. This
is not a tropical variety, since its not a polyhedral complex of pure dimension. Thus F is not a
tropical variety.

x1

x2

x3, x4
x3

x4

Figure 10.2: The finite intersection ∪ f∈FTrop(V( f )) in the affine chart z0 = 0.

For w in the relative interior of a zero- or one-dimensional polyhedron of ∪ f∈FTrop(V( f )),
the initial ideal inw(I) does not contain a monomial. The crucial case is if w is in the two-
dimensional polyhedron of ∪ f∈FTrop(V( f )).
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Let w = (0, 0, 1, 1, 1) ∈ R5. Define

g = β(στ) · g3 − σ
4/5β(τ) · g2 ∈ I.

Then
inw(g) = (1 − σ)σ4/5β(τ)β(στ)z0.

Hence, the ideal inw(I) contains the monomial z0.

To get a witness for Cw(I) we have to calculate G≺w(I) for a term order ≺. Take for example the
lexicographic order

zα0 ≺ zβ1, zα1 ≺ zβ2, zα2 ≺ zβ3, ≺ zα3 ≺ zβ4 for all α, β ∈ Nn \ {0}.

Then

in≺w(g1) = α(σ, τ)α(τ, σ)z2,

in≺w(g2) = τβ(στ)α(σ, τ)z1,

in≺w(g3) = σ4/5τβ(τ)α(σ, τ)z1.

and
S ≺w(g2, g3) = (1 − σ)σ4/5β(τ)β(στ)z0 − σ

4/5β(τ)α(σ, τ)z3 + β(στ)α(σ, τ)z4.

This is not divisible by any inw(gi), so G≺w(I) = {g1, g2, g3, S ≺w(g2, g3)}.

The normal form to z0 with respect to G≺w(I) is

h =
σ4/5β(τ)α(σ, τ)

(1 − σ)σ4/5β(τ)β(στ)
z3 +

β(στ)α(σ, τ)
(1 − σ)σ4/5β(τ)β(στ)

z4.

Adding (1 − σ)σ4/5β(τ)β(στ)(z0 − h) to Fwe obtain T(I) as claimed.

Proposition 10.3. The tropicalization of a line parametrized by σ and τ with ν(σ) = 0 and
ν(τ) > 0 consists of the edge connecting the vertices (0, 0, 1, 0, 0) and (0, ν(τ), 1 + ν(τ), 0, 0)
together with the five rays

(0, 0, 1, 0, 0) + (1, 0, 0, 0, 0)R̄≥0

(0, 0, 1, 0, 0) + (0, 0, 0, 1, 0)R̄≥0

(0, 0, 1, 0, 0) + (0, 0, 0, 0, 1)R̄≥0

(0, ν(τ), 1 + ν(τ), 0, 0) + (0, 0, 1, 0, 0)R̄≥0

(0, ν(τ), 1 + ν(τ), 0, 0) + (0, 1, 0, 0, 0)R̄≥0

This is shown on the left hand side in Figure 10.1.
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Proof. Dehomogenize by setting z0 = 1. Using the valuations for the terms as in Table 9.1, the
polynomials in the tropical basis (10.3) tropicalize to

min{1 + 2ν(τ), 1 + ν(τ) + x1, ν(τ) + x2},

min{ν(τ), ν(τ) + x1, ν(τ) + x3},

min{ν(τ), ν(τ) + x1, ν(τ) + x4},

min{0, x3, x4}.

There are three cases in which the first minimum is achieved at least twice.

1. If x1 = ν(τ), x2 ≥ 1 + ν(τ), then the other minima are not unique only if x3 = x4 = 0. This
gives

x1 = ν(τ), x2 ≥ 1 + ν(τ), x3 = 0, x4 = 0.

2. If x2 = 1 + ν(τ), x1 ≥ ν(τ), by the same arguments

x1 ≥ ν(τ), x2 = 1 + ν(τ), x3 = 0, x4 = 0.

3. The third case is x1 = x2 − 1 ≤ ν(τ). Then we again have three cases.
a) If 0 ≤ x1 ≤ ν(τ), then the second and third minimum are not unique if

0 ≤ x1 ≤ ν(τ), x2 = 1 + x1, x3 = 0, x4 = 0.

b) If x1 ≤ 0, the second and third minimum are not unique if

x1 ≤ 0, x2 = 1 + x1, x3 = x1, x4 = x1.

c) If x1 = 0, we fourth minimum is achieved twice in one of the following cases:

x1 = 0, x2 = 1, x3 ≥ 0, x4 = 0;

x1 = 0, x2 = 1, x3 = 0, x4 ≥ 0.

Each case gives precisely one edge or ray of the tropicalization as claimed.

Proposition 10.4. For the valuations as in the fifth row of Table 9.2, a tropical basis for the
ideal I ⊆ C{{t}}[z0, z1, z2, z3, z4] generated by the polynomials in(5.17) is

T(I) =
{
στ4/5β(σ)α(τ, σ)z0 + τ4/5β(σ)α(σ, τ)z1 + α(σ, τ)α(τ, σ)z2,

σβ(στ)α(τ, σ)z0 + τβ(στ)α(σ, τ)z1 − α(σ, τ)α(τ, σ)z3,

σ4/5β(τ)α(τ, σ)z0 + σ4/5τβ(τ)α(σ, τ)z1 + α(σ, τ)α(τ, σ)z4,

(1 − σ)σ4/5β(τ)β(στ)z0 − σ
4/5β(τ)α(σ, τ)z3 + β(στ)α(σ, τ)z4,

(1 − τ)σβ(σ)β(στ)α(τ, σ)z0 + τ1/5β(σ, τ)α(τ, σ)z2 + β(σ)α(τ, σ)z3
}
.

(10.4)
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Proof. Denote the polynomials in T(I) by g1, g2, g3, g4, g5. Then g1, g2, g3, g4 are the polyno-
mials from (10.3). Note that

g5 =
τ1/5β(στ)
α(σ, τ)

g1 −
β(σ)
α(σ, τ)

g2,

so this is indeed in the ideal I. The argumentation to add this to T(I) is the same as in the proof
of Proposition 10.2. Proposition 10.5 shows that this indeed defines a tropical line.

Proposition 10.5. The tropicalization of a line parametrized by σ and τ as in the fifth row of
Table 9.2 consists of the vertex (0, 1, 1 − λ, 0, 0), where λ ∈ [0, 1], and the five rays

(0, 0, 1, 0, 1 − λ) + (1, 0, 0, 0, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 1, 0, 0, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 0, 1, 0, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 0, 0, 1, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 0, 0, 0, 1)R≥0.

(10.5)

Proof. Dehomogenize by setting z0 = 1. Using the valuations for the terms in the fifth row of
Table 9.2, writing λ = 1

5µ, the polynomials in the tropical basis (10.4) tropicalize to

min{λ, λ + x1, x2},

min{0, x1, x3},

min{1 − λ, 1 − λ + x1, x4},

min{1 − λ, 1 − λ + x3, x4},

min{λ, x2, λ + x3}.

The cases in which all these minima are not unique give the tropicalization as claimed.

10.3 Tropicalizaition from the Parametric Representation

Proposition 10.6. The tropicalization of a line parametrized by σ and τ with ν(σ) = 0 and
ν(τ) > 0 consists of the edge connecting the vertices (0, 1, 0, 0) and (ν(τ), 1 + ν(τ), 0, 0) together
with the five rays

(0, 0, 1, 0, 0) + (1, 0, 0, 0, 0)R̄≥0,

(0, 0, 1, 0, 0) + (0, 0, 0, 1, 0)R̄≥0,

(0, 0, 1, 0, 0) + (0, 0, 0, 0, 1)R̄≥0,

(0, ν(τ), 1 + ν(τ), 0, 0) + (0, 1, 0, 0, 0)R̄≥0,

(0, ν(τ), 1 + ν(τ), 0, 0) + (0, 0, 1, 0, 0)R̄≥0.
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Proof. Using the first row of Table 9.1 we calculate the valuations of the coordinates in (5.11)
to be

ν(z0) = ν(u),

ν(z1) = ν(τ) + ν(v),

ν(z2) = 1 + ν(τ) + ν(σu + v),

ν(z3) = ν(σu + τv),

ν(z4) = ν(u + τv).

We dehomogenize by setting ν(z0) = ν(u) = 0. Then

ν(z1) = ν(τ) + ν(v),

ν(z2) = 1 + ν(τ) + ν(σ + v),

ν(z3) = ν(σ + τv),

ν(z4) = ν(1 + τv).

Now we have five cases for ν(v).

• If ν(v) < −ν(τ) then

ν(z1) = ν(τ) + ν(v), ν(z2) = 1 + ν(τ) + ν(v), ν(z3) = ν(τ) + ν(v), ν(z4) = ν(τ) + ν(v).

Note that (0,−1,−1,−1,−1) = (1, 0, 0, 0, 0) ∈ TP4, so this gives the first ray in the claim.
• If ν(v) = −ν(τ) then ν(1 + τv) ≥ and ν(σ + τv) ≥ 0.

ν(z1) = 0, ν(z2) = 1, ν(z3) = ν(σ + τv) ≥ 0, ν(z4) = ν(1 + τv) ≥ 0.

Moreover, ν(1 + τv) = ν((σ + τv) + (1 − σ)). Since ν(1 − σ) = 0, by Proposition 2.6 we
have ν(σ + τv) = 0⇒ ν(1 + τv) > 0, and vice versa.
• If ν(v) > −ν(τ) and ν(v) < 0 then

ν(z1) = ν(τ) + ν(v), ν(z2) = 1 + ν(τ) + ν(v), ν(z3) = 0, ν(z4) = 0.

• If ν(v) = 0 then ν(σ + v) ≥ 0 and

ν(z1) = ν(τ), ν(z2) = 1 + ν(τ) + ν(σ + v) ≥ 0, ν(z3) = 0, ν(z4) = 0.

• If ν(v) > 0 then

ν(z1) = ν(τ) + ν(v), ν(z2) = 1 + ν(τ), ν(z3) = 0, ν(z4) = 0.

This gives precisely the tropical line as claimed.
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Proposition 10.7. The tropicalization of a line parametrized by σ and τ as in the fifth row of
Table 9.2 consists of the vertex (0, 1, 1 − λ, 0, 0), where λ ∈ [0, 1], and the five rays

(0, 0, 1, 0, 1 − λ) + (1, 0, 0, 0, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 1, 0, 0, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 0, 1, 0, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 0, 0, 1, 0)R≥0

(0, 0, 1, 0, 1 − λ) + (0, 0, 0, 0, 1)R≥0.

(10.6)

Proof. Using the fifth row of Table 9.2, writing λ = 1
5µ, we calculate the valuations of the

coordinates in (5.11) to be

ν(z0) = ν(u),

ν(z1) = ν(v),

ν(z2) = λ + ν(σu + v),

ν(z3) = ν(σu + τv),

ν(z4) = 1 − λ + ν(u + τv).

We dehomogenize by setting ν(z0) = ν(u) = 0. Then

ν(z1) = ν(v),

ν(z2) = λ + ν(σ + v),

ν(z3) = ν(σ + τv),

ν(z4) = 1 − λ + ν(1 + τv).

Now we have three cases for ν(v).

• If ν(v) < 0 then

ν(z1) = ν(v), ν(z2) = λ + ν(v), ν(z3) = ν(v), ν(z4) = 1 − λ + ν(v).

• If ν(v) > 0 then

ν(z1) = ν(v), ν(z2) = λ, ν(z3) = 0, ν(z4) = 1 − λ.

• If ν(v) = 0 then

ν(z1) = 0, ν(z2) = λ + ν(σ + v), ν(z3) = ν(σ + τv), ν(z4) = 1 − λ + ν(1 + τv),

where ν(σ + v), ν(1 + τv), ν(1 + τv) ≥ 0. Moreover, ν(1 + τv) = ν((σ + τv) + (1 − σ)) and

This gives precisely the tropical line as claimed.
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10.4 Lines in the Dual Intersection Complex

Finally, let us look at the parametrized tropical lines associated to the lines we found in §5.
These lie in the affine manifold with singularities given by the dual intersection complex of X.

The central fiber X0 is the union of the five coordinate hyperplanes in P4. Each of these hyper-
planes is isomorphic to P3 and intersects all other hyperplanes in a P2. The dual intersection
complex B of X is the boundary of a 4-dimensional polyhedron with each face affine isomorphic
to a standard 3-simplex. The fan structure at each vertex is given by the fan to P3. This gives
the picture as in Figure 10.3.

The straight lines give the 1-skeleton of one of the 3-faces. The big dashed lines indicate edges
going in the fourth dimension. The small dashed lines give the singular locus on the 2-faces
of that 3-face. The monodromy around these singularities is calculated in [9] and also given in
[11]. The monodromy invariant directions for the singular lines are perpendicular to them. For
the points where they meet, we are monodromy-invariant in all directions of the 2-face.

Figure 10.3: The dual intersection complex of the Dwork pencil of quintic threefolds.

Each isolated line lies in a hyperplane of X0. The parametric representation (u, v,−ζku,−ζ lv, 0)
shows that such a line intersects two codimension 2 strata of its hyperplane. By Definition 3.20,
the vertex of the associated tropical line is a vertex of B, and the line has two edges ending in
the interiors of 2-faces not adjacent to each other. The only singular point in which they can
end in a monodromy invariant direction is the center of the 2-face. This gives the picture as in
Figure 10.4.
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Figure 10.4: The parametrized tropical lines associated to the isolated lines.

Now consider the family of lines. As shown in §6.5, in the case t = 0, the polynomial F from
(5.13) becomes F = F+F− where F+ and F− both have five factors.

A line parametrized by σ, τ such that a factor in one of F+ or F− vanishes lies in a coordinate
hyperplane. The parametric representation (5.11) shows that such a line intersects the four
codimension 1 strata of that hyperplane and does not intersect strata of higher codimension.
Hence, the parametrized tropical line associated to such a line has its vertex at a vertex of B,
and four edges terminating in singular points on the edges of B. This gives a picture as in 10.5.

Figure 10.5: The parametrized tropical lines associated to a line in the family.
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A line parametrized by σ, τ such that a factor of both F+ and F− vanishes lies in the intersection
of two coordinate hyperplanes. Again, the parametric representation (5.11) shows that such a
line intersects the three common codimension 2 strata of its hyperplanes. This gives a picture
as in Figure 10.6.

Figure 10.6: The parametrized tropical lines associated to a line in the family.
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