Infinite matroid theory exercise sheet 3

- 1. Deduce from the matroid intersection theorem that for any two matroids M_1 and M_2 on a common ground set E there is a partition of E into E_1 and E_2 and there is a base I_1 of $M_1 \upharpoonright_{E_1}$, and a base I_2 of $M_2 \upharpoonright_{E_2}$ such that $I_1 \cup I_2$ is independent in both M_1 and M_2 .
- 2. Deduce König's and Rado's theorem from the matroid intersection theorem.
- 3. (a) Deduce the tree covering theorem for graphs from the matroid union theorem.
 - (b) Deduce the tree packing theorem for graphs from the matroid union theorem.
- 4. Let M be a matroid with two bases B_1 and B_2 . Prove that there is a bijection $\alpha : B_1 \to B_2$ such that $B_1 x + \alpha(x)$ is a base of M.
- 5.** Is it true that for any matroid M and any two of its bases B_1 and B_2 there is some bijection $\alpha: B_1 \to B_2$ such that both $B_1 x + \alpha(x)$ and $B_2 \alpha(x) + x$ are bases of M?

Reminder: Some theorems from graph theory

Theorem 0.1 (König). In any finite bipartite graph, there is a matching together with a set of vertices one from each edge of the matching such that every edge is incident with one of these vertices.

Theorem 0.2 (Packing theorem: Nash-Williams, Tutte). A finite multigraph has k edge-disjoint spanning trees if and only if every partition P of its vertex set has at least k(|P|-1) crossing edges.

Here a *crossing edge* is one with endvertices in different partition classes.

Theorem 0.3 (Covering theorem: Nash-Williams). A finite multigraph G = (V, E) can be partitioned into at most k forests if and only if $e(U) \le k(|U| - 1)$ for every nonempty set $U \subseteq V$.

Here e(U) denotes the number of edges with both endvertices in U.

Theorem 0.4 (Rado). Let G be a bipartite graph with bipartition (A, B) and let M be a matroid with ground set B, and let r_M denote the rank function of M. Then the whole of A can be matched into B such that the set of endvertices of the matching edges in B is M-independent if and only if, for all $K \subseteq A$,

$$r_M\left(\bigcup_{j\in K} N(j)\right) \ge |K|$$

Here N(j) denotes the set of neighbours of j.

Hints

Concerning question 4: Use Hall's marriage theorem.