Infinite graph theory II: exercises on 07/04/2022

1. Assume that D=(V,E) is a (possibly infinite) digraph, $a\neq b\in V$ and \mathcal{P} is a system of edge-disjoint ab-paths. Prove that either one can choose exactly one edge from each $P\in\mathcal{P}$ in such a way that the resulting edge set is an ab-cut (i.e. meets every ab-path) or there exists another system \mathcal{Q} of edge-disjoint ab-paths such that $\delta^+_{\mathcal{Q}}(a)\supset\delta^+_{\mathcal{P}}(a)$ and $\delta^-_{\mathcal{Q}}(b)\supset\delta^-_{\mathcal{P}}(b)$ with $\left|\delta^+_{\mathcal{Q}}(a)\setminus\delta^+_{\mathcal{P}}(a)\right|=\left|\delta^-_{\mathcal{Q}}(b)\setminus\delta^-_{\mathcal{P}}(b)\right|=1$. (Here $\delta^+_{\mathcal{Q}}(a)$ stands for the set of the outgoing edges of a in the digraph consisting of the paths in \mathcal{Q} and $\delta^-_{\mathcal{Q}}(b)$ is defined similarly but with ingoing edges.)

Hint: Consider the digraph D' that we obtain from D by reversing the edges in $E(\mathcal{P})$. Show that if D' admits an ab-path, then the second possibility occurs and otherwise the first one.

2. Formulate and prove a version of the statement from the previous exercise in which there are vertex-disjoint AB-paths for some $A, B \subseteq V$.

Hint: Reduce it to the edge version by splitting vertices into edges.

3. State and prove the undirected versions of the statements above.