
A semi-implicit SPH scheme for the shallow water
equations

Adeleke O. Bankole, Armin Iske
Dept. of Mathematics

University of Hamburg (UHH)
Hamburg, Germany

adeleke.bankole@math.uni-hamburg.de
armin.iske@uni-hamburg.de

Thomas Rung
Institute of Fluid Dynamics and Ship Theory
Hamburg University of Technology (TUHH)

Hamburg, Germany
thomas.rung@tuhh.de

Michael Dumbser
Dept. of Civil and Environ. Engrg.

University of Trento
Trento, Italy

michael.dumbser@unitn.it

Abstract—This work focuses on the development of a new semi-
implicit SPH scheme for the shallow water equations, following
the semi-implicit finite volume and finite difference approach
of Casulli [1]. In standard explicit numerical methods, there is
often a severe limitation on the time step due to the stability
restriction imposed by the CFL condition. This paper proposes, a
new semi-implicit SPH scheme, which leads to an unconditionally
stable method. To this end, the discrete momentum equation
is substituted into the discrete continuity equation to obtain a
symmetric positive definite linear system for the free surface
elevation. The resulting system can easily be solved by a matrix-
free conjugate gradient method. Once the new free surface
location is known, the velocity at the new time level can directly be
computed and the particle positions can subsequently be updated.
A simple and yet non-trivial 1D test problem for the 1D shallow
water equation is presented.

I. I NTRODUCTION

This paper proposes a novel semi-implicit SPH scheme
applied to the shallow water equations. We consider one-
dimensional inviscid hydrostatic free surface flows. These
flows are governed by theshallow water equationswhich we
can derive from the three dimensional Navier-Stokes equations
with the assumption of a hydrostatic pressure distribution(see
[3], [11]).

A considerable amount of work has been done for both
structured and unstructured meshes using finite difference,
finite volume and finite element schemes ( [3], [11], [17], [18],
[19]). A major problem of explicit schemes in numerical meth-
ods is their severe time step restriction, where the Courant-
Friedrichs-Lewy (CFL) condition imposes the time step sizein
terms of the wave propagation speed and the mesh size. Hence,
the major advantage of a semi-implicit approach is that stable
schemes are obtained which allow large time step sizes at a
reasonable computational cost. In a staggered mesh approach
for finite differences and volumes, discrete variables are often
defined at different (staggered) locations. The pressure term,
which is the free surface elevation is defined in the cell
center while the velocity components are defined at the cell
interfaces. In the momentum equation, pressure terms are due
to the gradients in the free surface elevations and the velocity
in the mass equation (i.e., free surface equation) are both

discretized implicitly whereas the nonlinear convective terms
are discretized explicitly. The semi-Lagrangian method isone
of the techniques to discretize these terms explicitly (see[12],
[13], [14]).

In this paper a new semi-implicitSmoothed Particle Hy-
drodynamics(SPH) scheme for the numerical solution of
the shallow water equations is proposed and derived. The
flow variables in this present study are the particle free
surface elevation, particle total water depth and the particle
velocity. The discrete momentum equations are substituted
into the discretized mass conservation equation to give a
discrete equation for the free surface leading to a system
in only one single scalar quantity, the free surface elevation
location. The system is solved for each time step as a linear
algebraic system. The components of the momentum equation
at the new time level can be directly computed from the new
free surface. This can be conveniently solved by a matrix-
free version of the conjugate gradient (CG) algorithm [4].
Consequently, the particle velocities at the new time levelare
computed and the particle positions are updated. In this semi-
implicit SPH method, the stability is independent of the wave
celerity. Hence, a relatively large time steps can be permitted
to enhance the numerical efficiency [3].

The remainder of this paper is structured as follows: In
section II, the numerical models for the one-dimensional
shallow water equations and models used for the particle
approximations are presented. In section III, the key ideas
of the proposed semi-implicit SPH scheme are presented and
derived. One dimensional numerical results to validate the
scheme are presented in section IV. Section V presents the
concluding remarks and an outlook to future research.

II. N UMERICAL MODEL

This section details the computational models and their
accompanying particle approximations. Vectors are definedby
reference to Cartesian coordinates. The latin subscript isused
to identify particle locations, where subscriptsi denotes the
focal particle whereas the subscriptj denotes the neighbor of
particlei. Einstein’s summation will be employed for repeated
superscripts.
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Fig. 1. Flow Domain

A. The Kernel Function

We shall use a regular functionW which is a positive non-
increasing, axially symmetric shaped function with compact
support of the generic form

W (r, h) =
1

hd
W

(‖r‖
h

)

. (1)

In the specific, the classical B-spline kernel function of degree
3 is used in this study given as

W (r, h) = Wij = K×
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where the normalisation coefficientK takes the value23 , 10

7π , 1
π

according to the dimension of the space for(d = 1, 2, or 3),
respectively. We note that in the functionW ∈ W 3,∞(Rd),
h is the so called smoothing length which is related to the
particle spacing∆P by the relationh = 2∆P for constant
h. The smoothing lengthh can vary locally according to the
relations:

hij =
1

2
[hi + hj ] where hi = σ d

√

mj

ρj
. (3)

In this study, the smoothing length relation in (3) is used,σ is
taken to be2 which ensures approximately a constant number
of neighbors in the compact support of each kernel. A popular
and efficient approach based on the Shepard interpolation
technique [2]

W ′

ij =
Wij

∑N
j=1

mj

ρj
Wij

is used for the kernel function normalisation, especially useful
for particles close to free surfaces, this technique remedies
problems such as numerical instabilities, partition of unity
which affect the convergence of this method.

The gradient of the kernel function is corrected using the
formulation proposed by Belytschko et al. [15]. Hereafter by
notation, the kernel functionW ′

ij and its gradient∇W ′

ij will
be taken asWij and∇Wij , respectively.

B. Governing Equations

The governing equations considered in this paper can be
written as nonlinear hyperbolic conservation law of the form

Lb(Φ) +∇ · (F (Φ, x, t)) = 0, t ∈ R
+,Φ ∈ R, (4)

together with the initial condition

Φ(x, 0) = Φ0(x), x ∈ Ω ⊂ R
d,Φ0 ∈ R, (5)

whereLb is the transport operator given by

Lb(Φ) =
∂Φ

∂t
+∇ · ((bΦ))

and

x = (x1, ..., xd), F = (F 1, ..., F d), b = (b1, ..., bd),

whereb is a regular vector field inRd, F is a flux vector in
R

d andx is the position.
Fig. 1 shows the flow domain in the present study. In this

configuration, the vertical variation is much smaller when
compared to the horizontal variation, typical of rivers flowing
over long kilometers. We consider the frictionless, inviscid
shallow water equations in Lagrangian derivatives given as

Dη

Dt
+∇ · (Hv) = 0, (6)

Dv

Dt
+ g∇η = 0, (7)

Dr

Dt
= v, (8)

whereη = η(x, t) denotes the free surface location, and
H = H(x, t) denotes the total water depth which is given as

H(x, t) = h(x) + η(x, t), (9)

where h(x) denotes the bottom bathymetry,v = v(x, t)
denotes the particle velocity,r = r(x, t) denotes the particle
position, andg denotes the constant of gravity acceleration.

C. Hydrostatic Approximation

In geophysical flows the vertical acceleration is often small
when compared to the gravitational acceleration and to the
pressure gradient in the vertical direction as in the case of
our flow domain in Fig 1. For instance, if we consider tidal
flows in the ocean the velocity in the horizontal direction isof
the order of1m/s, while the velocity in the vertical direction
is much smaller of the order of one meter per tidal cycle
i.e., 10−5m/s [16]. To this end, if the advective and viscous
terms are neglected in the vertical momemtum equation of
the Navier-Stokes equation, we have the equation for pressure
which reads

dp

dz
= −g. (10)

The pressure represents a normalised pressure, that is we mean
the pressure is divided by constant density. The solution that
satisfies (10) is given by the hydrostatic pressure

p(x, y, z, t) = p0(x, y, t) + g[η(x, y, t)− z],

wherep0(x, y, t) marks the atmospheric pressure at the free
surface which without loss of generality is taken as a constant.
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III. N UMERICAL METHOD

There are several numerical methods that can be employed
to solve equations (6) - (7). These methods can be finite
differences or finite elements, explicit or implicit, conserva-
tive or non-conservative or meshless method. In this section,
following the semi-implicit finite volume and finite difference
approach of Casulli [1], we will delve into the derivation of
the semi-implicit SPH scheme applied to the one dimensional
shallow water equations.

In standard explicit numerical methods, there is the severe
limitation due to the stability restriction imposed by the CFL
condition. The restriction requires a much smaller time step
size than permitted by accuracy considerations. Fully implicit
discretization often leads to unconditionally stable methods
that leads to the solution of simultaneous solution of large
number of coupled nonlinear equations. For accuracy, the time
step cannot be chosen arbitrary large. To this effect, a sta-
ble, efficient, robust and simple semi-implicit SPH numerical
method is derived in this section.

A. Classical SPH formulation

The standard SPH formulation discretizes the computational
domainΩ(t) by a finite set ofN particles, with positionsri.
According to Gingold and Monaghan [8], the SPH discretiza-
tion of the shallow water equations (6) - (7) reads:

ηn+1
i − ηni

∆t
+

N
∑

j=1

mj

ρj
Hijvj∇Wij = 0, (11)

vn+1
i − vni

∆t
+ g

N
∑

j=1

mj

ρj
ηj∇Wij = 0, (12)

Dri
Dt

= vi, (13)

and the particles are moved by (13), where∆t is the time step,
mj denotes the particle mass,ρj denotes the particle density,
and∇Wij is the gradient of the interpolation kernelWij with
respect toxi. In this Gingold and Monaghan [8] schemevx,
ηx are explicitly computed.

The gradient formulation used in (11) - (12) follows by
substituting the flow variable with corresponding derivatives,
using integration by parts, the divergence theorem and some
trivial transformations.

B. SPH formulation of Vila and Ben Moussa

Towards the derivation of our semi-implicit SPH scheme,
the SPH formalism of Vila and ben Moussa ( [5], [7]) is
used. The basic idea in Vila and Ben Moussa in the scheme
comprises of replacing a centered approximation

(F (vi, xi, t) + F (vj , xj , t)) · nij

of (4) by a numerical flux of finite difference scheme in
conservation form2G(nij , vi, vj) which should satisfy

G(n(x), v, v) = F (v, x, t) · n(x)

G(n, v, u) = −G(−n, u, v)

With this formalism, the SPH discretization reads

ηn+1
i − ηni

∆t
+

N
∑

j=1

mj

ρj
2Hijvij∇Wij = 0, (14)

vn+1
i − vni

∆t
+ g

N
∑

j=1

mj

ρj
2ηij∇Wij = 0, (15)

Dri
Dt

= vi, (16)

In this formalism, in Fig. 2, for a pair of particlei and j,
we define the free surface elevationηi, ηj and velocityvi,
vj at each particlei and j respectively. In our approach, we
artificially define a staggered like velocityvij between two
interacting particlesi andj as

vij =
1

2
(vi + vj) (17)

in the normal directionnij at the midpoint of the two
interacting particles, wherenij is a vector given as

nij =
xj − xi

‖xj − xi‖
where we writeδij = ‖xj − xi‖ which denotes the distance
between pair of particlesi andj. Since, we know the value of
the velocities at the midpoint of the particles, we use kernel
summation to update the velocity at the next location.

ηi vi

ηj vj

nij

vnij

Fig. 2. Staggered velocity defined at the midpoint of two pairof interacting
particlesi and j

C. Semi-implicit SPH Scheme

To start with, the derivation of the semi-implicit SPH
scheme let us consider some characteristic analysis of the
governing equations (6) - (7). Writing equations (6) - (7) ina
non conservative quasi-linear form by expanding derivatives in
the continuity equation and momentum equations (assuming
smooth solutions) we obtain

vt + vvx + gηx = 0, (18)

ηt + vηx +Hvx = 0, (19)

Writing (18) - (19) in matrix form we obtain

Qt + AQx = 0 (20)



9th international SPHERIC workshop Paris, France, June, 03-05 2014

where

Q =

(

v
η

)

, A =

(

v g
H v

)

Equation (20) is a strictly hyperbolic system with eigenvalues
been real and distinct. The characteristic equation is given by

det(A − λI) = 0 (21)

after solving (21), the solution yields

λ1,2 = v ±
√

gH

When the particle velocityv is far smaller than the particle
celerity

√
gH i.e |v| ≪ √

gH, the particle flow is said to be
strictly subcritical and thus the characteristic speedsλ1 andλ2

have opposite directions. The maximum wave speed is given
as

λmax = max(
√

gHi,
√

gHj).

In this case,
√
gH represents the dominant term which origi-

nates from the off diagonal termsg andH in the matrixA.
Tracking back where the terms

√
gH originates from in

the governing equations. These are the coefficients of the
derivative of the free surface elevationηx in the momentum
equation (18), and the coefficient of the derivative of the
velocity vx in the volume conservation (19). Since, we do
not want the stability of this method to be dependent on
the celerity

√
gH , we discretize the derivativesηx and vx

implicitly.
Following the characteristic analysis presented above, we

want to derive the semi-implicit SPH scheme for the one
dimensional shallow water equation. The derivative of the free
surface elevationηx in the momentum equation and the deriva-
tive of the velocity in the continuity equation are discretized
implicitly. The remaining terms such as the nonlinear advective
terms in the momentum equation are discretized explicitly so
that the system to be solved eventually will be linear.

Let us consider the continuity equation in the original
conservative form given as

ηt + (Hv)x = 0 (22)

v will be discretized implicitly,H the total water depth is
discretized explicitly, for the sake of notation by implicitly and
explicitly we meann+1 andn in the superscript respectively:

vnt + gηn+1
x = 0 (23)

ηnt + (Hnvn+1)x = 0 (24)

The general semi-implicit SPH discretization of (23) - (24)
assumes the form

vn+1
ij = Fvnij − g

∆t

δij
(ηn+1

j − ηn+1
i ) (25)

ηn+1
i = ηni −∆t

N
∑

j=1

mj

ρj
(2Hn

ijv
n+1
ij )∇Wij (26)

where
Hn

ij = max(0, hn
ij + ηni , h

n
ij + ηnj ) (27)

In this formulation, the explicit, nonlinear finite difference
operatorFvnij in (25) takes the form

Fvnij =
1

2
(vi + vj) (28)

wherevi and vj denotes the velocity of particlei and j at
time tn. The new velocity is computed through simple kernel
summation:

vn+1
i = vni +

N
∑

j=1

2
mj

ρj
(vn+1

ij − vni )Wij (29)

We should note that in (25) we have not used the gradient
of the kernel function for the discretization ofηx rather we
used a finite difference discretization for the pressure gradient
this is because this is more accurate, in (25)F corresponds to
an explicit spatial discretization of the advective terms.Since
SPH is a Lagrangian scheme, the nonlinear convective term
is discretized automatically, using the Lagrangian (material)
derivative contained in the particle motion in Eqn. (13).
Relation (28) is used to interpolate the particle velocities from
the particle location to the staggered velocity location.

D. The Free Surface Equation

From the approach of Vila and Ben Moussa ( [5], [7]).
Let the particle volumeωi in (26) be given asωi = mi

ρi
.

Irrespective of the form imposed onF , equations (25) - (26)
constitute a linear system of equations with unknownsvn+1

i

andηn+1
i over the entire particle configuration. We solve this

system at each time step for the particle variables from the pre-
scribed initial and boundary conditions. The cardinal feature
of this present numerical method from the computational point
of view is that the discrete momentum equation is substituted
in the discrete continuity equation. The model is reduced into
a smaller model inηn+1

i as the only unknowns.
Multiplying (26) byωi and inserting (25) into (26) we obtain

ωiη
n+1
i −g

∆t2

δij

N
∑

i=1

N
∑

j=1

2ωiωj

[

Hn
ij(η

n+1
j − ηn+1

i )∇Wij

]

= bni

(30)
where the right hand sidebni represents the known values at
time level tn given as

bni = ωiη
n
i − ∆t

δij

N
∑

i=1

N
∑

j=1

2ωiωjH
n
ijFvnij∇Wij (31)

SinceHn
ij , ωi, ωj are non-negative numbers, equations (30)

- (31) constitute a linear system ofN equations forηn+1
i

unknowns.
The resulting system is symmetric and positive definite

(SPD). Because of the SPD property, this system admits
a unique solution which can be efficiently obtained by an
iterative method. We obtain the new free surface location by
(30), equation (25) gives readily and uniquely the new particle
velocity vn+1

i .
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IV. N UMERICAL EXAMPLES

In this section, the semi-implicit SPH scheme that has been
derived in Section III will be validated on the one dimensional
shallow water equation test problems. In this section, two
numerical examples will be validated namely: smooth solution
and discontinuous solution. In the subsequent test problems,
the acceleration due to gravity constantg is set tog = 9.81.
In the numerical examples presented, we wish to mention that
the particles are not moved.

A. Smooth Surface Wave Propagation

In this example, we consider a smooth free surface wave
propagation. We consider the following initial value problem
with in the domainΩ = [−1, 1] with the data

η(x, 0) = 1 +
1

2
e−

1

2
(x2/σ2),

v(x, 0) = h(x, 0) = 0,

with flat bottom, whereσ = 0.1. The computational domain
Ω is discretized with200 particles. The final timet = 0.15
is used and the time step is chosen to be∆t = 0.01. The
numerical solution is given in Fig. 3. The upper profile in
Fig. 3 depicts the free surface elevation with a flat bottom
bathymetry and the lower profile depicts the particle velocity.
We compare our solution with a reference solution obtained
by solving the one-dimensional shallow water equation with
the finite difference mesh based approach of Casulli on a
fine mesh of10, 000 points. The comparison between our
numerical results obtained with semi-implicit SPH scheme and
the reference solution is shown. A good agreement between
the two solutions is observed in the figure. We attribute the
difference in the plot to the low order accurate time integration
scheme used.
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Fig. 3. Semi-implicit SPH scheme solution with 200 particles (solid line -
blue) versus reference solution (solid line - red) - staggered finite difference
approach with a mesh of 10,000 points.

B. Discontinuous Solution

In this example, we consider the following Riemann prob-
lem. Riemann problems are very important cases in initial
value problem for PDE systems. The initial data is prescribed
by two piecewise constant states often separated by a discon-
tinuity:

q(x, 0) =

{

ql x < 0,

qr x > 0

whereq = (v(x, 0), η(x, 0), h(x)). The computational domain
Ω = [xl, xr] given asΩ = [−1, 1] is discretized with the semi-
implicit SPH scheme using200 particles. In this example with
flat bottom, the exact solution is given by the exact Riemann
solver for the shallow water equations [10]. The left state
is given asql = (−1, 1, 0) and the right state is given as
qr = (1, 1, 0). In this present simulation, we used the final
time t = 0.15, ∆t = 0.01. The rarefaction solution of the
one dimensional shallow water equation is presented in Fig.
4, the solution consists of a left moving rarefaction fan anda
right moving rarefaction fan solution both moving away from
the discontinuity. We compare our semi-implicit SPH solution
with the reference solution of the exact riemann solver for
the one dimensional shallow water equation. A very good
agreement is observed in Fig. 4. The upper profile in Fig. 4
depicts the free surface elevation with a flat bottom bathymetry
and the lower profile depicts a rarefaction particle velocity,
respectively.
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Fig. 4. Semi-implicit SPH scheme rarefaction solution (solid line - blue)
versus exact solution (solid line - red). 200 particles is used in the numerical
solution.

V. CONCLUSION

The paper presents a new SPH formulation based on a novel
semi-implicit SPH discretization. The semi-implicit algorithm
applied to the shallow water equations has been derived and
discussed. The momentum equation is discretized by a finite
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difference approximation for the gradient of the free surface
and SPH appoximation for the mass conservation equation.

Because we substituted the discrete momemtum equations
into the discrete mass conservation equations, our scheme
reduces to a linear sparse system for the free surface elevation.
We therefore have one linear and scalar value for the free
surface to be solved, we conviniently solve this with the
matrix-free version of the conjugate gradient (CG) algorithm.

This method possesses some key features such as: the
method is mass conservative, the time step is not restricted
by the stability condition that is dictated by the surface wave
speed thus relatively large timesteps are permitted.

Future research will be related to the extension of this
scheme to2D and 3D numerical examples, extension to
nonhydrostatic free surface flows.
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[12] A. Iske, M. Käser,Conservative semi-Lagrangian advection on adap-
tive unstructured meshes, Numerical methods for partial differential
equations. 20. pp. 388-411, 2004.

[13] L. Bonaventura, A. Iske, E. Miglio,Kernel-based vector field recon-
struction in computational fluid dynamic models. International Journal
for Numerical Methods in Fluids. 66. pp. 714-729, 2011.

[14] M. Lentine, J.T. Gretarsson, R. FedkiwAn unconditionally stable fully
conservative semi-Lagrangian method, Jour. of Comp. Phys. Vol 230.
pp. 2857-2879, 2011.

[15] T. Belytschko, Y. Krongauz, J. Dolbow, C. GerlachOn the complete-
ness of meshfree particle methods. Int. Jour. Numer. Meth. Eng. 43 (5).
pp. 785-819, 1998.

[16] V. Casulli, Lecture notes on advanced numerical methods for free-
surface hydrodynamics.

[17] V. Casulli, R.A. Walters,An unstructured grid, three-dimensional
model based on the shallow water equations. International Journal for
Numerical Methods in Fluids. 32:331348, 2000.

[18] M. Dumbser, V. Casulli,A staggered Semi-implicit spectral discon-
tinuous Galerkin scheme for the shallow water equations. Applied
Mathematics and Computation, 219:8057-8077, 2013.

[19] M. Tavelli, M. Dumbser,A high order semi-implicit discontinuous
Galerkin method for the two dimensional shallow water equations on
staggered unstructured meshes. Applied Mathematics and Computation,
234:623644, 2014.


