Fachbereich Mathematik der Universität Hamburg

SoSe 2020

Prof. Dr. A. Iske Dr. K. Rothe ©

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Blatt 0

Die Übungen werden online unter STUDIP durchgeführt

https://e-learning.tuhh.de/studip/dispatch.php/start

Reihenfolge der Bearbeitung in der Woche 20.-24.04.20

- a) selbständige Bearbeitung ab dem 20.4.20,
- b) Lösungen schriftlich formulieren (in einer pdf-Datei),
- c) Lösungen zur Korrektur per Email versenden (vgl. hinweise.pdf in STUDIP),
- d) Besprechung der Lösungen unter STUDIP im Forum einer Gruppenübung.

Aufgabe A:

Gegeben seien die komplexen Zahlen $z_1=3+2i$ und $z_2=5-4i$. Man berechne die kartesische Darstellung von

a)
$$z_1 + z_2$$
, $|z_1 + z_2|$, $4z_1 - 7iz_2$, $4\bar{z}_1 - 7i\bar{z}_2$,

b)
$$z_1 \cdot z_2$$
, $\bar{z}_1 \cdot \bar{z}_2$, $z_1^3 \cdot z_2^2$, $\text{Re}(z_1^3) \cdot \text{Im}(z_2^2)$,

c)
$$\frac{z_1}{z_2}$$
, $\frac{\operatorname{Im}(z_1)}{\operatorname{Re}(z_2)}$.

Aufgabe B:

Gegeben seien die komplexen Zahlen

$$z_1 = 1$$
, $z_2 = i$, $z_3 = -1$, $z_4 = -i$.

- a) Man gebe $z_1+z_2, z_2+z_3, z_1+z_4$ in Polarkoordinaten an.
- b) Man berechne in kartesischen und Polarkoordinaten

$$(z_1+z_2)^7$$
, $\frac{z_2+z_3}{\bar{z}_1+\bar{z}_2}$, $\frac{z_1+z_4}{z_2}$.

Aufgabe C:

Man berechne alle Lösungen von

$$z^6 = 1$$

in Polarkoordinaten und kartesischen Koordinaten.

Aufgabe D:

a) Für $z \in \mathbb{C}$ sei das Polynom $p(z) := a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$ mit reellen Koeffizienten $a_0, \ldots a_n$ gegeben.

Man zeige:

Wenn $z_0 \in \mathbb{C}$ Nullstelle von p ist, dann ist auch \bar{z}_0 Nullstelle von p.

b) Man zeige, dass der Kreis $|z-z_0|=r$ in der komplexen Ebene auch die folgende Darstellung besitzt

$$z\bar{z} - z\bar{z}_0 - z_0\bar{z} + z_0\bar{z}_0 = r^2 \quad \text{mit} \quad z, z_0 \in \mathbb{C}.$$

c) Man bestimme die Kurve, die durch

$$z\overline{z} = (4 - 3i)\overline{z} + (4 + 3i)z + 144$$

beschrieben wird.