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Suppose that we observe entries or, more generally, linear combinations of entries
of an unknown m x T-matrix A corrupted by noise. We are particularly interested
in the high-dimensional setting where the number mT of unknown entries can be
much larger than the sample size N. Motivated by several applications, we consider
estimation of matrix A under the assumption that it has small rank. This can be
viewed as dimension reduction or sparsity assumption. In order to shrink towards
a low-rank representation, we investigate penalized least squares estimators with
a Schatten-p quasi-norm penalty term, p < 1. We study these estimators under
two possible assumptions — a modified version of the restricted isometry condition
and a uniform bound on the ratio “empirical norm induced by the sampling opera-
tor/Frobenius norm”. The main results are stated as non-asymptotic upper bounds
on the prediction risk and on the Schatten-¢ risk of the estimators, where ¢ € [p, 2].
The rates that we obtain for the prediction risk are of the form rm/N (for m =T,
up to logarithmic factors, where r is the rank of A. The particular examples of
multi-task learning and matrix completion are worked out in detail. The proofs are
based on tools from the theory of empirical processes. As a by-product we derive
bounds for the kth entropy numbers of the quasi-convex Schatten class embeddings
Sé\/[ — Sé\/[ , p < 1, which are of independent interest. The talk is based on a joint
work with Sasha Tsybakov.



