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1 Finite Matroids

There are at least two reasons why one would want to generalize the notion of a
graph.

(1) Usual benefits of abstraction: Proofs become simpler and more robust.

(2) Duality: Two proofs for the price of one.

The following two theorems of finite graph theory are dual to each other.

A graph is bipartite iff it has no odd cycles.

A graph has an eulerian cycle iff all vertices have even degree.

Implementation 1.1. For a finite set E, a set I is the set of independent sets
of a matroid on E iff

(I1) ∅ ∈ I

(I2) For I ⊆ J ∈ I we have I ∈ I.

(I3) For I1, I2 ∈ I, x ∈ I1 \ I2 such that I2 + x /∈ I, there is y ∈ I2 \ I1 with
I1 − x+ y ∈ I.

A set not in I is dependent.
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Examples 1.2. (1) Given a family (ϕe : e ∈ E) of vectors in some vector
space, let I be independent when (ϕe : e ∈ I) is linearly independent.
(Representable matroids)

(2) If E is the edge set of a graph, take I to be independent if it is the edge set
of some forest in G. (Graphic matroids)

(3) For m ≤ n ∈ N, Um,n, the uniform matroid, has ground set E = [n], and I
independent iff |I| ≤ m.

Exercise 1.3. Which uniform matroids are also graphic?

Definition 1.4. A maximal independent set in a matroid M is called a base,
the set of bases is denoted B(M). A minimal dependent set is called a circuit,
and the set of circuits is denoted C(M).

Lemma 1.5. Any two bases in a finite matroid are the same size.

Proof. Suppose not for a contradiction, and consider as a counter-example
B1, B2 ∈ B(M) such that |B1| > |B2| and |B1 ∩B2| maximal. Pick x ∈ B1 \B2.
Since B2 ∈ B(M) we have B2 + x /∈ I. By (I3) there is y ∈ B2 \ B1 such that
B1 − x + y ∈ I. Now let B3 be a base extending B1 − x + y. We then have
|B3| ≥ |B1| > |B2| but |B3 ∩B2| ≥ |B1 ∩B2|+ 1, a contradiction.

Theorem 1.6. A set B ⊆ PE is the set of bases of some finite matroid M iff B
satisfies

(B1) B is nonempty.

(B2) For B1, B2 ∈ B and x ∈ B1 \ B2 there has to be y ∈ B2 \ B1 with
B1 − x+ y ∈ B.

In these circumstances a set is independent in M iff it is a subset of some base
in B.

Proof. Suppose B is the set of bases in some matroid. (B1) is clear since ∅
extends to some base in the matroid. For (B2) suppose we have B1, B2 ∈ B,
x ∈ B1 \B2. Since B2 is a base we know that B2 + x is not independent in M .
By (I3) there is y ∈ B2 \ B1 such that B1 − x + y ∈ I(M). Let B3 be a base
extending B1 − x+ y. By lemma 1.5 it follows that B1 − x+ y = B3 ∈ B.

For the converse let B satisfy (B1) and (B2), and let I be the set of subsets
of elements of B. It is clear that I satisfies (I1) and (I2). For (I3) let I1, I2 ∈ I,
x ∈ I1 \ I2, such that I2 + x /∈ I. Let B1 ⊇ I1, B2 ⊇ I2 be bases extending I1, I2
such that |B1 ∩ B2| is as large as possible. Then x ∈ B1 \ B2 and B2 + x /∈ I.
So there is some y ∈ B2 \ B1 with B1 − x + y ∈ B. If y ∈ I2 we are done.
So suppose y /∈ I2 for a contradiction. Using (B2) again we get z ∈ B1 \ B2

with B2 − y + z ∈ B with I2 ⊆ B2 − y + z. This contradicts the maximality of
|B1 ∩B2|.

The circuit axioms for a set C of subsets of a finite set E are
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(C1) ∅ /∈ C.

(C2) For C1 ⊆ C2 ∈ C we must have C2 = C1.

(C3) For C1, C2 ∈ C, z ∈ C1 \ C2, x ∈ C1 ∩ C2 there is C ∈ C with z ∈ C ⊆
(C1 ∪ C2)− x.

Lemma 1.7. If C satisfies (C3), then is also satisfies

(C3)∞ Given z ∈ C ∈ C and X ⊆ C − z and for each x ∈ X a Cx ∈ C with
Cx ∩ (X + z) = {x}, there is C ′ ∈ C with z ∈ C ′ ⊆ (C ∪

⋃
x∈X Cx) \X.

Proof. Suppose not and take a counter-examples (C, z,X, (Cx : x ∈ X)) with X
of minimal size. Then X 6= ∅, so pick x0 ∈ X and apply (C3) to C, z, x0 and Cx0

to get C ′ with z ∈ C ′ ⊆ (C ∪ Cx0)− x0. Let X ′ := X ∩ C ′. Applying (C3)∞ to
(C ′, z,X ′, (Cx : x ∈ X ′)) we get the following contradiction

z ∈ C ′′ ⊆ (C ′ ∪
⋃

x∈X′
Cx) \X ′

⊆ (C ∪
⋃
x∈X

Cx) \X.

Theorem 1.8. A set C ⊆ PE is the set of circuits of a matroid M iff it satisfies
the circuit axioms. In such a case a set is independent iff it includes no element
of C.

Proof. First suppose C is the set of circuits of a matroid M . (C1) and (C2) are
clear. For (C3) suppose we have C1, C2 ∈ C, z ∈ C1 \C2, x ∈ C1∩C2. Let I be a
maximal independent subset of C1∪C2−x− z. Suppose for a contradiction that
I+z ∈ I. Then by (I3) applied to I+z, C1−z and z there is y ∈ C1−z \ (I+z)
with I + y = I + z − z + z ∈ I. By maximality of I we have y = x and thus
I + x ∈ I. By (I3) applied to I + x,C2 − x and x there is y′ ∈ C2 − x \ (I + x)
with I + y′ ∈ I. This contradicts the maximality of I. So I + z /∈ I and thus it
contains some minimal dependent set C. We have z ∈ C ⊆ C1 ∪ C2 − x.

Conversely, if C satisfied the circuit axioms let I be the set of sets not including
an element of C. (I1) and (I2) are clear. For (I3) suppose we have I1, I2 ∈ I,
z ∈ I1\I2 with I2+z /∈ I. Let C ∈ C with z ∈ C. Let X := C\I1. If there is some
x ∈ X with I1 − z + x ∈ I we are done. Let us suppose not for a contradiction.
Then for each x ∈ X pick Cx ∈ C with x ∈ Cx ⊆ I1 − z + x. By lemma 1.7 we
can apply (C3)∞ to get a C ′ ∈ C with z ∈ C ′ ⊆ (C ∪

⋃
x∈X Cx) \ X ⊆ I1, a

contradiction.

Definition 1.9. For X ⊆ E the restriction of M to X has as independent sets
those independent sets of M which are subsets of X. A base of X in M is a
base of the restriction of M to X for which we write M |X := M\(E \X). The
rank of X is the size of bases of X.
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Exercise 1.10. If a set C satisfies (C3) then minimal nonempty subsets of C
give the circuits of a matroid.

Exercise 1.11. A function r : PE → Z≥0 is the rank function of a matroid M
on E iff:

(R1) ∀X ⊆ E : r(X) ≤ |X|

(R2) ∀X ⊆ E∀x /∈ X : r(X) ≤ r(X + x) ≤ r(X) + 1

(R3) For X,Y ⊆ E we have r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Definition 1.12. If I is independent but I + x is not, a fundamental circuit CI
x

is a circuit with x ∈ CI
x ⊆ I + x.

Lemma 1.13. In the above context, there is at most one fundamental circuit.

Proof. Suppose for a contradiction that there are two such circuits C and C ′

with C 6= C ′, so there is z ∈ C \ C ′. Since x ∈ C ∩ C ′ there is by (C3) some
C ′′ ∈ C(M) with z ∈ C ′′ ⊆ C ∪ C ′ − x ⊆ I, a contradiction.

Theorem and Definition 1.14. If B is the set of bases of a finite matroid M ,
then the set B∗ of complements in E of elements of B is the set of bases of a
matroid M∗, the dual of M .

Proof. We check the base axioms. (B1) is clear by the fact that B satisfies (B1).
For (B2) suppose we have B1, B2 ∈ B∗ and x ∈ B1 \B2. Let B′1 := E \B1 and

B′2 := E \B2. So x ∈ B′2 \B′1. Now C
B′1
x 6⊆ B′2 since B′2 is independent, so we can

choose y ∈ CB′1
x \B′2. Then B′ := B′1 +x− y is independent by lemma 1.13, so it

is a base because it is the same size as B′1. So letting B := E \B′ = B1 − x+ y,
we have B ∈ B∗.

Definition 1.15. The span SpM (X) of a set X in a matroid M consists of
X together with those x ∈ E \ X such that there is some independent set
I with I ⊆ X and I + x dependent. (Equivalently there is a circuit C with
x ∈ C ⊆ X + x.) We say a set X is spanning iff SpM (X) = E.

Examples 1.16. (1) A set of edges in a connected graph is spanning in the
associated matroid iff it is connected and it meets every vertex of the graph.

(2) If (ϕe : e ∈ E) is a family of vectors in a vector-space, X ⊆ E is spanning iff
〈ϕe : e ∈ X〉 = 〈ϕe : e ∈ E〉.

Lemma 1.17. If X ⊆ E and I is a maximal independent subset of X in M
then SpM (I) = SpM (X).

Proof. Evidently SpM (I) ⊆ SpM (X). Suppose for a contradiction that there
is x ∈ SpM (X) \ SpM (I). Then there is an independent set J ⊆ X with
J + x dependent, but I + x independent. Applying (I3) to I + x and J we get
y ∈ J \ (I + x) with I + y independent, contradicting the maximality of I.
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Lemma 1.18. For A ⊆ B ⊆ E we have SpM (A) ⊆ SpM (B), and for A ⊆ E,
SpM (A) = SpM (SpM (A)).

Proof. The first part is clear. For the second part, let I be a maximal independent
subset of A. Then I is also a maximal independent subset of SpM (A) =
SpM (I), by lemma 1.17. So SpM (A) = SpM (I) = SpM (SpM (A)) again by
lemma 1.17.

Lemma 1.19. A set I ⊆ E is independent in M∗ iff E \ I is spanning in M .

Proof. Equivalently, we just need to show that a set is spanning iff it includes a
base. This is immediate from lemma 1.17.

Note. It is also possible to axiomatise matroids in terms of closure axioms, that
is in terms of the endofunctor Sp: E → E.

Definition 1.20. A cocircuit of a matroid M is a circuit of M∗.

Examples 1.21. (1) A cocircuit in the matroid associated to a graph is a bond,
a minimal nonempty cut.

(2) A cocircuit in the matroid associated to a family of vectors (ϕe : e ∈ E) is
the complement of a hyperplane in 〈ϕe : e ∈ E〉.

Lemma 1.22. No circuit C and cocircuit D of the same matroid M can intersect
in just one element.

Proof. Suppose for a contradiction that C ∩ D = {e}. Let I ⊇ C − e be
a maximal independent subset of E \ D. Then SpM (I) ⊇ (E − D) + e, and
SpM ((E−D)+e) = SpM (E\(D−e)) = E by lemma 1.19. By 1.18, SpM (I) = E,
so I is a base of M . Thus D ⊆ E \ I is independent in M∗, contradicting that
D is a cocircuit.

Lemma 1.23. For any circuit C of M and any distinct elements e, f of C, there
is a cocircuit of M with C ∩D = {e, f}.

Proof. Let I ⊇ C − f be a maximal independent subset of E. So f /∈ I and
C = CI

f . Let D be the fundamental circuit of e in E \ I with respect to M∗.
Then C ∩D ⊆ {e, f}. By lemma 1.22 it follows that {e, f} ⊆ C ∩D.

Definition 1.24. If X is a subset of the set of the ground set E of a matroid
M , and Y = E \X, then the restriction of M to X, denoted M |X or M \ Y , is
a matroid on the set E \ Y = X with independent sets those independent sets
of M which are subset of X. The contraction of M onto X, denoted M.X or
M/Y , is given by (M∗|X)∗.

Examples 1.25. (1) If e is an edge in a graph G, the matroid we get by
contracting e in the matroid corresponding to G is the matroid corresponding
to G/e.
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Lemma 1.26. Let B be a base of a matroid M with ground set E = P ∪̇Q.
Then P ∩B is a base of M\Q iff B ∩Q is a base of M/P .

Proof. By duality, it suffices to prove that if B ∩ Q is a base of M/P then
B ∩ P is a base of M\Q. Suppose for a contradiction that B ∩ Q is a base
but B ∩ P is not. Then B ∩ P is independent, so it cannot be maximal in P .
There is x ∈ P \B such that (P ∩B) + x is independent. Let B′ be a maximal
independent subset of B+x including (B ∩P ) +x. Then B+x ⊆ Sp(B′), so B′

is spanning, so B′ is a base, so B′ is of the form B + x− y for some y ∈ B ∩Q.
Now let B′′ := E \B′ ∈ B(M∗), so B′′ ∩Q ∈ I(M∗), so Q \B′ ∈ I(M∗). But
Q \B 6⊆ Q \B′, so Q \B /∈ B(M∗\P ), so B ∩Q /∈ B((M∗\P )∗) = B(M/P ).

Lemma 1.27. Let M be a matroid on ground set E = P ∪̇Q, BP a base of
M\Q and BQ a base of M/P . Then BP ∪BQ ∈ B(M).

Proof. By duality it is enough to prove that BP ∪ BQ is spanning. But P ⊆
SpM (BP ), so P ∪BQ ⊆ SpM (BP ∪BQ), and P ∪BQ is spanning, so BP ∪BQ

is spanning by lemma 1.19.

Corollary 1.28. Let M be a matroid in E = P ∪̇Q. For BQ ⊆ Q, the following
are equivalent:

(1) BQ is a base of M/P

(2) ∃BP ∈ B(M\Q) such that BP ∪BQ ∈ B(M)

(3) ∀BP ∈ B(M\Q) : BP ∪BQ ∈ B(M)

Corollary 1.29. In the above context, I ⊆ Q, the following are equivalent:

(1) I ∈ I(M/P )

(2) ∃BP ∈ B(M\Q) such that BP ∪ I ∈ I(M)

(3) ∀BP ∈ B(M\Q) : BP ∪ I ∈ I(M).

Corollary 1.30. (M\C1)\C2 = M\(C1 ∪ C2), M/C1)/C2 = M/(C1 ∪ C2), if
C and D are disjoint, then (M/C)\D = (M\D)/C.

Proof. The first two statements are clear. For the third, the independent sets on
both sides are those I for which there is a base B of M\C with B∪I ∈ I(M).

Lemma 1.31. Let C ⊆ E, M a matroid on E, C ∈ C(M/X). Then there is a
circuit C ′ of M with C ⊆ C ′ ⊆ C ∪X.

Proof. Let p ∈ C. Then C − p ∈ I(M/X), so by corollary 1.29 there is a base

B of X with B ∪ (C − p) ∈ I(M). Let C ′ := C
B∪(C−p)
e . Then C ′ ⊆ C ∪ X.

It suffices to show C ⊆ C ′: for any f ∈ C, (C − f) ∪ B is independent in the
original matroid by corollary 1.29, so f ∈ C ′ and thus C ⊆ C ′.

Lemma 1.32. Let M be a matroid on E = P ∪̇Q∪̇{e}. Then precisely one of
the following happens:
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(1) ∃C ∈ C(M) with e ∈ C ⊆ P + e

(2) ∃D ∈ C(M∗) with e ∈ D ⊆ Q+ e

Proof. We can’t have both, as if we did we would have C ∩ D = {e}. Let
M ′ := (M/P )\Q. The ground set of M ′ is {e}. Either {e} is a circuit or else it
is a circuit in M ′. If it is a circuit, then we get the first condition by applying
lemma 1.31. If it is a cocircuit, we get the second condition by applying the dual
of lemma 1.31.

Lemma 1.33. Let C be a circuit of M , and X ⊆ E. Then C \X is a union of
circuits of M/X.

Proof. It is enough to show that for any e ∈ C \X, there is some circuit C ′ of
M/X with e ∈ C ′ ⊆ C \X. But by lemma 1.32 there is such a C ′ unless there is
a cocircuit D of M/X with e ∈ D ⊆ (E \X) \ (C \X) + e. There can’t be such
a cocircuit, because it would be a cocircuit of M and C ∩D = {e}. So there is
such a C ′.

Definition 1.34. A scrawl is a union of circuits in a matroid.

Lemma 1.35. A subset S of E is a scrawl iff it never meets a cocircuit of M in
just one place.

Proof. We apply lemma 1.32 as in the proof of lemma 1.33.

Corollary 1.36. The scrawls of M/P\Q are the sets of the form S \P , for S a
scrawl of M not meeting Q.

1.1 Matroid Union and Intersection

In this section things may not be true in the infinite case.

Definition 1.37. Let B be a base of M and e ∈ B. Then the fundamental
cocircuit DB

e of e with respect to B is the fundamental circuit in M∗ of e with
respect to E \B.

Lemma 1.38. Let B be a base of M , e /∈ B, f ∈ B. Then the following are
equivalent. If any of the following condition is true we write eBf .

(1) B − f + e ∈ B(M)

(2) f ∈ CB
e

(3) e ∈ DB
f

Proof. If B−f+e ∈ B(M) is independent it cannot include CB
e , so f ∈ CB

e . But
for f ∈ CB

e , B − f + e is independent because of the uniqueness of fundamental
circuits. The equivalence of the third condition is dual.
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Lemma 1.39. Let B be a base of M , and (xi /∈ B : i ∈ [n]) and (yi ∈ B : i ∈ [n])
be such that xiByi for each i but xiByj =⇒ i ≥ j. Then

B′ := B − {yi : i ∈ [n]}+ {xi : i ∈ [n]}

is a base of M .

Proof. By duality, it suffices to show B′ is spanning. Let F := SpM (B′). We will
proof by induction: for each i ∈ [n], yi ∈ F . This is true since by the induction
hypothesis CB

xi
− yi ⊆ F . So yi ∈ SpM (CB

xi
− yi) ⊆ SpM (F ) = F . So B ⊆ F

and thus E ⊆ SpM (B) ⊆ SpM (F ) = F . So B′ is spanning.

At some point we will need the following equivalence.

rM∗(X) = rM (E \X) + |X| − rM (E)

⇐⇒ rM (E \X) + |X| − rM∗(X) = rM (E)

Definition 1.40. Let M1 and M2 be matroids on the same ground set E. Let
Bi ∈ B(Mi), i = 1, 2. An exchange chain for B1 and B2 is a sequence of
(zi : k ≤ i ≤ l) such that for all i odd with k ≤ i < l, ziB1zi+1 and for i even
with k ≤ i < l, ziB2zi+1.

Lemma 1.41. In the above context, if there is an exchange chain from x to y
with x ∈ E\(B1∪B2) but y ∈ B1∩B2. Then there are B′1 ∈ B(M1), B′2 ∈ B(M2)
with

B′1 ∪B′2 = B1 ∪B2 + x

Proof. Let (zi : k ≤ i ≤ l) be such an exchange chain of minimal length. For
each odd i with k ≤ i < l, we have ziBizi+1, but for any other odd j with
k ≤ j < l, we have

ziBizj+1 =⇒ i ≥ j

by minimality of the length. So

B′1 := B1 ∪ {zi : i odd, k ≤ i ≤ l} \ {zi+1 : i odd, k ≤ i ≤ l} ∈ B(M1)

by lemma 1.39 and similarly

B′2 := B2 ∪ {zi : i even, k ≤ i < l} \ {zi+1 : i even, k ≤ i < l} ∈ B(M2)

and B′1 ∪B′2 = B1 ∪B2 + x.

Theorem 1.42. Let M1 and M2 be matroids of the same ground set E. Then
the size of any largest set of the form I1 ∪ I2 with Ii ∈ I(Mi), i = 1, 2, is

min
P ∪̇Q

(rM1
(P ) + rP2

(P ) + |Q|)
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Proof. First let I1 ∈ I(M1) and I2 ∈ I(M2), E = P ∪̇Q. Then

|I1 ∪ I2| ≤ |(I1 ∪ I2) ∩ P )|+ |(I1 ∪ I2) ∩Q|
≤ |I1 ∩ P | ∪ |I2 ∩ P |+ |Q|
≤ rM1

(P ) + rM2
(P ) + |Q|.

It remains to show that if I1 ∪ I2 is largest possible, then there is E = P ∪̇Q for
which the above inequalities are equalities. Without loss of generality I1 and I2
are bases of the respective matroids.

We will take Q to be the set of x’s for which there is an exchange chain for
I1 and I2 from x to some y ∈ I1 ∩ I2 and we take P := E \Q. Then

(1) I1 ∩ I2 ∩ P = ∅ by definition

(2) I1 ∩ P spans P in M1 since for any x ∈ I1 \ P we have CB1
x ⊆ P

(3) I2 ∩ P spans P in M2 similarly

(4) I1 ∪ I2 ⊇ Q by lemma lemma 1.41

So

|I1 ∪ I2| = |(I1 ∪ I2) ∩ P |+ |(I1 ∪ I2) ∩Q|
= |I1 ∩ P |+ |I2 ∩ P |+ |Q|
= rM1

(P ) + rM2
(P ) + |Q|.

Theorem and Definition 1.43. Let M1 and M2 be matroids on the same
ground set E. The union M1 ∧M2 of M1 and M2 is the matroid whose indepen-
dent sets are those of the form I1 ∪ I2 with Ii ∈ I(Mi), i = 1, 2.

Proof. Define the function r : PE → Z≥0 by

r(X) := max
X⊇Ii∈I(Mi)

|I1 ∪ I2| = min
X=P ∪̇Q

rM1
(P ) + rM2

(P ) + |Q|

by lemma 1.42 applied to M1|X and M2|X .
The function r satisfies (R1) and (R2) by considering the left-hand side and

r satisfies (R3) by considering the right-hand side of the above expression. So
r is the rank function of some matroid on E. A set I is independent in this
matroid iff r(I) = |I|, and this is equivalent to I = I1 ∪ I2 for some Ii ∈ I(Mi)
by the left-hand side.

Theorem 1.44 (Edmond’s intersection theorem). Let M1 and M2 be matroids
on the same ground set E. Then any largest set I independent in both matroids
has size minE=P ∪̇Q(rM1

(P ) + rM2
(Q)).
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Proof. Let Ii ∈ I(Mi), i = 1, 2, as large as possible and with I1 ∩ I2 = I also
as large as possible. Then I1, I2 are bases of the respective matroids. But then
I1 ∪ (E \ I2) is a base of M1 ∧M∗2 . So by lemma 1.42

|I1 ∩ I2| = |I1 ∪ (E \ I2)| − (|E| − |I2|)
= min

E=P ∪̇Q
(rM1

(P ) + rM∗2 (P ) + |Q| − (|E| − rM2
(E))

= rM1(P ) + rM2(Q).

Theorem 1.45 (Menger’s theorem). Let A,B ⊆ V (G) for some graph G. Then
the size of the largest set of vertex-disjoint paths from A to B is the same as
the size of the smallest A−B-separator.

We will only sketch the proof since we will repeat the proof with more detail
for the infinite case.

Proof. Without loss of generality G is connected and so are G[A] and G[B].
Let M be the matroid associated to G. Let M1 := M/E(G[A])\E(G[B]) and
M2 := M\E(G[A])/E(G[B]). If T is a maximal set independent in both matroids,
then

|T | = |V (G)| − |A| − |B|+ |{A−B-paths in T}|.

Now suppose we have a partition E(G) = P ∪̇Q. Let X be the set of vertices
joined to A by edges in P . Let P ′ := E(G[A]), Q′ := E(G) \ P ′. Then

rkM1
(P ) + rkM2

(Q) ≥ rkM1
(P ′) + rkM1

(P \ P ′) + rkM2
(Q \ P ′)

≥ rkM1
(P ) + rkM2

(P \ P ′) + rkM2
(Q \ P ′)

≥ rkM1
(P ′) + rkM2

(Q′)

= |X| − |A|+ |{ vertices adjacent to an edge of Q′}| − |B|
= |V (G)|+ |{ boundary of X}| − |A| − |B|

with the boundary of X being an A−B-separator.

This document has only been proof-read until here. The rest of the
document probably contains several errors. You have been warned!

2 Basic examples and axioms

From now on matroids are considered to be infinite. Proofs from section 1 still
apply to infinite matroid theory.

(C3)∞ For all z ∈ C ∈ C, X ⊆ C − z, (Cx ∈ C : x ∈ X) s.t. Cx ∩ (X + z) = {z},
there exists C ′ ∈ C with z ∈ C ′ ⊆ (C ∪

⋃
x∈X Cx) \X.
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Definition 2.1. A scrawl-system on a set is a set C of subsets of E closed under
taking unions and satisfying (C3)∞.

Lemma and Definition 2.2. If a set C of subset of E satisfies (C3)∞, then 〈C〉,
the closure of C under taking unions, is a scrawl-system, called the scrawl-system
generated by C.

Proof. Suppose we have C, z,X, (Cx : x ∈ X) as in the setup of (C3)∞. Let
C̄ ∈ C with z ∈ C̄ ⊆ C, let X̄ := X ∩ C̄ and for x ∈ X̄ let C̄x ∈ C with
x ∈ C̄x ⊆ Cx. By (C3)∞ applied to C there is C ′ ∈ C ⊆ 〈C〉 with z ∈ C ′ ⊆
C̄ ∪

⋃
x∈X̄ C̄x \ X̄ ⊆ C ∪

⋃
x∈X Cx \X.

Remark 2.3. If C is a set of finite subset of E satisfying (C3), then is also
satisfies (C3)∞ as in lemma lemma 1.7, so 〈C〉 is a scrawl-system. Scrawl-systems
occurring in this way are called finitary.

Examples 2.4. (1) Un,E is generated by the set of subsets of E of size n+ 1.

(2) If G is a graph, MFC(G) is generated by the edge-sets of the finite cycles in
G, and MFB(G) is generated from the finite cuts in G.

Some potential unions for sets C, D of subsets of E.

(O1) There do not exist C ∈ C and D ∈ D with |C ∩D| = 1.

(O2) For any partition E = P ∪̇{e}∪̇Q, at least one of the following holds

• ∃C ∈ C : e ∈ C ⊆ P + e

• ∃D ∈ D : e ∈ D ⊆ Q+ e

Definition 2.5. For any set C of subsets of E, C∗ := {D ⊆ E : ∀C ∈ C :
|C ∩D| 6= 1}.

Remark 2.6. C and C∗ satisfy (O1).

Theorem 2.7. Let C ⊆ PE. Then the following are equivalent:

(1) C satisfies (C3)∞

(2) C and C∗ satisfy (O2)

(3) ∃D ⊆ PE : C and D satisfy (O1) and (O2)

Proof. It is clear that (2) =⇒ (3).

(1) =⇒ (2) Suppose C satisfies (C3)∞, and E = P ∪̇{e}∪̇Q such that there is no C ∈ C
with e ∈ C ⊆ P + e. We must show ∃D ∈ C∗ with e ∈ D ⊆ Q+ e. We set
D := {f ∈ Q+ e :6 ∃C ∈ C : f ∈ C ⊆ P + f}. By definition e ∈ D ⊆ Q+ e.
So we just have to show that D ∈ C∗. Suppose not for a contradiction.
Then there is C ∈ C with C ∩D = {z}, say.

Let X := (C \ P )− z. Then since X ⊆ (Q+ e) \D, for each x ∈ X there
is Cx ∈ C with x ∈ Cx ⊆ P + x, and Cx ∩ (X + z) = {x}. So we can
apply (C3)∞ to get C ′ ∈ C with z ∈ C ′ ⊆ (C ∪

⋃
x∈X Cx) \X ⊆ P + z,

contradicting z ∈ D.
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(3) =⇒ (1) Suppose C and D satisfy (O1) and (O2). Let C, z,X, (Cx : x ∈ X) as
in the setup of (C3)∞. Let P = (C ∪

⋃
x∈X Cx \ X) − z, e := z and

Q := (E \ P )− e. Suppose for a contradiction that there is D ∈ D with
z ∈ D ⊆ Q+ z. Since C and D satisfy (O1), there is some z 6= x ∈ C ∩D,
so x ∈ X, so D ∩Cx = {x}, contradicting (O1). So by (O2) there is C ∈ C
with z ∈ C ′ ⊆ O + z = C ∪

⋃
x∈X Cx \X.

Example 2.8. Let C be the set of infinite and D the set of cofinite, a set whose
complement is finite, subsets of E. Then C and D satisfy (O1) and (O2), so C
satisfies (C3)∞. We will write U∞,E for 〈C〉.

Lemma 2.9 (König). Let T be an infinite tree in which all vertices have finite
degree. Then T includes a ray.

Definition 2.10. Let G be a graph. Then CAC(G) is the set of edges of finite
cycles and doublerays in G, and DAC(G) is the set of cuts in G of which at least
one side is rayless, called a skew cut.

Remark 2.11. CAC(G) and DAC(G) satisfy (O1).

Lemma 2.12. Let H be the Bean graph as given by figure 2. Then CAC(H)
does not satisfy (C3)∞.

Proof. Take C to be the doubleray of G, and X to be the right side of C. For
each x ∈ X take Cx to be the K3 containing x in H. By applying (C3)∞ we get
a graph which does not contain a cycle or a double ray through z.

Remark 2.13. CAC(G) does not satisfy (C3)∞ if G includes a subdivision of
the Bean graph.

Lemma 2.14. If C does not include a subdivision of the Bean graph, then
CAC(G) and DAC(G) satisfy (O2).

Proof. Let E = P ∪̇{e}∪̇Q. Let e = vw and let K be the subgraph of G with
edge set P . If v and w are in the same component of K, there is some path
joining v and w, which together with e gives a finite cycle whose edge set C
satisfies e ∈ C ⊆ P + e. Otherwise, if the components of K containing v and w
each include a ray, we get a double ray whose edge set C satisfies e ∈ C ⊆ P + e.
Finally, if one of the components (say the one containing u), includes a ray, let
A be the vertex set of the component, and let D be the cut with one side given
by A. Then e ∈ D ⊆ Q+ e and it remains to show that D ∈ DAC(G). Suppose
not for a contradiction. Let R be a ray in G[A], T be a spanning tree of the
component of K containing u, and let T ′ be the subtree of T whose edges lie
on paths from u to R through T . T ′ is infinite and rayless, so by lemma 2.9, it
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has some vertex w of infinite degree. Now we get a subdivision of H, c.f. the
following figure.

Definition 2.15. MAC(G) =< CAC(G) >

Theorem 2.16. Let C and D be sets of subsets of E. The following are
equivalent:

(a) C is a scrawl system and D = C∗.

(b) C and D are closed under taking unions, and they satisfy (O1) and (O2).

Proof.

(a) =⇒ (b) C and D are closed under unions by definiton and satisfy (O1) by definition
and (O2) by theorem 2.7??.

(b) =⇒ (a) C is a scrawl system by theorem 2.7??. D ⊆ C∗ by (O1). Now let D ∈ C∗
and let e ∈ D and P = E \ D, Q := D − e. Since D ∈ C∗, there cannot
be C ∈ C∗ with e ∈ C ⊆ P + e, so by (O2) there is some D′ ∈ D with
e ∈ D′ ⊆ Q+ e = D. So D is a union of elements of D, so D ∈ D.

Definition 2.17. If C is a scrawl system on a set E, then the dual scrawl system
is C∗. If X ⊆ E, Y ⊆ E \ X, then the restriction C|X (or C\Y ) of C to X is
{C ∈ C : C ⊆ X}. The contraction C.X (or C/Y ) of C into X is (C∗|X)∗.

Lemma 2.18. C.X = {C ∩X : C ∈ C}

Proof. C∗|X and {C ∩X|C ∈ C} are both closed under unions and satisfy (O1)
and (O2), so by theorem 2.16?? {C ∩X|C ∈ C} = (C∗|X)∗ = C.X.

Corollary 2.19. C/X/Y = C/(X ∪ Y ), C\X\Y = C \ (X ∪ Y ) and if X and Y
are disjoint then C/X\Y = C/X\Y .

Examples 2.20. (1) Un,E |X = Un,X

Un,E/Y =

{
U0,E\Y if |Y | > n

Un−|Y |,E\Y if |Y | ≤ n

(2) U∞,E |X = U∞,X

U∞,E/Y =

{
U0,E\Y if Y is infinite

U∞,E\Y if Y is finite

Definition 2.22. Let G be a graph and X a set of G. We say two vertices of
G are X-equivalent if they are in the same connected component of X. The
contraction G/X has as vertices equivalence classes of vertices of G under X-
equivalence, the edge set E(G) \ X and e joins the equivalence classes of its
G-endpoints.
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Lemma 2.23.

MFC(G)\X = MFC(G \X),

MFC(G)/X = MFC(G/X),

MFB(G)\X = MFB(G/X),

MFB(G)/X = MFB(G \X),

MAC(G)\X = MAC(G \X).

Proof. All of these are clear except the second. For the second, any finite cycle
in G/X extends using edges in X to a finite cycle of G. Conversely, let C be
a finite cycle in G and let c ∈ C \X. Then C never meets a cut of G/X just
once, so let D be the set of cuts in G/X, we have C ∈ D∗. But CFC(G/X) and
∅ satisfy (O1) and (O2), so D∗ = 〈CFC(G)〉 = MFC(G).

Remark 2.24. Any minor of a finitary scrawl system is finitary.

Definition 2.25. If C is a scrawl-system, then a set I is C-independent iff it
does not include any nonempty elements of C.

Lemma 2.26. The C-independent sets satisfy (I1), (I2) and (I3).

Proof. (I1) and (I2) are clear. For (I3), let I1 and I2 be C-independent and
x ∈ I1 \ I2 with I2 + x C-dependent. Let C ∈ C with x ∈ C ⊆ I2 + x. There
is no C ′ ∈ C with x ∈ C ′ ⊆ I1, so we can apply (O2) to get D ∈ C∗ with
x ∈ D ⊆ (E \ I1) + x. Since C ∩ D 6= {x}, there is x 6= y ∈ C ∩ D. We will
show I1 − x + y is C-independent. Suppose not, then there is a C ′ ∈ C with
y ∈ C ′ ⊆ I1 − x+ y. But then C ′ ∩D = {y}.

Lemma 2.27. Let I be a subset of E, C a scrawl-system on E. Then the
following are equivalent:

(1) I is a maximal C-independent set.

(2) E \ I is a maximal C∗-independent set.

(3) I is C-independent and E \ I is C∗-independent.

Proof.

(1) =⇒ (3) Let I be a maximal C-independent set. Suppose for a contradiction that
there is ∅ 6= D ∈ C∗ with D ∈ E \ I. Let e ∈ D. Since I+ e is C-dependent,
there is C ∈ C with e ∈ C ⊆ I + e. But then C ∩D = e, a contradiction.

(3) =⇒ (1) Let I be C-independent and E \ I be C∗-independent. Suppose for a
contradiction that I is not maximal. Then there is e ∈ E \ I with I + x
C-independent. So there is D ∈ C∗with e ∈ D ⊆ E \ I.

The equivalence of (1) and (2) is dual to the equivalence of (1) and (3).

Definition 2.28. In these circumstances I is a base of C and C is based.
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Remark 2.29. U∞,E is not based if E is infinite.

Implementation 2.30. A matroid is a scrawl-system all of whose minors are
based.

Remark 2.31. Since C is based iff C∗ is, the collection of matroids is closed
under duality and under taking minors.

Exercise 2.32. Let G be a graph not including a subdivision of the Bean graph
C ∈ CAC(G), D a cut of G with at least 1 side connected, then C ∩D is finite.

Lemma 2.33. Let G be as in the exercise above, C ∈ CAC(G), X a connected
rayless subgraph of G. Then the number of pairs (e, x) with e ∈ C \ E(X) and
X an endpoint of e in X is finite and even.

Proof. Without loss of generality, all edges of G are in either E(X) or C, and by
subdividing edges in C \E(X) we can also assume that no edges in C \E(X) have
both endvertices in X. Now let D be the cut induced by (V (X), V (G) \ V (X)).
By Exercise 2.32??, D is finite. The pairs in the statement can be identified with
elements of D. D has even size because each connected component of C ∩X
meets precisely two or none of the edges in D.

Definition 2.34. Let G be a graph. K a set of vertices of G. Then the algebraic
cycles of (G,K) are edge set of:

• finite cycles in G

• finite paths in G with both endpoints in K

• rays in G starting in K

• double rays in G

Lemma 2.35. Let (G,K) be as above, and let C ⊆ E(G) be nonempty and
such that any vertex at which C has degree 1 is in K. Then C includes an
algebraic cycle of (G,K).

Proof. Suppose not. Then let xy = e ∈ C. Since C includes no finite cycles, x
and y are in disjoint components of G \ C. Both of these components are bases,
and one of them, the on containing x say, is rayless and contains no vertex of
K. but then all vertices of the component have degree ≥ 2 in C. So we can
recursively build a ray from x through this component.

Lemma 2.36. Let (G,K) be as above, and let C ⊆ E(G) such that the degree
in C of any vertex not in K is both finite and even. Then C is the disjoint union
of algebraic cycles of (G,K).

Proof. Let F be the set of sets of disjoint algebraic cycles of (G,K) in C ordered
by inclusion. F is nonempty and for any chain in F , the union of that chain
is still in F . So by Zorn’s Lemma F has a maximal element F . Since for any
algebraic cycle C ′ of (G,K) and any vertex v /∈ K, the degree in C ′ of v is zero
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or two, C \
⋃
F satisfies the premise of Lemma 2.35??. So, if it were nonempty,

it would include an algebraic cycle of (G,K), contradicting the maximality of F .
So it is empty, so C = ∪F , which is a union of disjoint algebraic cycles of (G,K)
as required.

Lemma 2.37. Let G be a graph not including a subdivision of the Bean graph.
Let X be a set of edges of G and let K be the set of vertices of G/X that include
a ray of X. Then MAC(G) is generated by the algebraic cycles of (G/X,K).

Proof. Any algebraic cycles of (G,K) can be extended to some C ∈ CAC(G)
using only extra edges from X. Conversely for any C ∈ CAC(G), C \X has finite
even degree at every vertex of G/X not in K, by Lemma 2.33??. So C \X is a
disjoint union of algebraic cycles of (G/X,K) by Lemma 2.36??.

Theorem 2.38. Any finitary scrawl-system is a matroid.

Proof. Since the class of finitary scrawl-systems is closed under taking minors,
it is enough to prove that any finitary scrawl-system 〈C〉 is based. Since any
union of a chain of C-independent sets is C-independent, by Zorn’s Lemma there
is a maximal C-independent set.

Theorem 2.39. Let G be a graph not including a subdivision of the Bean graph.
Then MAC(G) is a matroid.

Proof. By Lemma 2.23?? and 2.37?? it suffices to show there is a maximal
element of the set I of subsets of E(G′) not including an algebraic cycle of
(G′,K) for any graph G′ ad set K of vertices of G′. Let R be a maximal
collection of disjoint rays in G \K which exists by Zorn’s Lemma. Let I be the
union of the edge-sets of the rays in R. Let I ′ be the set of sets in I including I.
Let (Il|l ∈ L) be a chain in I ′, and suppose for a contradiction that ∪l∈LIl /∈ I ′.
Let C be an algebraic cycle included in ∪l∈LIl. By maximality of R, C includes
a finite set P which is neither the edge set of a finite cycle or the edge-set of a
path in G with both endpoints in K ∪ V (E). Each edge of P is in some Il, so
since (Il : l ∈ L) is a chain and P is finite there is some l with P ⊆ Il. But then
Il includes an algebraic cycle of (G,K). So any such chain has an upper bound,
so by Zorn’s Lemma I ′ has a maximal element, which is also a maximal element
of I.

Lemma 2.40. Let I be the set of M -independent subsets of E for some matroid
M . Then I satisfies:

(IM) For any I ⊆ X ⊆ E with I ∈ I, there is a maximal element of
{J ∈ I : I ⊆ J ⊆ X}.

Proof. Take a base B of (M/I)|X . We will show that taking J = I ∪B works.
Suppose for a contradiction that there is a nonempty scrawl C of M with C ⊆ J .
C /∈ I, since I ∈ I, so C \ I is a nonempty scrawl of (M/I)|X with C \ I ⊆ B.
So J ∈ I. Suppose for a contradiction that there is x ∈ X \ J with J + x ∈ P .
Then B + x is not independent in (M/I)|X , so there is a nonempty scrawl C ′ of
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the matroid with C ′ ⊆ B + x. Let C be a scrawl of M with C ′ = C \ I. Then
C ⊆ J + x. So there is no such x, so J is maximal.

Convention 2.41. For n ∈ N we will refer by 1.n∞ to 1.n not restricted to
finite sets. 1.n∞ is usually proved in the same way as 1.n and we will most of
the time omit the proof.

Definition 2.42. An I-matroid on ground set E is a set I of subsets of E,
satisfying (I1), (I2), (I3) and (IM). Elements of I are independent, other subsets
of E are dependent, maximal independent sets are bases and minimal dependent
sets are circuits.

Lemma 2.43. Let B1, B2 be bases of an I-matroid I with B14B2 finite. Then
|B1 \B2| = |B2 \B1|.

Proof. Suppose not for a contradiction, and let B1, B2 be a counter-example with
|B1 \B2| > |B2 \B1| and |B2 \B1| as small as possible. Since |B1 \B2| > 0, there
is x ∈ B1 \B2. So by (I3) there is y ∈ B2 \B1 with B1− x+ y ∈ I. Let B′1 be a
base including B1−x+y which exists by (IM). Then B′1, B2 is a counter-example
with |B′1 \B2| > |B2 \B′1| but |B2 \B′1| < |B2 \B1|, contradicting the minimality
of |B2 \B1|.

(IM) For any I ⊆ X ⊆ E with I ∈ I, the set {J ∈ I : I ⊆ J ⊆ X} has a
maximal element.

I-matroid: I satisfying (I1), (I2), (I3) and (IM).

Theorem. A set B ⊆ PE is the set of bases of an I-matroid I iff it satisfies
(B1), (B2) and

(BM) The set of subsets of sets in B satisfies (IM).

In these circumstances, I is the set of subsets of elements of B.

Proof. We only prove the ’only if’ direction. The ’if’ direction is proved as in
chapter 1, using lemma 2.43?? instead of lemma 1.5??.

For the ’only if’ direction let B satisfy (B1), (B2) and (BM). Let I be the set
of subsets of elements of B. I satisfies (IM) by definition, and it clearly satisfies
(I1) and (I2). For (I3), let I1, I2 ∈ I and x ∈ I1 with I2 + x /∈ I. Chose B1 ∈ B
extending I. By (IM) there is a maximal set J ∈ I with I2 ⊆ J ⊆ B1 ∪ I2. Let
B2 ∈ B with J ⊆ B2. Notice that x ∈ B1 \B2, so by (B2) there is y ∈ B2 \B1

with B1 − x + y ∈ B. Suppose for a contradiction that y /∈ I2. Now apply
(B2) to B2, B1 and y to get z ∈ B1 \ B2 with B3 := B2 − y + z ∈ B, so
B3 ∩ (I2 ∪B1) extends J + z, contradicting the maximality of J . So y ∈ I2 and
I1 − x+ y ⊆ B1 − x+ y, so I1 − x+ y ∈ I.

Lemma 2.44. Any dependent set X of an I-matroid I includes a circuit.
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Proof. Pick a maximal independent set I ⊆ X. Since X is dependent, there is
z ∈ X \I. Let C := {x ∈ I : I−x+z ∈ I}+z ⊆ X. Suppose for a contradiction
that C is independent. By (IM) we can extend C to a maximal independent
subset J of I + z. Since I + z is dependent by the maximality of I, there is
some x ∈ I + z \ J . By the maximality of J , J + x /∈ I. So applying (I3) to
I, J and x we get y ∈ J \ I with I − x+ y ∈ I. But J \ I = {z}, so y = z, so
I − x+ z ∈ I. So x ∈ C ⊆ J . This contradicts the fact that J + x is dependent.
To prove minimality of C note that every set C − x is independent. If x = z,
since C − z ⊆ I, and if x 6= z since C − x ⊆ I + z − x ∈ I. So C is minimal.

Definition 2.45. If X ⊆ E, E the ground set of an I-matroid I, the span
SpI(X) is X ∪ {x /∈ X : ∃I ⊆ X : I ∈ I but I + x /∈ I}.

Lemma. If X ⊆ E and I is a maximal independent subset of X then SpI(I) =
SpI(X).

Lemma 2.46. Let x /∈ X. Then x ∈ SpI(X) iff there is some circuit C with
x ∈ C ⊆ X + x.

Proof. The ’if’ direction follows from the fact that C − x is an independent
subset of X. For the ’only if’ direction, let I be a maximal independent subset
of X. Then x ∈ SpI(I) by lemma 1.16∞??, so I + x /∈ I. So by lemma 2.44??
there is a circuit C with C ⊆ I + x. Since I ∈ I, C 6⊆ I, so x ∈ C.

Lemma. For A ⊆ B ⊆ E, then SpI(A) ⊆ SpI(B), and SpI(A) = SpI(SpI(A)).

Theorem. A set C ⊆ PE is the set of circuits of an I-matroid I iff it satisfies
(C1), (C2) and (C3)∞ and

(CM) The set of 〈C〉-independent sets satisfies (IM).

In these circumstances, I is the set of 〈C〉-independent sets.

Proof. We may use the proof of theorem 1.18?? to prove all but the fact that
the circuits of any I-matroid satisfy (C3)∞. For this, let C, z, X and (Cx :
x ∈ X) as in the setup of (C3)∞. Let P := (C ∪

⋃
x∈X Cx) \ X − z. For

each x ∈ X, we have Cx − x ⊆ P , so x ∈ SpI(P ). So C − z ⊆ SpI(P ), so
z ∈ SpI(SpI(P )) = SpI(P ) by lemma 1.17∞??. By lemma 2.46?? there is a
circuit C ′ with z ∈ C ′ ⊆ P + z = (C ∪

⋃
x∈X Cx) \X.

Remark 2.47. We now get all the results of chapter 1 for I-matroids up to
lemma 1.33∞??, except lemma 1.5. In particular, we get a theory of duality for
these I-matroids, which coincides with the duality of matroids and the same is
true for minors.

Theorem 2.48. A set I is the set of independent sets of some matroid M iff it
is an I-matroid. In these circumstances, M is generated by the circuits of I.
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Proof. The ’only if’ direction is lemma 2.26?? and 2.40??. For the ’if’ direction,
let M be the scrawl-system generated by the circuits of I. By theorem 1.18∞??,
I is the set of independent sets of M . Given disjoint subsets P,Q of E, let I
be a maximal independent subset of P and let J ∈ I with be maximal with
I ⊆ J ⊆ E \Q. Then by corollary 1.25∞??, J is a base of M/P\Q, so M is a
matroid. Every I cocircuit is in M∗ and so by lemma 1.32∞??, M is generated
by the circuits of I.

Definition 2.49. The sets of independent sets, bases, circuits and scrawls of a
matroid M are I(M), B(M), C(M) and S(M) respectively.

Lemma 2.50 (The Characterisation Lemma). Let M be a matroids on a ground
set E, and C,D ⊆ PE. Suppose every circuit of M is a union of elements of
C, and every cocircuit of M is a union of elements of D and that C and D
satisfy (O1). Then C(M) ⊆ C ⊆ S(M), C(M∗) ⊆ D ⊆ S(M∗). In particular, the
circuits of M is the set of minimal nonempty elements of C and S(M) is the set
of unions of elements of C, similarly for the duals.

Proof. By definition, no element of C ever meets a cocircuit of M just once. So
C ⊆ (C(M∗))∗ = S(M). Now let C ∈ C(M), and suppose C /∈ C. Pick C ′ ∈ C
with ∅ 6= C ′ ( C. Let e ∈ C ′. Let P = C ′ − e, Q = E \ C ′. There is no
D ∈ C(M∗) with e ∈ D ⊆ Q+ e since then C ′ ∩D = {e}. So there is a circuit
C ′′ of M with e ∈ C ′′ ⊆ P + e, by (O2) for C(M) and C(M∗). But then C ′′ ⊆ C,
a contradiction. So C ∈ C. That is C(M) ⊆ C. The last sentence is clear.

Dual pairs of matroids asociated to a graph:

• finite cycles and bonds

• algebraic cycles and minimal skew cuts

• ?? and finite bonds

Facts about compact topological sapces:

• Any product of compact spaces is compact.

• A subspace of a compact Hausdorff space is compact iff it is closed.

• Any image of a compact space under a continuous map is compact.

• Any continuous injective map from a compact space to a Hausdorff space
is a homeomorphism onto its image.

Definition 2.51. Let (X,≤) be a partially ordered set. A diagram of topological
spaces on X consists of a topological space Tx for each x ∈ X, and a continuous
map ϕx,y : Tx → Ty whenever y ≤ x in X, such that:

(1) ϕx,x is the identity on Tx

(2) For x ≥ y ≥ z, ϕx,z = ϕy,z ◦ ϕx,y

19



A cone for such a diagram consists of a topological space T and a family of maps
(fx : T → Tx : x ∈ X) of continuous maps such that

for x ≥ y in X fy = ϕx,y ◦ fx

Theorem 2.52. For any such diagram of topological spaces there is a universal
cone (T, (πx : x ∈ X)), that is, one such that for any other cone (T ′, (fx : x ∈ X))
there is a unique continuous map T ′ → gT such that (∀x ∈ X)fx = πx ◦ g.

Proof. Let T be the subspace of
∏

x∈X Tx given by {k ∈
∏

x∈XTx
: (∀x ≥

y in X)ϕx,y(kx) = ky}, with πx given by the projection map. So for any cone
(T ′, (fx : x ∈ X)), there is only one function T ′ → gT with fx = πx ◦g for x ∈ X,
namely l 7→ (fx(l) : x ∈ X). We just have to check that g is continuous. So
take some basic open subset U = {k ∈ T : (∀i ≤ n)kxi ∈ Ui}, and observe that
g−1(U) = ∩i≤nf−1

xi
(Ui), which is open. We call T the limit of this diagram.

Fact 2.53. Any limit of a diagram of compact Hausdorff spaces is compact and
Hausdorff.

Now we fix some connected graph G, and let X be the set of all finite subsets
of G, partially ordered by inclusion. For each x ∈ X, let Gx = G/(E \ x). Each
Gx has a corresponding topological space Tx, whose points are either vertices of
Gx or the interior points of edges of Gx. These are compact and Hausdorff, and
we ahve continuous maps ϕx,y from Tx to Ty when y ⊆ x. Let |G| be the limit
of this diagram: |G| is compact and Hausdorff.

Definition 2.54. Let P be an interior point of an edge of G, then JpK ∈ |G| is
given by

JpKx =

{
p e ∈ x
the component of G \ x containing e otherwise

Lemma 2.55. If k ∈ |G| such that for some x ∈ X kx is an interior point p of
an edge of Gx, then k = JpK.

Proof. For any x′ ∈ X with x ≤ x′ then ϕx′,x(kx′) = kx, so kx′ = p. So for any
y ∈ X, ky = ϕx∪y,y(kx∪y) = ϕx∪y,y(p) = JpKy.

Remark 2.56. If p, q are interior points of edges of G with JpK = JqK, then
p = q.

Definition 2.57. If v is a vertex of G, JvK ∈ |G| is given by

JvK = the component of G− x containing v.

Lemma 2.58. Let k be a point of |G| and x ∈ X such that kx is a finite
component of G− x. Then either k is of the form JpK for p an interior point of
an edge of kx, or of the form JvK for v a vertex of kx.
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Proof. Let y be the set of edges of kx. Let x′ := x∪ y. If kx′ is an interior point
of an edge of kx, we apply lemma 2.55. Otherwise, kx′ = {v} for some vertex
v of kx. For any x′′ ≥ x′ in X, ϕx′′,x′(kx′′) = {v}, so kx′′ = {v}. So for any
y′ ∈ X, we have ky′ = ϕx′∪y′,y′(kx′∪y′) = ϕx′∪y′,y′({v}) = JvKy, so k = JvK.

Remark 2.59. If v, w are vertices of G, JvK = JwK iff there is no finite set of
edges separating v from w in G.

Example 2.60. Let G be the graph as in figure ??, called the ladder.
For each x, G− x has precisely one infinite component, so there is precisely

one point of |G| not of the form JpK or JvK. The space |G| is given by the following
figure with its topologicy as a subspace of the plane.

Definition 2.61. A graph G is finitely separable iff and two vertices of it can
be separated by removing finitely many edges. For any G, the finitely separable
quotient F sep(G) of G is obtained from G by identifying any pair of vertices
that cannot be finitely separated.

Remark 2.62. A set of edges of G is a finite cut of G iff it is a finite cut of
F sep(G). We assume from now on that G is finitely separable.

Lemma 2.63. Let G be a graph, A,B sets of vertices of G. Then there are
infinitely many vertex-disjoint A−B-paths iff A and B cannot be separated by
removing finitely many vertices.

Proof. The ’only if’ direction is clear. For the ’if’ direction, by Zorn’s lemma
there is a maximal collection of disjoint A−B-paths, whose vertices separate A
from B, so which must be infinite.

Lemma 2.64. Let G be a graph, A,B disjoint sets of vertices of G. Then there
are infinitely many edge-disjoint A−B-paths iff A and B cannot be separated
by removing finitely many edges.

Definition 2.65. Let R be a ray in G. Then JRK ∈ |G| is given by taking JRKx
to be the unique component of G−x which contains a tail, an infinite component,
of R.
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