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The basic equations in electrodynamics are Maxwell’s Equations. Some-
thing very special about time-dependant electromagnetic fields is the in-
terplay between electric and magnetic field resp. flux. A consistent dis-
cretization method should reflect this interrelation which is why Weiland
[1] developed the Finite Integration Technique (FIT), some kind of Finite
Volume Method on a grid duplet. With FIT, the so-called Maxwell-Grid-
Equations (MGE) result: a set of linear equations with operators corre-
sponding one-to-one to the differential operators div, rot and grad. In
classical electrodynamics, Poisson’s Equation, Helmholtz Equation, etc.
are derived from Maxwell’s Equations for static or time-harmonic fields,
etc.. With FIT corresponding equations can be derived from MGE. Sim-
ilarly to other methods like FEM, the resulting numerical problems are
linear systems of equations or eigenvalue problems, e.g., with large sparse
system matrices. The character of the system matrices is depending on
the problem class: In the simplest case they are real, symmetric and
positive-(semi-)definite; but they can also be complex, non-Hermitian and
indefinite. For industrially relevant applications, these systems have a di-
mension of up to several million unknowns. Solution methods such as
Krylov-subspace or multigrid methods allow for efficient numerical field
simulation. One important aspect besides convergence speed and storage
requirement is a sufficient robustness in order to be applicable for many
basically different practical applications. Convergence studies will be pre-
sented for a choice of typical examples. Some videos will show the error
behaviour and the development of the solution for real life applications.
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