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Chapter 1: Complex Numbers

1 Complex Numbers

Starting point: We want to solve all equations of the form

x2 = a for a ∈ R.

Good news:

For non-negative a ∈ [0,∞) there is (at least) one x ∈ R satisfying x2 = a.

Bad news: For negative a ∈ (−∞, 0) there is no x ∈ R satisfying x2 = a.

Example: For a = −1 there is no real number x satisfying

x2 + 1 = 0.

What now? To solve all equations of the form x2 = a, we need to extend the

real numbers. This extension leads to the field of the complex numbers, C.

In the following we discuss the algebraic and geometric structure of C.
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Chapter 1: Complex Numbers

First ideas to introduce the complex numbers.
Starting point: Use symbolic solution i for equation x2 + 1 = 0, so that

i2 = −1.

This number i is called imaginary unit.

Next step: Using the imaginary unit, we define the number set

C := {a+ ib |a, b ∈ R} .

Then, we introduce operations on C as follows.

• Summation:

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2) for a1, a2, b1, b2 ∈ R.

• Multiplication:

(a1+ib1)(a2+ib2) = (a1a2−b1b2)+i(a1b2+a2b1) for a1, a2, b1, b2 ∈ R.

So then C has an algebraic structure.
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Chapter 1: Complex Numbers

General questions concerning complex numbers.

• What is i?

• Can we use the operations + and · without contradictions?
• Are the operations + and · consistent with those on R?

• Can we order the complex numbers?

• Are there alternative representations for complex numbers?

• Are there geometric interpretations for + and ·?
• . . .

• Why do we deal with complex nunmbers?

• . . . and later with complex functions?

• Are there relevant applications in engineering?
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Chapter 1: Complex Numbers

Reminder: The real numbers R are — in combination with summation ′+ ′ and

multiplication ′· ′ — a field, i.e., the following axioms hold:

• Axioms for summation.

associative law ∀x, y, z ∈ R : x+ (y+ z) = (x+ y) + z

commutative law ∀x, y ∈ R : x+ y = y+ x

the zero element ∀ x ∈ R ∃ 0 ∈ R : x+ 0 = x

the inverse ∀ x ∈ R ∃− x ∈ R : x+ (−x) = 0

• Axioms for multiplication.

associative law ∀x, y, z ∈ R : (xy)z = x(yz)

commutative law ∀x, y ∈ R : xy = yx

the one element ∀ x ∈ R ∃ 1 ∈ R : x · 1 = x

the inverse ∀ x ∈ R \ {0} ∃x−1 ∈ R : xx−1 = 1.

• distributive law x(y+ z) = xy+ xz for all x, y, z ∈ R.
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Chapter 1: Complex Numbers

On the construction of the complex numbers.
Starting point: Regard the set R2 = {(a, b) |a, b ∈ R} with the summation

(a1, b1) + (a2, b2) := (a1 + a2, b1 + b2) for (a1, b1), (a2, b2) ∈ R
2

and the multiplication

(a1, b1)·(a2, b2) := (a1a2−b1b2, a1b2+a2b1) for (a1, b1), (a2, b2) ∈ R
2.

Observation: The multiplication is associative and commutative; moreover, we

have

(a, b) · (1, 0) = (a, b) for (a, b) ∈ R
2,

i.e., (1, 0) ∈ C is the neutral element of multiplication. The equation

(a, b) · (x, y) = (1, 0) for (a, b) 6= (0, 0)

has a unique solution, the multiplicative inverse of (a, b),

(x, y) =

(

a

a2 + b2
,

−b

a2 + b2

)

.
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Chapter 1: Complex Numbers

On the structure of the complex numbers.

Remark: The set R2 is — with the summation ′+ ′ and the multiplication ′· ′ —
a field, the field of the complex numbers, denoted as (C,+, ·), or C.
Exercise:

Verify all axioms of summation and multiplication and the distribution rule. �

Observation: The mapping ϕ : R −→ C, defined as ϕ(a) = (a, 0) is injective.

For all a1, a2 ∈ R, we have

ϕ(a1 + a2) = (a1 + a2, 0) = (a1, 0) + (a2, 0) = ϕ(a1) +ϕ(a2)

ϕ(a1a2) = (a1a2, 0) = (a1, 0) · (a2, 0) = ϕ(a1) ·ϕ(a2)

Conclusion:

• We can identify the real numbers with the complex numbers of the form (a, 0);

• The real numbers are a subfield of C;

• The operations + and · in C are consistent with those in R.
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Chapter 1: Complex Numbers

The field of the real numbers is ordered.

Remark: The real numbers are an ordered field, i.e., the following

ordering axioms hold.

• For any x ∈ R we have x > 0 or x = 0 or x < 0;

• For x > 0 and y > 0 we have x+ y > 0;

• For x > 0 and y > 0 we have xy > 0.

Question: Are the complex numbers C ordered?

Answer: NO!

Reason: In any ordered field all square numbers (except for zero) are positive.

Now suppose C is ordered. Then, we have

0 < 12 = 1 and 0 < i2 = −1

giving the contradiction 0 < 1+ (−1) = 0.
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Chapter 1: Complex Numbers

A simpler notation for complex numbers.

Simplification of notations:

• For a ∈ R we write just ’a’ rather than (a, 0);

• The complex unit (0, 1) is denoted as i;

• Thereby, any complex number (a, b) can be written as

(a, b) = (a, 0) + (b, 0) · (0, 1) = a+ b · i = a+ ib.

and we have

i2 = i · i = (0, 1) · (0, 1) = (−1, 0) = −1.

Conclusion: We have constructed a field, C, which comprises R. The equation

x2 + 1 = 0

has a solution in C. The only solutions for that equation are ±i.
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Chapter 1: Complex Numbers

Real part and imaginary part.

From now we denote complex numbers as z or w. For

z = x+ iy ∈ C for x, y ∈ R

we call x the real part and y the imaginary part of z, in short:

x = Re(z) and y = Im(z)

The following properties hold.

Re(z+w) = Re(z) + Re(w) for z,w ∈ C

Im(z+w) = Im(z) + Im(w) for z,w ∈ C

Re(az) = aRe(z) for z ∈ C, a ∈ R

Im(az) = aIm(z) for z ∈ C, a ∈ R

and moreover
1

z
=

x

x2 + y2
− i

y

x2 + y2
for z 6= 0.
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Chapter 1: Complex Numbers

The complex plane.

Geometric illustration: We represent z = (x, y) ∈ C as a point in the

complex plane (Gaussian plane of complex numbers)

by the Cartesian coordinate system of R2, with one real axis, R, and one

imaginary axis, i · R.

Geometric illustration of summation:

By summation of vectors according to parallelogram formula.
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Summation of two complex numbers.
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Chapter 1: Complex Numbers

Conjugation of complex numbers.
By reflection of the complex number z = x+ iy with respect to the real axis we

obtain the complex number

z := x− iy ∈ C

called the complex conjugate of z.

The following properties hold.

w+ z = w+ z for w, z ∈ C

wz = w · z for w, z ∈ C

(z) = z for z ∈ C

zz = x2 + y2 for z = x+ iy ∈ C

Re(z) = (z+ z)/2 for z ∈ C

Im(z) = (z− z)/(2i) for z ∈ C

In particular, we have z = z if and only if z ∈ R.

complex functions TUHH, Summer Semester 2025 © Armin Iske 13



Chapter 1: Complex Numbers

The modulus function.

By

|z| =
√
zz =

√

x2 + y2 for z = x+ iy ∈ C

we denote the modulus of z and by |w− z| we denote the distance between

the two numbers w, z ∈ C in the complex plane.

• Therefore, |z| = |z− 0| is the Euclidean distance of z to the origin.

• For z ∈ R, its usual modulus (i.e., absolute value) of real numbers is |z|.

• The following inequalities hold.

−|z| ≤ Re(z) ≤ |z| and − |z| ≤ Im(z) ≤ |z| for z ∈ C.

Theorem: The modulus function | · | is a norm on C, i.e., we have

• |z| ≥ 0 for all z ∈ C and |z| = 0, if and only if z = 0;

• |w+ z| ≤ |w|+ |z| for all w, z ∈ C (triangular inequality);

• |wz| = |w| · |z| for all w, z ∈ C.
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Chapter 1: Complex Numbers

The Euler formula.

In the complex plane, we have for

z = x+ iy

with polar coordinates

(x, y) = |z|(cos(ϕ), sin(ϕ))

the Euler formula

z = |z| exp(iϕ) = |z|(cos(ϕ) + i sin(ϕ)),

where ϕ ∈ (−π, π] is, for z 6= 0, the (unique) angle between the positive real

axis and the straight line from 0 to z = (x, y).

The angle ϕ ∈ (−π, π] is also called the argument of z 6= 0, in short

ϕ = arg(z) ∈ (−π, π].

Example: i = (0, 1) = exp(iπ/2), −1 = i2 = exp(iπ), whereby eiπ + 1 = 0 .
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Chapter 1: Complex Numbers

The geometry of multiplication and division.
Using polar coordinates we can interpret the multiplication of two complex

numbers w, z ∈ C as a stretching rotation in the complex plane, since by

w = |w|(cos(ψ), sin(ψ)) and z = |z|(cos(ϕ), sin(ϕ))

we have

wz = |w| · |z|(cos(ψ) + i sin(ψ))(cos(ϕ) + i sin(ϕ))
= |w| · |z|(cos(ψ+ϕ) + i sin(ψ+ϕ)) = |w| · |z| exp(i(ψ+ϕ))

or, by the Euler formula

wz = |w| · |z| exp(iψ) · exp(iϕ) = |w| · |z| exp(i(ψ+ϕ)).

Likewise, for the division of complex numbers w, z ∈ C, where z 6= 0, we have

w

z
=

|w|

|z|
exp(i(ψ−ϕ)) =

|w|

|z|
(cos(ψ−ϕ) + i sin(ψ−ϕ)).
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Chapter 1: Complex Numbers

Powers and unit roots.

For the n-th power zn, n ∈ N, of z ∈ C we have the representation

zn = (|z| exp(iϕ))
n
= |z|n exp(inϕ) = |z|n(cos(nϕ) + i sin(nϕ)).

The equation

zn = 1

has the n pairwise distinct solutions

zk = exp

(

i
2πk

n

)

for k = 0, . . . , n− 1.

These solutions are called the n-th unit roots.
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Chapter 2: Complex Functions

2 Complex Functions

We regard complex-valued functions f of one complex variable.

2.1 Notation and geometric interpretation

Definition: A complex function is a function, whose domain and range are,

respectively, point sets in the complex plane. �

Remark: A complex function f : A −→ B with domain A ⊂ C and image

B = f(A) ⊂ C maps each z ∈ A to one unique w = f(z) ∈ B, i.e., z 7−→ f(z).

This unique assignment (by the map f : A −→ B)

z 7−→ f(z) for z ∈ A

is usually determined by an explicit formula for f(z), for z ∈ A.
However, complex functions may also be determined implicitly.
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Chapter 2: Complex Functions

Examples for complex functions.

• f(z) = (3z+ 1)2 for z ∈ C;

• f(z) = exp(ix) + y for z = x+ iy ∈ C;

• f(z) = 1/z for z ∈ C \ {0}.

We usually use the symbol z ∈ C for the argument and w ∈ C for the

(function) value of f at z, i.e., w = f(z). Moreover, we write z = x+ iy and

w = u+ iv i.e., u = Re(w) and v = Im(w)

or

u(z) = Re(f(z)) and v(z) = Im(f(z)).

Question: How can we display f graphically?

Answer: We sketch the domain and the image in two different complex planes,

namely in the z-plane (for the domain) and in the w-plane (for the image).
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Chapter 2: Complex Functions

Complex functions in one real variable.

We also regard complex-valued functions f : I −→ C for one real variable, i.e.,

for arguments in I ⊂ R,

f : t 7−→ f(t) ∈ C for t ∈ I.

Examples.

• f(t) = a+ bt for a, b ∈ C, where b 6= 0;

• f(t) = exp(iωt) for ω ∈ (0,∞) ⊂ R;
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Chapter 2: Complex Functions

2.2 Lineare functions

Definition: A complex function f is said to be affine-linear (or just

linear), iff f has the form

f(z) = az+ b for z ∈ C

for fixed complex constants a, b ∈ C, where a 6= 0. �

Question: How can we interpret linear functions geometrically?

Special case 1: The choice a = 1 leads us to a translation about b,

f(z) = z+ b for z ∈ C

Special case 2: The choice a ∈ (0,∞) and b = 0 leads us to a dilation

f(z) = az for z ∈ C

i.e., the argument z is elongated (for a > 1) or shrunk (0 < a < 1).

But in general, we just use the term dilation by scaling factor a > 0.
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Chapter 2: Complex Functions

Special case 3: The choice a ∈ C with |a| = 1 and b = 0 leads us to a

rotation

f(z) = az for z ∈ C

More precisely, a rotation about one angle α ∈ [0, 2π), where α = arg(a), or,

a = exp(iα).

Special case 4: The choice a ∈ C, with a 6= 0 and b = 0 leads us to a

stretching rotation

f(z) = az for z ∈ C

which we can interpret as a composition between one rotation and one dilation.

More precisely: For

a = |a| exp(iα) with α = arg(a)

we have one rotation about angle α ∈ [0, 2π) and one dilation by scaling |a|.
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Chapter 2: Complex Functions

General case: For a, b ∈ C, a 6= 0, any linear function

f(z) = az+ b = |a| exp(iα)z+ b

can be written as composition

f = f3 ◦ f2 ◦ f1
of three functions:

• f1(z) = exp(iα)z, i.e., rotation about angle α ∈ [0, 2π);

• f2(z) = |a|z, i.e., dilation by scaling factor |a| > 0;

• f3(z) = z+ b, i.e., translation about b.

Remark: Rotation f1 and dilation f2 are commutative, i.e., we have

f2 ◦ f1 = f1 ◦ f2
and so

f = f3 ◦ f2 ◦ f1 = f3 ◦ f1 ◦ f2.
�
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Chapter 2: Complex Functions

2.3 Quadratic functions

Definition: A complex function f is said to be quadratic, if f has the form

f(z) = az2 + bz+ c for z ∈ C

for fixed constants a, b, c ∈ C, where a 6= 0. �

Let us first regard the geometric behaviour of the quadratic function

f(z) = z2 for z ∈ C.

To this end, we regard the images of straight lines in the complex plane that are

parallel to the (real and imaginary) axes.

Let w = z2. Then, we have for z = x+ iy and w = u+ iv the representation

w = u+ iv = z2 = (x+ iy)2 = x2 − y2 + 2ixy

and so

u = x2 − y2 and v = 2xy.
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Chapter 2: Complex Functions

Images of axes parallel lines under z 7−→ z2.
For the image of a straight lines parallel to the real axis, i.e., y ≡ y0, we obtain

u = x2 − y20

v = 2xy0

For y0 = 0 (the real axis) we obtain u = x2 and v = 0.

For y0 6= 0 we can eliminate x by letting x = v/(2y0), whereby we have

u =
v2

4y20
− y20

a (right-open) parabola which is symmetric to the u-axis, with focal point zero,

and with intersections u = −y20 (with u-axis) and v = ±2y20 (with v-axis).

Conclusion: The family of parallel lines to the x-axis is mapped under the

quadratic function f(z) = z2 onto a family of co-focal (i.e., having the same

symmetry axis, and the same focal point) (right-open) parabolas.

The straight lines y ≡ y0 and y ≡ −y0 are mapped onto the same parabola.
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Chapter 2: Complex Functions

Images of axes parallel lines under z 7−→ z2.
For the image of a straight lines parallel to the imaginary axis, i.e., x ≡ x0, we
obtain

u = x20 − y
2

v = 2x0y

For x0 = 0 (the imaginary axis) we obtain u = −y2 and v = 0.

For x0 6= 0 we can eliminate y by letting y = v/(2x0), whereby we have

u = x20 −
v2

4x20

a (left-open) parabola which is symmetric to the u-axis, with focal point zero,

and with intersections u = −x20 (with u-axis) and v = ±2x20 (with v-axis).

Conclusion: The family of parallel lines to the y-axis is mapped under the

quadratic function f(z) = z2 onto a family of co-focal (left-open) parabolas.

The straight lines x ≡ x0 and x ≡ −x0 are mapped onto the same parabola.
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Chapter 2: Complex Functions

Images of axes parallel lines under z 7−→ z2.
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Chapter 2: Complex Functions

General quadratic functions.

Starting from the representation

f(z) = az2 + bz+ c = a

(

z+
b

2a

)2

−
b2

4a
+ c

for a, b, c ∈ C, a 6= 0, we can write any quadratic function as a composition

f = f4 ◦ f3 ◦ f2 ◦ f1

of four mappings:

• the translation f1(z) = z+
b
2a

;

• the quadratic function f2(z) = z
2;

• the dilation f3(z) = az;

• the translation f4(z) = z−
b2

4a
+ c.

�
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Chapter 2: Complex Functions

2.4 The exponential function

Definition: The complex exponential function exp : C −→ C is defined as

exp(z) ≡ ez = ex+iy = ex(cos(y) + i sin(y)) for z = x+ iy.

�

Observe: We have the functional equation

ez1+z2 = ez1ez2 for z1, z2 ∈ C.

Question: How can we sketch the complex exponential function z 7−→ exp(z)?

For w = exp(z), z = x+ iy and w = u+ iv we obtain

w = u+ iv = ez = ex(cos(y) + i sin(y))

and so

u = ex cos(y) and v = ex sin(y).
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Chapter 2: Complex Functions

Images of axes parallel lines under z 7−→ exp(z).
For the image of a straight lines parallel to the real axis, i.e., y ≡ y0, we obtain

u = ex cos(y0)

v = ex sin(y0)

• For fixed y0 this yields a straight line from the origin through the positive

quadrant, whose angle with the positive real line is y0.

• For angles y0 and y1, that are different by an integer multiple of 2π, i.e.,

y1 = y0 + 2πk for one k ∈ Z

we obtain the same straight line.

• More precisely: by the periodicity of exp(z) we have

ez+2πik = eze2πik = ez(cos(2πk) + i sin(2πk)) = ez · 1 = ez.

i.e., two complex numbers with coincident real parts, but whose imaginary

parts differ about one integer multiple of 2π, are mapped onto the same value.
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Chapter 2: Complex Functions

Images of axes parallel lines under z 7−→ exp(z).
For images of straight lines parallel to the imaginary axis, i.e., x ≡ x0, we obtain

u = ex0 cos(y) and v = ex0 sin(y)

• For fixed x0 we obtain a circle with origin zero and radius ex0 .

• Observation: The origin is not contained in the image of the exponential

function, i.e., there is no argument z ∈ C satisfying exp(z) = 0.

Therefore, we have ez 6= 0 for all z ∈ C.

• Observation: The function exp maps rectangular grids in the Cartesian

coordinate system onto families of curves with orthogonal intersections.

• More precisely: Curves with orthogonal intersections in the Cartesian

coordinate system are being mapped by onto curves, whose intersections

in the Cartesian coordinate system are also orthogonal.

• Terminology: We say that the exponential function preserves angles,

or, exp : C −→ C \ {0} is said to be a conformal map. More details later.
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Chapter 2: Complex Functions

Images of axes parallel lines under z 7−→ exp(z).
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Chapter 2: Complex Functions

2.5 The inverse function

Definition: A complex function f(z) is said to be injective (one-to-one), if

for every point w ∈ C in its image there is one and only one point z ∈ C of its

domain satisfying f(z) = w. �

Remark: Injective functions attain each value of its image only once.

Examples.

• any linear function f(z) = az+ b, where a 6= 0, is injective.

• the quadratic function f(z) = z2, is not injective, since we have

f(z) = f(−z) for all z ∈ C.

• the complex exponential function exp(z) is not injective, since we have

exp(z) = exp(z+ 2πik) for all k ∈ Z and all z ∈ C.
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Chapter 2: Complex Functions

Restriction of the domain.

Remark: A non-injective function may be turned into an injective function by a

suitable restriction of its domain.

Example: The quadratic function

f(z) = z2 for z ∈ C with Re(z) > 0

is injective on the right half plane A := {z ∈ C |Re(z) > 0}.

Moreover, in this case the image of f is f(A) = C
−, where we let

C
− = {z ∈ C | Im(z) 6= 0 or Re(z) > 0}

= C \ {z ∈ R | z ≤ 0}

denote the cut complex plane. �
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Chapter 2: Complex Functions

Function values of z 7−→ z2 on the right half plane.
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Chapter 2: Complex Functions

The inverse function.

Definition: Let f be an injective function with domain D(f) and range W(f).

Then, the (unique) inverse function f−1 :W(f) −→ D(f) of f is that

function, which assigns each value w ∈W(f) the (unique) argument z ∈ D(f)

satisfying f(z) = w, i.e., f−1(w) = z, or,

(f−1 ◦ f)(z) = z for all z ∈ D(f)

(f ◦ f−1)(w) = w for all w ∈W(f)

�

Example: For the domain

D(f) = {z = reiϕ ∈ C | r > 0 and − π/2 < ϕ < π/2}

there is a (unique) inverse function f−1 of f(z) = z2 with range W(f) = C
−.

For the principal value of the square root f−1 :W(f) −→ D(f) we get

w = f−1(z) =
√
reiϕ/2 for z = reiϕ with ϕ = arg(z) ∈ (−π/2, π/2).
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The inverse function of the n-th power.

Example: For n ≥ 2, the power function

f(z) = zn for z ∈ C

is injective on the domain

D(f) =

{
z ∈ C

∣

∣

∣

∣

−
π

n
< arg(z) <

π

n

}
.

In this case, the range of f on D(f) is W(f) = C
−.

For the inverse function f−1 :W(f) −→ D(f) we get

w = f−1(z) = n
√
reiϕ/n for z = reiϕ with ϕ = arg(z) ∈

(

−
π

n
,
π

n

)

.

�
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Example n = 4: Regard the function z 7−→ z4.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

{z ∈ C | arg(z) ∈ (−π/4, π/4)} the cut complex plane C
−

(domain) (image)
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2.6 The complex logarithm and general power functions

Aim: Inversion of the complex exponential function

f(z) = exp(z).

Observe: The exponential function exp(z) is for all z ∈ C well-defined, and we

have

D(exp) = C and W(f) = C \ {0}

for its domain and range.

But: The exponential function is not injective on C.

Therefore: For the construction of an inverse function exp−1 of exp we need to

restrict the domain of exp suitably.

Question: Let z = x+ iy ∈W(exp). Which values w = u+ iv are valid, so that

ew = z

holds?
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Construction of the complex logarithm.
Starting point: For z = x+ iy ∈W(exp) we wish to have

ew = z for one w = u+ iv ∈ C.

Then, we have

|ew| = |eu| = |z|

and therefore u = log(|z|), where log : (0,∞) −→ R is the real logarithm.

Moreover, we have

arg(ew) = arg(eu+iv) = arg(eueiv) = v

and so v = arg(z). Therefore, the set of solutions of ew = z consists of the

complex numbers

w = log(|z|) + i(arg(z) + 2πk) for k ∈ Z

and every w ∈ C satisfying ew = z is called logarithm of z. For z ∈ C, the set

{Log(z)} := {w ∈ C | ew = z} is called set-valued complex logarithm of z.
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The set-valued complex logarithm.
Example 1: How does the complex logarithm {Log(−1)} of −1 look like?

First we have log(|− 1|) = log(1) = 0.

The numbers ±π,±3π,±5π, . . . are the arguments of −1. Therefore, we have

{Log(−1)} = {i(2k+ 1)π | k ∈ Z}

for the values of the logarithm of −1.

Example 2: How does the complex logarithm {Log(−1+ i)} of −1+ i look like?

First we have |− 1+ i| =
√
2 and, moreover, arg(−1+ i) = 3π

4
is one argument

of −1+ i. Therefore, we have

{Log(−1+ i)} =

{
log(

√
2) + i

(

3π

4
+ 2πk

)
∣

∣

∣

∣

k ∈ Z

}

for the values of the logarithm of −1+ i.

Example 3: For x > 0 we have {Log(x)} = {log(x) + 2πik | k ∈ Z}.
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The principal value of the logarithm.

Our previous discussion on the solutions of the equation

z = ew

showed that the exponential function is injective on the strip

S = {w ∈ C | − π < Im(w) < π},

with image C
−. The only value of {Log(z)} belonging to the strip S is

w = log(|z|) + i arg(z) with − π < arg(z) < π.

This value is the principle value of the logarithm of z, in short: Log(z).

Remark: The principle value of the logarithm is only defined in the cut complex

plane C
−. The logarithm Log(z) is not defined on the negative real axis and at

z = 0. On the positive real axis, Log(z) coincides with the real logarithm log(x).
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The general power function.

Definition: For a, b ∈ C we denote by {ab} the set of complex numbers

eb{Log(a)} for a 6= 0

where {Log(a)} = {log(|a|) + i(arg(a) + 2πk) | k ∈ Z}. Therefore, we have

{ab} =
{
eb[log(|a|)+i(α+2πk)] | k ∈ Z

}

where α = arg(a). If a lies in the cut complex plane, a ∈ C
−, then the set {ab}

contains the value

ebLog(a) = eb(log(|a|)+iα) with α = arg(a) ∈ (−π, π).

This value is called the principle value of {ab}. �
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Examples.
1.) Let a = reiα ∈ C \ {0} and b = n ∈ N. Then, we have

{ab} =
{
en(log(r)+iα+2πik)

∣

∣ k ∈ Z

}
=

{
en log(r)+inα+2πikn

∣

∣ k ∈ Z

}

=
{
rneinαe2πikn

∣

∣ k ∈ Z
}
=

(

reiα
)n

= rneinα = a · . . . · a︸ ︷︷ ︸
n-fold

2.) For x > 0, eiLog(x) = cos(log(x)) + i sin(log(x)) is the principle value of {xi}.

3.) Let a = reiα ∈ C \ {0} and n ∈ N. Then, we have

{a1/n} =
{
e(1/n)(log(r)+iα+2πik)

∣

∣ k ∈ Z

}
=

{
r1/neiα/ne2πik/n

∣

∣ k ∈ Z

}

=
{
r1/neiα/ne2πik/n

∣

∣ 0 ≤ k < n
}

i.e., the values z of {a1/n} are the n-th roots of a, so that zn = a, in short

z = n
√
a

with principle value r1/neiα/n for α/n = arg(a)/n ∈ (−π/n, π/n). �
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Remark.

The functional equation (from real analysis)

log(ab) = log(a) + log(b) for all a, b > 0

do in the general case not hold for the principle values of the complex logarithm,

i.e., there are a, b ∈ C
− satisfying

Log(ab) 6= Log(a) + Log(b).

Example: For a = i and b = −1+ i we have

Log(i) + Log(−1+ i) = i
π

2
+ log(

√
2) + i

3

4
π = log(

√
2) + i

5

4
π

6= log(
√
2) − i

3

4
π = Log(−1− i) = Log(i(−1+ i)).
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Remark. We have the equation

principle value of {ab} · principle value of {ac} = principle value of {ab+c}.

Proof: For α := arg(a) ∈ (−π, π),

A := eb[log(|a|)+iα]

is the principle value of {ab} =
{
eb[log(|a|)+i(α+2πk)]

}
. Likewise,

B := ec[log(|a|)+iα]

is the principle value of {ac} and

C := e(b+c)[log(|a|)+iα]

is the principle value of {ab+c}.

Finally, we have

A · B = eb[log(|a|)+iα] · ec[log(|a|)+iα] = e(b+c)[log(|a|)+iα] = C.
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2.7 The Joukowski function

The Joukowski function, defined as

f(z) =
1

2

(

z+
1

z

)

for z 6= 0,

is relevant for fluid flow problems (details later).

Observation: We have the symmetry

f(z) = f(1/z) for z 6= 0.

Aim: Analyze the geometric behaviour of the Joukowski function.

To this end, determine for

w =
1

2

(

z+
1

z

)

the images of the circles |z| ≡ const and the straight lines arg(z) ≡ const.
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Geometric behaviour of the Joukowski function.
For

z = reiϕ and w = u+ iv

we obtain

u+ iv =
1

2

(

reiϕ +
1

r
e−iϕ

)

and therefore

u =
1

2

(

r+
1

r

)

cos(ϕ) and v =
1

2

(

r−
1

r

)

sin(ϕ).

For the image of the circle r ≡ r0 > 0, we get the parameter representation

u = 1
2

(

r0 +
1
r0

)

cos(ϕ)

v = 1
2

(

r0 −
1
r0

)

sin(ϕ)





0 ≤ ϕ < 2π,

for the unit circle r0 ≡ 1. Therefore, u = cos(ϕ), for 0 ≤ ϕ < 2π and v ≡ 0,
i.e., the straight line between the points −1 and 1, being traversed twice. �
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Geometric behaviour of the Joukowski function.

For r0 6= 1 we can eliminate ϕ whereby we get the ellipse

u2

1
4

(

r0 +
1
r0

)2
+

v2

1
4

(

r0 −
1
r0

)2
= 1

with half axis

a =
1

2

(

r0 +
1

r0

)

and b =
1

2

∣

∣

∣

∣

r0 −
1

r0

∣

∣

∣

∣

and focal points ±1.

Conclusion: The Joukowski function maps a family of circles r ≡ const onto a

family of co-focal ellipses. The two circles r ≡ r0 and r ≡ 1/r0 are

mapped onto the same ellipse. �
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Geometric behaviour of the Joukowski function.

For the image of a straight line ϕ ≡ ϕ0 we get

u = 1
2

(

r+ 1
r

)

cos(ϕ0)

v = 1
2

(

r− 1
r

)

sin(ϕ0)





0 < r <∞.

For the positive x-axis ϕ0 = 0, we get

u = 1
2

(

r+ 1
r

)

v = 0





0 < r <∞,

the piece {(u, 0) | 1 ≤ u <∞} of the u-axis.

Likewise, for the negative x-axis ϕ0 = π we get the piece −∞ < u < −1.

The straight lines ϕ0 = π/2 (positive y-axis) and ϕ0 = 3π/2 (negative y-axis)

are being mapped onto the entire v-axis.
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Geometric behaviour of the Joukowski function.

For ϕ0 6∈ {0, π/2, π, 3π/2}, we can eliminate r, whereby we get the hyperbola

u2

cos2(ϕ0)
−

v2

sin2(ϕ0)
= 1

with half axis

a = | cos(ϕ0)| and b = | sin(ϕ0)|.

The distance between the focal points and the origin is

√

a2 + b2 =

√

cos2(ϕ0) + sin2(ϕ0) = 1.

Therefore, the two focal points are ±1.
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Image of the Joukowski function.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4
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−2

−1

0

1

2

3

4

domain. image of the Joukowski function.
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Further remarks on the Joukowski function.
Remark and Conclusion: The Joukowski function maps the polar coordinate

grid onto a net of ellipses and hyperbolas, at orthogonal intersections,

respectively. In fact, the Joukowski function preserves angles (cf. our previous

discussion on the exponential function).

Remark: The Joukowski function is not injective on its domain C \ {0}, since for

any z ∈ C \ {±1, 0} we have z 6= 1/z, but f(z) = f(1/z).
Remark: The Joukowski function is injective for the following two subdomains.

(a) on the complement of the unit disk D(f) = {z ∈ C | |z| > 1}.

(b) on the upper half plane D(f) = {z ∈ C | Im(z) > 0}.

Remark: The inverse function w = f−1(z) of the Joukowski function f(w) is

obtained by the solution of the resulting quadratic equation

w2 − 2zw+ 1 = 0

for w in the corresponding domain D(f), and so w = z+
√
z2 − 1. �
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2.8 Complex trigonometric functions

Recall that by the relation of the Eulerian formula for x ∈ R, i.e.,

eix = cos(x) + i sin(x)

e−ix = cos(x) − i sin(x)

we obtain by summation and subtraction the two formulas

cos x =
1

2

(

eix + e−ix
)

for x ∈ R

sin x =
1

2i

(

eix − e−ix
)

for x ∈ R

But the right hand sides are also defined for arbitrary complex arguments.

This motivates us to let

cos z :=
1

2

(

eiz + e−iz
)

for z ∈ C

sin z :=
1

2i

(

eiz − e−iz
)

for z ∈ C
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Calculations with complex trigonometric functions.

We have

cos(z+ 2π) =
1

2

(

ei(z+2π) + e−i(z+2π)
)

=
1

2

(

eize2πi + e−ize−2πi
)

=
1

2

(

eiz + e−iz
)

= cos(z)

for all z ∈ C. Likewise, we can show

sin(z+ 2π) = sin(z) for all z ∈ C.

Conclusion: The complex trigonometric functions sin and cos are (like the real

trigonometric functions) periodic with period 2π. �
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Calculations with complex trigonometric functions.
Symmetry.

cos(z) = cos(−z) for all z ∈ C

sin(z) = − sin(−z) for all z ∈ C

Phase shifts.

sin
(

z+
π

2

)

=
1

2i

(

ei(z+π/2) − e−i(z+π/2)
)

=
1

2i

(

eizeiπ/2 − e−ize−iπ/2
)

=
1

2i

(

ieiz − (−i)e−iz
)

=
1

2

(

eiz + e−iz
)

= cos(z)

Partition of the unity.

cos2(z) + sin2(z) = 1 for all z ∈ C.

Summation rules.

cos(z1 + z2) = cos(z1) cos(z2) − sin(z1) sin(z2) for all z1, z2 ∈ C

sin(z1 + z2) = sin(z1) cos(z2) + cos(z1) sin(z2) for all z1, z2 ∈ C.
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3 Möbius Transformations

3.1 The stereographic projection

Preliminary remark: In the investigation of rational functions

R(z) =
p(z)

q(z)
with polynomials p, q : C −→ C

it makes sense to close the gaps of the domain, (i.e., the zeroes z0 of the

polynomial q(z)) by assigning the R(z) the “value” ∞ at the zeroes z0 of q(z),

respectively, unless the nominator polynomial p(z) also vanishes at z0.

Notation: If q has a zero at z∗ ∈ C, i.e., q(z∗) = 0, and p(z∗) 6= 0, then we let

R(z∗) := ∞, i.e., the image of R (containing all values of R) will be extended by

the “number” ∞.

Definition: In the extension C
∗ = C ∪ {∞} of the complex plane, we call ∞ the

infinite point. �
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Extension of calculations on C
∗.

For the extended complex plane C∗ we introduce the following rules (in addition

to the usual ones on C):

a+∞ := ∞ for a ∈ C

a ·∞ := ∞ for a ∈ C \ {0}

a/∞ := 0 for a ∈ C

Warning: There is no useful definition for the values 0 ·∞ and ∞±∞, i.e.,

these values cannot be defined without contradiction.

Topological description: The extended complex plane C
∗ is a topological

space. For a sequence of complex numbers {zn}n, zn 6= 0, we have

zn −→ ∞ for n→ ∞ ⇐⇒ 1/zn −→ 0 for n→ ∞.

C
∗ is compact, i.e., every sequence in C

∗ has (at least) one accumulation point.

Therefore, C∗ is called compactification of C. �
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The stereographic projection.
Definition: The stereographic projection P : S2 −→ C

∗ maps the

Riemannian sphere S
2 = {X ∈ R

3 | ‖X‖ = 1} onto the extended complex plane

C
∗, by assigning every point X ∈ S

2 \N, where N := (0, 0, 1)T , to its unique

intersection P(X) between the straight line through X and N and the

X1-X2-plane. Moreover, we let P(N) := ∞.

The stereographic projection has the following analytical representation.

z = P(X) =
X1 + iX2

1− X3

∈ C
∗ for X = (X1, X2, X3)

T ∈ S
2.

Remarks:

• The stereographic projection P : S2 −→ C
∗ is bijective.

• The inversion P−1 of P is determined by

X = P−1(z) =

(

z+ z

1+ zz
,
z− z

i(1+ zz)
,
zz− 1

1+ zz

)T

∈ S
2 for z ∈ C

∗.
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The stereographic projection P : S2 −→ C
∗.

• The projection P maps the upper half sphere of S2 onto {z ∈ C | |z| > 1},

whereas the lower half sphere of S2 is mapped onto {z ∈ C | |z| < 1}.

The equator

A =
{
X ∈ S

2 |X = (X1, X2, 0)
T
}

is invariant under P, i.e., every point a ∈ A is a fixpoint of P, i.e., P(a) = a. �

complex functions TUHH, Summer Semester 2025 © Armin Iske 60
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The geometry of the stereographic projection.

A spherical image U of a set B ⊂ C
∗ is the domain U ⊂ S

2 (i.e., the set of

arguments) of the stereographic projection P satisfying P(U) = B.

Satz: The stereographic projection has the following properties.

• The spherical image of a straight line in C
∗ is a circle on S

2, passing

through N.

• A circle on S
2, which passes through N, is being mapped by the

stereographic projection onto a straight line in C
∗.

• The spherical image of a circle in C is a circle on S
2, which does not pass

through N.

• The stereographic projection maps a circle on S
2, which does not pass

through N, onto a circle in C.

• The stereographic projection preserves circles.

�
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3.2 Möbius transformations

Definition: A rational function of the form

w = T(z) =
az+ b

cz+ d
where ad 6= bc

is called Möbius transformation. �

Remark: A Möbius transformation T : C∗ −→ C
∗ has the following properties:

• Nominator and denominator have different zeros (if any).

• T(−d/c) = ∞ and T(∞) = a/c.

• T(z) is bijective with inverse T−1 : C∗ −→ C
∗,

T−1(w) =
dw− b

−cw+ a
.

Note that:




a b

c d





−1

=
1

ad− bc





d −b

−c a



 .
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Composition of Möbius transformations.

Theorem: The composition between two Möbius transformations is a Möbius

transformation. More precisely, we have

w = T1(z) =
az+ b

cz+ d
for ad 6= bc

u = (T2 ◦ T1)(z) = T2(w) =
αw+ β

γw+ δ
für αδ 6= βγ

=
Az+ B

Cz+D

where




A B

C D



 =





α β

γ δ



 ·





a b

c d



 .

�
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Möbius transformations preserve circles.

Theorem: Möbius transformations preserve circles, i.e., Möbius transformations

map (generalized) circles in C
∗ onto (generalized) circles in C

∗.

Proof: Let T(z) = az+b
cz+d

, for ad 6= bc, be a Möbius transformation.

Case (a): For c = 0, T is linear and so T preserves circles.

Case (b): For c 6= 0, we can rewrite T as

T(z) =
az+ b

cz+ d
=
a

c
−
ad− bc

c

1

cz+ d
.

Next we show that f(z) = 1/z preserves circles.

If so, then T(z) (as a composition between mappings that preserve circles)

preserves circles.

Recall that the stereographic projection preserves circles. To show that f

preserves circles, we apply the stereographic projection to w = 1/z.
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We have

X = P−1(z) =

(

z+ z

1+ zz
,
z− z

i(1+ zz)
,
zz− 1

1+ zz

)T

∈ S
2

Therefore, for the image of 1/z under P−1 we obtain

X′ = F(X) = P−1(1/z)

=

(

1/z+ 1/z

1+ (1/z)(1/z)
,

1/z− 1/z

i(1+ (1/z)(1/z))
,
(1/z)(1/z) − 1

1+ (1/z)(1/z)

)T

=

(

z+ z

1+ zz
,−

z− z

i(1+ zz)
,−
zz− 1

1+ zz

)T

= (X1,−X2,−X3)
T

Observation: F(X) describes a rotation about the X1 axis with angle π.

Obviously, the mapping F(X) preserves circles. Therefore, the composition

f(z) = P ◦ F ◦ P−1

preserves circles.
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Remarks on Möbius tranformations.

Remark: For a Möbius transformation

w = T(z) =
az+ b

cz+ d
where ad 6= bc

the following properties hold.

• (Generalized) circles passing through the point −d/c are being mapped by

T onto straight lines in the w-plane.

• All straight lines in the z-plane are being mapped by T onto (generalized)

circles in the w-plane passing through the point a/c.

• Circles that are not passing through the point −d/c are being mapped by T

onto circles that are not passing through the point a/c.

�
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Cross-ratios and Möbius tranformations.

Theorem: Let z1, z2, z3 ∈ C
∗ and w1, w2, w3 ∈ C

∗ be pairwise distinct,

respectively. Then, there is one unique Möbius transformation w = T(z)

satisfying the interpolation conditions

wj = T(zj) for j = 1, 2, 3.

The interpolating Möbius transformation T(z) is determined by the

three-point-formula

w−w1

w−w2

:
w3 −w1

w3 −w2

=
z− z1

z− z2
:
z3 − z1

z3 − z2
.

�

Definition: The expression

D(z0, z1, z2, z3) =
z0 − z1

z0 − z2
:
z3 − z1

z3 − z2
.

is called the cross-ratio (or: double ratio) of the points z0, z1, z2, z3. �
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Chapter 3: Möbius Transformations

Example.

To be determined:

A Möbius transformation T(z) satisfying T(1) = i, T(i) = −i and T(0) = 0.

According to the three-point-formula, we obtain

w− i

w+ i
:
0− i

0+ i
=
z− 1

z− i
:
0− 1

0− i

and so (by solving for w):

w = T(z) =
(1+ i)z

(1+ i)z− 2i
.

Exercise: Verify the above mentioned interpolation conditions for T(z). �
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Symmetry with respect to circles.

If the points z and z′ are located as shown in the following figure, then we say

that the points z and z′ are lying symmetric with respect to the circle

C = {z ∈ C | |z− z0| = R}.

The points z and z′ lie symmetric w.r.t. the circle C.

�
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Remarks on symmetries w.r.t. circles.

• The map z 7−→ z′ is called inversion at the circle or

reflection at the circle.

• A point z with |z− z0| ≤ R is always symmetric to one (unique) point z′

with |z′ − z0| ≥ R.

• If |z− z0| = R, then z is self-symmetric, i.e., z′ = z.

• The point z = z0 is symmetric to z′ = ∞.

• We have (z− z0)(z′ − z0) = R
2.

�
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Möbius transformations and circular symmetries.

Theorem:

Möbius transformations preserve symmetries w.r.t. (generalized) circles.

More precisely: Let C be a (generalized) circle in C
∗ and z, z′ be symmetric

with respect to C. Then, the images of z, z′ under a Möbius transformation T

are symmetric with respect to that (generalized) circle in C
∗, which is the image

of C, i.e., C∗ = T(C). �
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Example. Find a Möbius transformation w = T(z), which maps the circle

|z| = 2 onto the circle |w+ 1| = 1 with satisfying T(−2) = 0 and T(0) = i.

Solution: z2 = 0 and z3 = ∞ lie symmetric w.r.t. |z| = 2. Therefore, the images

w2 = i and w3 = T(∞) must lie symmetric w.r.t. the circle |w+ 1| = 1. But in

this case we have (w2 + 1)(w3 + 1) = 1 and so w3 = 0.5(−1+ i).

From the three-point-rule we get

w− 0

w− i
:
w3 − 0

w3 − i
=
z+ 2

z− 0
:
z3 + 2

z3 − 0

∣

∣

∣

∣

z3→∞

,

whereby

w = T(z) = −
z+ 2

(1+ i)z+ 2i
. �
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Example. Find a Möbius transformation w = T(z), which maps the upper

half plane Im(z) > 0 onto the disk |w| ≤ 1, and, moreover, maps a given point

z1, with Im(z1) > 0, on w1 = 0.

Solution: For symmetry, the point z2 = z1 must be mapped on w2 = ∞, which

implies

w = c
z− z1

z− z1
with |c| = 1.

�
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Example.

For b > a > 0 we regard the Möbius transformation

w = T(z) =
z+ p

−z+ p
where p =

√
ab ∈ (a, b)

For different evaluations of T we get

z1,2 = ±p → w1,2 = ∞, 0

z3,4 = a, b → w3,4 = ±
√
a+

√
b√

b−
√
a

= ±ρ with ρ > 1

z5,6 = −a,−b → w5,6 = ±
√
b−

√
a

√
a+

√
b
= ±1

ρ

z7,8 = 0,∞ → z7,8 = 1,−1.
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Example (continued).

• The Möbius transformation T maps the x-axis onto the u-axis.

• Point pairs that are symmetric w.r.t. the x-axis are being mapped by T onto

point pairs that are symmetric w.r.t. the u-axis

• Circles that are symmetric w.r.t. the x-axis are being mapped by T onto

circles that are symmetric w.r.t. the u-axis

�
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4 Analytic Functions

4.1 Complex Differentiation

Questions:

• How should we differentiate complex functions?

• How do define complex limits?

• How should we describe continuity for complex functions?

Starting point: Let f(z) : D −→ C be a complex function of the form

f(z) = u(z) + iv(z)

where u, v : D −→ R are real-valued. Further let z = x+ iy, so that

f(z) ≡ f(x, y) u(z) ≡ u(x, y) v(z) ≡ v(x, y).

complex functions TUHH, Summer Semester 2025 © Armin Iske 76



Chapter 4: Analytic Functions

Complex differentials.
Assumptions:

• Let z0 = x0 + iy0 be a (fixed) point in Definitionsbereich D(f) von f.

• There be an (open) neighbourhood around z0, on which the real functions

u ≡ u(x, y), v ≡ v(x, y) have continuous partial derivatives w.r.t. x, y,

respectively,, i.e., the partial derivatives ux, uy, vx and vy are continuous

around (x0, y0).

Then:

• The (total) differentials du and dv exist in (x0, y0).

• For dx = x− x0 and dy = y− y0 (from real analysis) we have

du = ux(x0, y0)dx+ uy(x0, y0)dy

dv = vx(x0, y0)dx+ vy(x0, y0)dy.

Definition: A differential of a complex function f = u+ iv at a point

z0 = x0 + iy0 is the linear function (in dx and dy) df = du+ idv.

complex functions TUHH, Summer Semester 2025 © Armin Iske 77



Chapter 4: Analytic Functions

Differentials and partial derivatives.

For df = du+ idv the differential of f at z0 has the form

df = [ux(x0, y0) + ivx(x0, y0)]dx+ [uy(x0, y0) + ivy(x0, y0)]dy.

Now we represent the coefficients of df (i.e., dx and dy) by corresponding

partial derivatives fx, fy of f. In particular, we have

fx(x0, y0) = lim
h→0

f(x0 + h, y0) − f(x0, y0)

h
, h→ 0

= lim
h→0

u(x0 + h, y0) − u(x0, y0) + i [v(x0 + h, y0) − v(x0, y0)]

h

= lim
h→0

u(x0 + h, y0) − u(x0, y0)

h
+ i lim

h→0

[v(x0 + h, y0) − v(x0, y0)]

h

and so

fx(x0, y0) = ux(x0, y0) + ivx(x0, y0).
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On the form of the differential (continued).
Likewise, we have

fy(x0, y0) = uy(x0, y0) + ivy(x0, y0).

Altogether, we obtain

df = fx(x0, y0)dx+ fy(x0, y0)dy.

Now: Represent df in terms of dz (rather than in terms of dx and dy).

To this end, we write

dz = z− z0 = (x+ iy) − (x0 + iy0) = dx+ idy.

Observe: We have

dz = z− z0 = dx− idy

and so

dx =
1

2

(

dz+ dz
)

and dy =
1

2i

(

dz− dz
)

.
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Complex differentiation.

This further leads us to the representation

df = Adz+ Bdz,

where

A =
1

2
(fx(z0) − ify(z0)) and B =

1

2
(fx(z0) + ify(z0))

and we have

lim
z→z0

f(z) − f(z0) − df

dz
= 0.

Definition: A function f is said to be complex differentiable at z0, if

df =
1

2
(fx(z0) − ify(z0))dz

i.e., if B = 0. �
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Cauchy-Riemann differential equations.

If f is complex differentiable at z0, then we have (by B = 0)

fx(z0) + ify(z0) = 0

whereby

ux(z0) + ivx(z0) + i[uy(z0) + ivy(z0)] = 0

or,

ux(z0) − vy(z0) + i[uy(z0) + vx(z0)] = 0.

If we separate by real and imaginary part, we obtain the Cauchy-Riemann

differential equations

ux = vy and uy = −vx.

Conclusion: The function f = u+ iv is complex differentiable at z0, if and only

if u and v satisfy the Cauchy-Riemann differential equations at z0. �
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Pointwise differentiation.
Observation: If f is complex differentiable at z0, then we have

df = Adz with A = (fx(z0) − ify(z0))/2.

Therefore, the complex growth dz = ℓ gives

f(z0 + ℓ) − f(z0) = Aℓ+Φ(ℓ)

where

lim
ℓ→0

Φ(ℓ)

ℓ
= 0 or lim

ℓ→0

f(z0 + ℓ) − f(z0)

ℓ
= A.

Definition: The limit

lim
ℓ→0

f(z0 + ℓ) − f(z0)

ℓ

is called the derivative of f at z0, in short:

f′(z0),
df

dz
(z0), Df(z0)

�
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Complex differentiation and derivatives.
Remarks:

• We characterize derivatives as for real functions, i.e., by difference quotients.

• For real functions, the geometric interpretation of the derivative is by the

tangent’s slope. But how is that for complex functions? (details later)

• The complex differentiability implies the existence of the derivative.

• Vice versa: The existence of the derivative implies the complex differentiability.

In fact: From the existence of the derivative at z0 = x0 + iy0 we get

f′(z0) = lim
h→0

f(x0 + h, y0) − f(x0, y0)

h
= fx(z0)

f′(z0) = lim
h→0

f(x0, y0 + h) − f(x0, y0)

ih
=
1

i
fy(z0)

and so (with B = 0)

fx(z0) = −ify(z0)
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Summary of the discussion.

Theorem: Let f = u+ iv be a complex function with domain D(f). Moreover,

let z0 ∈ D(f), such that u, v have continuous partial derivatives w.r.t. x and y

in a neighbourhood of z0. Then, the following statements are equivalent.

(a) f is complex differentiable at z0;

(b) u and v satisfy the Cauchy-Riemann differential equations;

(c) The function f has a derivative at z0.

�

Remark: Further (from our previous discussion) we can conclude the relation

df = f′(z0)dz,

provided that f is complex differentiable at z0. Finally, we have

f′(z0) = ux(z0) + ivx(z0).

�
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Example.
For f(z) = z2 we have

f(x, y) = f(z) = z2 = (x+ iy)2 = x2 − y2 + 2ixy

and so

fx(x, y) = 2x+ 2iy and fy(x, y) = −2y+ 2ix = ifx(x, y)

For any z = z0 we have B = 0 and A = 2z0, i.e.,

df = 2z0dz.

Therefore, f(z) is complex differentiable at z0, and we have

f′(z0) = 2z0 for z0 ∈ C.

More directly:

f(z0 + ℓ) − f(z0)

ℓ
=

(z0 + ℓ)
2 − z20
ℓ

=
2z0ℓ+ ℓ

2

ℓ
= 2z0 + ℓ −→ 2z0 for ℓ→ 0.

�
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Example.

For f(z) = z we have

f(x, y) = f(z) = z = x− iy

and so

fx(x, y) = 1 and fy(x, y) = −i.

For any z = z0 we have

A =
1

2
(fx(x, y) − ify(x, y)) = 0 and B =

1

2
(fx(x, y) + ify(x, y)) =

1− i2

2
= 1,

whereby A ≡ 0, B 6= 0 and df = dz.

Conclusion: The complex function f(z) = z is in none of the points in C

complex differentiable, i.e., the Cauchy-Riemann differential equations are

violated in all points in C, i.e., there is no point z0 ∈ C at which the function

f(z) = z has a derivative. �
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Example.
For f(z) = |z|2 = zz we have

f(x, y) = |z|2 = x2 + y2, fx(x, y) = 2x fy(x, y) = 2y

and so, for any z0 ∈ C,

A =
1

2
(fx(z0) − ify(z0)) = z0

and

B =
1

2
(fx(z0) + ify(z0)) = z0

whereby

df = z0dz+ z0dz.

Conclusion: The complex function f(z) = |z|2 is only at z0 = 0 complex

differentiable, i.e., the Cauchy-Riemann differential equations are only satisfied

at the origin, i.e., the derivative of f does only exist at the origin, where we have

f′(0) = 0. �

complex functions TUHH, Summer Semester 2025 © Armin Iske 87



Chapter 4: Analytic Functions

Example.
For f(z) = exp(z) we obtain by f = u+ iv the decomposition

f(x, y) = ez = ex+iy = ex(cos(y) + i sin(y)),

whereby

u(x, y) = ex cos(y) and v(x, y) = ex sin(y)

and, moreover,

ux(x, y) = ex cos(y) = vy(x, y)

uy(x, y) = −ex sin(y) = −vx(x, y).

Therefore, the Cauchy-Riemann differential equations are satisfied at all point in

the complex plane, i.e., the complex exponential function f(z) = exp(z) is

everywhere complex differentiable. For its derivative we get

f′(z) = ux(z) + ivx(z) = e
x(cos(y) + i sin(y)) = ez = f(z).

�
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4.2 Analytic functions

From now:

We restrict ourselves to connected and open domains in the complex plane.

Examples: The following point sets are open and connected.

• the complex plane C;

• the cut complex plane C
−;

• the complex plane without the points z1 = 0, z2 = 1, z3 = i;

• the open unit disk {z ∈ C | |z| < 1};

• the annulus (i.e., area between two concentric circles), without boundary,

e.g. {z ∈ C | 3 < |z| < 7}.

But:

The closed disk {z ∈ C | |z| ≤ 1} is not admissible, since it is not open. �
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Analytic (holomorphic) functions.

Definition: A complex function f : D(f) −→ C is called analytic (or:

holomorphic), if the following two conditions are satisfied.

• D(f) is open and connected in the complex plane C;

• f is complex differentiable at every point z ∈ D(f).

�

Remark: Recall that the second of the above two conditions is equivalent to:

• real and imaginary part of f satisfy the Cauchy-Riemann differential

equations at every point z ∈ D(f)

• the complex function f has a derivative at every point z ∈ D(f).

Remark: An analytic function f is continuous at all points of its domain D(f). �
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Differentiation rules for analytic functions.

Theorem: Let the functions f and g be analytic on a (connected open)

domain G. Then, the functions f+ g and fg are also analytic on G. If g(z) 6= 0
holds for all z ∈ G, then the function f/g is also analytic on G. The following

differentiation rules hold:

(f+ g)′ = f′ + g′

(fg)′ = f′g+ fg′

(

f

g

)

′

=
f′g− fg′

g2

�

complex functions TUHH, Summer Semester 2025 © Armin Iske 91



Chapter 4: Analytic Functions

Entire functions.

Definition: A complex function, which is analytic on the entire complex plane,

is called entire function �

Remark: Every complex polynomial

p(z) = a0 + a1z+ a2z
2 + . . .+ anz

n a0, . . . , an ∈ C

is an entire function.

In fact: Constants fc(z) ≡ c ∈ C are entire with f′c(z) ≡ 0. Moreover, the

identity g(z) = z is entire with g′(z) = 1. Now any polynomial p : C −→ C can

be written is a composition of the functions fc and g, and so p is entire, where

p′(z) = a1 + 2a2z+ . . .+ nanz
n−1.

�

Remark: The complex exponential function f(z) = exp(z) is entire. �
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Composition of analytic functions.

Regard the analytic functions

g : D(g) −→W(g) and f : D(f) −→W(f)

where W(g) ⊂ D(f).

Theorem: The composition f ◦ g of two analytic functions f : D(f) −→W(f)

and g : D(g) −→W(g) satisfying W(g) ⊂ D(f) is analytic, where, moreover,

the chain rule

(f ◦ g)′ = (f′ ◦ g)g′

holds, i.e.,

(f ◦ g)′(z0) = f′(g(z0))g′(z0) for all z0 ∈ D(f ◦ g) = D(g).

�
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The inversion of analytic functions.

Regard the bijective analytic function

f : D(f) −→W(f)

with its inverse function

f−1 :W(f) −→ D(f).

Theorem: The inverse function f−1 of a bijective analytic function f is also

analytic, where we have
(

f−1
)′

=
1

f′ ◦ f−1

i.e.,
(

f−1
)′

(w0) =
1

f′(f−1)(w0)
for all w0 ∈ D(f−1) =W(f).

�
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Examples.
Example 1: Regard f(z) = z2 on the right half plane {z ∈ C |Re(z) > 0}, on

which f is injective with image C
−. The inverse function f−1(z) =

√
z is the

principle value of the square root function, and we have

(√
z
)′

=
1

2
√
z

for all z ∈ C
−.

Example 2: Regard f(z) = exp(z) on the strip S = {z ∈ C | − π < Im(z) < π},

on which f is injective with image C
−. The inverse function f−1(z) = Log(z) is

the principle value of the logarithm, and we have

(Logz)
′

=
1

eLog(z)
=
1

z
für alle z ∈ C

−.

Example 3: For f(z) = za, the principle value of {za}, z ∈ C
− and for fixed

a ∈ C we have

(za)
′

= aza−1 for all z ∈ C
−.

�
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4.3 On the geometry of complex differentiation

Let f : D(f) −→W(f) be an analytic function and z0 ∈ D(f). Moreover, let

Γ = {z(t) = x(t) + iy(t) | t ∈ [α,β]} ⊂ D(f)

be a curve containing z0, i.e, z0 = Γ(t0) for some t0 ∈ [α,β].

Finally, let x(t) und y(t) be differentiable at t0. Then, the function z(t) is

differentiable at t0 with derivative

z′(t0) = x
′(t0) + iy

′(t0).

From now, we assume z′(t0) 6= 0.
Question: How can we describe the image of Γ under the mapping f?

To this end, regard the image

Γ∗ = {w(t) = f(z(t)) | t ∈ [α,β]}

with w(t0) = f(z(t0)), in short: w0 = f(z0).
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Geometric interpretations.
Observe: The tangent vector w′(t0) of Γ

∗ at w0 can be computed, according

to the chain rule, as

w′(t0) = f
′(z0)z

′(t0).

Then, for f′(z0) 6= 0 we have

arg(w′(t0)) = arg(f′(z0)) + arg(z′(t0)).

or

α∗ = α+ω

for α∗ = arg(w′(t0)), α = arg(z′(t0)) and ω = arg(f′(z0)).

Geometric interpretations:

• We obtain the tangent vector of Γ∗ by rotation of Γ about angle ω;

• The rotation angle ω depends on f and z0, but not on Γ ;

• The tangent vector of any curve containing z0 is being rotated

by the mapping f about the angle ω = arg(f′(z0)). �
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Conformal mappings.

Definition: A map f : D(f) −→W(f), which preserves all angles (including

their orientation) is called conformal. �

Theorem: An analytic function f : D(f) −→W(f) is conformal at any point

z0 ∈ D(f) with f′(z0) 6= 0. �

Theorem: Let f : D(f) −→W(f) be conformal at z0 ∈ D(f). Moreover, let the

real and imaginary parts u(z) and v(z) of f = u+ iv be continuously

differentiable in a neighbourhood of z0. Then, f is complex differentiable with

f′(z0) 6= 0. �
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