Prof. Dr. J. Behrens

Dr. K. Rothe

Komplexe Funktionen für Studierende der Ingenieurwissenschaften

Blatt 3

Aufgabe 9:

Gegeben sei die Abbildung $T: \mathbb{C}^* \to \mathbb{C}^*$ mit

$$T(z) = \frac{z+2}{z-2} \cdot$$

- a) Handelt es sich bei T um eine Möbius-Transformation?
- b) Man berechne die Umkehrabbildung.
- c) Man bestimme das Bild der reellen Achse.
- d) Man bestimme das Bild des Kreises |z| = 2.
- e) Man bestimme das Bild der imaginären Achse.
- f) Wohin wird der Halbkreis H abgebildet?

$$H := \{ z \in \mathbb{C} \mid |z| \le 2 , \text{ Im}(z) \ge 0 \}$$

Aufgabe 10:

Gegeben seien die Punkte

$$z_1 = 1, z_2 = 1 + 2i, z_3 = i$$

und

$$w_1 = 0, \ w_2 = 1 + i, \ w_3 = -1 - i.$$

a) Man berechne die Möbius-Transformation T, für die mit $j=1,2,3\,$ gilt:

$$w_i = T(z_i)$$
.

- b) Liegen $z_0 = 2 + i$ und z_1, z_2, z_3 auf einem (verallgemeinerten) Kreis K?
- c) Liegen $w_0 = T(z_0)$ und w_1, w_2, w_3 auf einem (verallgemeinerten) Kreis T(K)?

Aufgabe 11:

Gesucht ist eine Möbius-Transformation w=T(z) mit T(-1)=1 und T(0)=0, die die linke Halbebene Re $(z)\leq 0$ auf die Kreisscheibe $|w-1|\leq R$ abbildet. Wie groß ist R?

Aufgabe 12:

Für $f:\mathbb{C}\to\mathbb{C}$ mit $f(z)=z^3$ berechne man

a)
$$A := \frac{1}{2} (f_x(z_0) - i f_y(z_0))$$
 und

b)
$$B := \frac{1}{2} (f_x(z_0) + i f_y(z_0)).$$

Man vergleiche die Ergebnisse mit den Ableitungen von f nach den unabhängigen Variablen z und \bar{z} , also mit

$$\frac{\partial f}{\partial z}$$
, $\frac{\partial f}{\partial \bar{z}}$.

Dabei sollen die bekannten Ableitungsregeln aus dem Reellen rein formal übertragen werden.

Abgabetermin: 14.5.-18.5. (zu Beginn der Übung)