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Chapter 1: Basics, Terminology, Examples

Chapter 1: Basics, Terminology, Examples

The study of partial differential equations is a wide field and encompasses
various, entirely different theories and aspects.

Thus, this lecture can merely give a very basic introduction into the
general topic and in fact focuses on treating some specific equations as
model cases.
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Chapter 1: Basics, Terminology, Examples 1.1 Terminology for PDEs

1.1 Terminology for PDEs

Terminology (for partial derivatives)

For a function u : Ω→ Rq in n variables x = (x1, x2 . . . , xn) ∈ Ω ⊂ Rn
with arbitrary n, q ∈ N agree on notation for

all first-order partial derivatives (Jacobi matrix ; gradient if q = 1):

Du ..= Ju ..=
(
∂u
∂xi

)
i=1,2,...,n

= (∂iu)i=1,2,...,n ,

all second-order partial derivatives (Hessian if q = 1):

D2u ..=
(

∂2u
∂xi∂xj

)
i,j=1,...,n

= (∂i∂ju)i,j=1,...,n ,

all kth-order partial derivatives with arbitrary k ∈ N:

Dku ..=
(

∂ku
∂xik ...∂xi1

)
i1,...,ik=1,...,n

= (∂ik . . . ∂i1u)i1,...,ik=1,...,n .
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Chapter 1: Basics, Terminology, Examples 1.1 Terminology for PDEs

General form of partial differential equations

Definition (partial differential equation)

A partial differential equation (in brief : PDE or partial DE ) is an equation
with partial derivatives up to order m ≥ 1 in form

F (x, u(x),Du(x),D2u(x), . . . ,Dmu(x)) = 0 for all x ∈ Ω

or in brief functional notation

F ( · , u,Du,D2u, . . . ,Dmu) ≡ 0 in Ω

for an unknown function u : Ω→ Rq on an open set Ω ⊂ Rn, n ≥ 2.
If u solves the equation, one calls u a solution to the PDE in Ω.

The decisive difference to ODEs is that x = (x1, x2, . . . , xn) contains not
only one, but multiple (in fact n ≥ 2) variables.

Thomas Schmidt (Maths Dept., UHH) DE II for Engineering TUHH, Summer 24 5 / 111



Chapter 1: Basics, Terminology, Examples 1.1 Terminology for PDEs

Terminology in connection with PDEs

Terminology for PDE F ( · , u,Du,D2u, . . . ,Dmu) ≡ 0 in Ω ⊂ Rn:

m: order of the PDE (provided Dmu indeed occurs),

n: number of variables (recall n ≥ 2),

q: number of (component) functions (of u : Ω→ Rq),

N : number of (component) equations (of PDE with
”
≡“ in RN ),

F : given structure function of the PDE
(from suitable domain to RN ).

In this lecture the focus is on the case N = q = 1 (scalar PDE for single
function) with order m ∈ {1, 2}. Taking N = q ≥ 2 (PDE system for
multiple functions) is also reasonable, but here mostly beyond the scope.
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Chapter 1: Basics, Terminology, Examples 1.1 Terminology for PDEs

Boundary conditions

One expects unique solutions only for boundary value problems (BVPs) out
of PDEs and additional boundary conditions (BCs) at ∂Ω. As a rough rule
of thumb a PDE system of order m for N = q functions needs mq

2 BCs
(where

”
half BCs“ concern a part of the boundary only, similar to ICs for ODEs).

Common BCs are (variants of) Dirichlet BCs

u(x) = g(x) for x ∈ ∂Ω

with given function g : ∂Ω→ Rq and Neumann BCs

∂νu(x) = ψ(x) for x ∈ ∂Ω

with outward unit normal field ν : ∂Ω→ Rn to ∂Ω, normal derivative
∂νu(x) ..= Ju(x)ν(x), and given function ψ : ∂Ω→ Rq and beside these
also initial conditions (ICs)/Cauchy conditions (soon more on these).

Thomas Schmidt (Maths Dept., UHH) DE II for Engineering TUHH, Summer 24 7 / 111



Chapter 1: Basics, Terminology, Examples 1.1 Terminology for PDEs

Classification of PDEs

Similar to ODEs one classifies PDEs of order m as follows:

Autonomous PDEs take the form F0(u,Du,D2u, . . . ,Dmu) ≡ 0.

Linear PDEs exhibit an affine dependence on u, Du, D2u, . . . Dmu.
The possibly x-dependent factors in front of u and its derivatives are
then called coefficients, while terms independent of u and its
derivatives are collected on the right-hand side as inhomogeneity.

Among non-linear PDEs one further distinguishes:

Semilinear PDEs depend affinely on Dmu with coefficients which
depend solely on x in front of the mth derivatives.

Quasilinear PDEs depend affinely on Dmu (in general with coefficients

which depend on ( · , u,Du, . . . ,Dm−1u) in front of the mth derivatives).

Fully non-linear PDEs are not quasilinear.
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Chapter 1: Basics, Terminology, Examples 1.1 Terminology for PDEs

Relevant types of PDEs

In this lecture, relevant types of scalar PDEs (for u : Ω→ R) are:

linear first-order PDEs (with coefficients ai, b : Ω→ R):
n∑
i=1

ai(x)
∂u

∂xi
(x) + b(x)u(x) = f(x) .

linear second-order PDEs (with coefficients ai,j , bi, c : Ω→ R):
n∑
i=1

n∑
j=1

ai,j(x)
∂2u

∂xj∂xi
(x) +

n∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x) = f(x) .

semilinear first-order PDEs (with ai : Ω→ R and b : Ω×R→ R):
n∑
i=1

ai(x)
∂u

∂xi
(x) = b(x, u(x)) .

quasilinear first-order PDEs (with ai, b : Ω×R→ R):
n∑
i=1

ai(x, u(x))
∂u

∂xi
(x) = b(x, u(x)) .
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Chapter 1: Basics, Terminology, Examples 1.2 Various examples of PDEs

1.2 Various examples of PDEs

In the sequel, various examples from the
”
zoo“ of important PDEs are

briefly discussed together with suitable BCs and interpretations. The
fundamentally different interpretations and applications underline the
extremely wide scope of PDE theory.

If no other indication is given, the examples are scalar PDEs for a single
function.
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Chapter 1: Basics, Terminology, Examples 1.2 Various examples of PDEs

Transport equation

Linear transport equation for u : [0, T )×Rn → R:

∂u

∂t
(t, x) + a(t, x) ·∇xu(t, x) = 0 for (t, x) ∈ (0, T )×Rn

with given T > 0 and a : (0, T )×Rn → Rn (
”
·“ is the inner product).

Typical feature: Occurrence of time variable t ∈ [0, T ) and space variables
x ∈ Rn. Often one writes only ∇u, but still with the meaning of ∇xu.

Classification: first-order, linear, homogeneous.

Reasonably complemented with IC (
”
half BC“; u0 : Rn → R given):

u(0, x) = u0(x) for x ∈ Rn .

Interpretation: Solutions u model the density of mass or of electric charge,
which is transported along the field a. Specifically, constant a gives rise to
uniform drift u(t, x) = u0(x−ta) with velocity a ∈ Rn.
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Chapter 1: Basics, Terminology, Examples 1.2 Various examples of PDEs

Cauchy-Riemann equations

Cauchy-Riemann equations for f, g : Ω→ R in variables (x, y):

∂f

∂x
− ∂g

∂y
≡ 0 ,

∂f

∂y
+
∂g

∂x
≡ 0

 in Ω ⊂ R2

Classification: system of 2 equations, first-order, linear, homogeneous.

Meaning: When identifying C 3 x+iy =̂ (x, y) ∈ R2 characterizes the
holomorphic (i.e. complex differentiable) functions f+ig : Ω→ C on
Ω ⊂ C. More in lecture

”
Complex Functions“!

Reasonably complemented with Dirichlet BC for either f or g at ∂Ω
(though this leaves free an additive constant for the other function).
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Chapter 1: Basics, Terminology, Examples 1.2 Various examples of PDEs

Laplace equation and Poisson equation

Laplace equation and Poisson or potential equation for u : Ω→ R:

∆u(x) = 0 rsp. ∆u(x) = f(x) for x ∈ Ω ⊂ Rn

with given f : Ω→ R and with the important Laplace operator

∆u(x) ..= div(∇u)(x) =

n∑
i=1

∂2u

∂x2
i

(x) = trace(D2u(x)) .

Solutions of Laplace’s equation are also known as harmonic functions.

Classification: second-order, linear, homogeneous rsp. inhomogeneous.

Reasonably complemented with Dirichlet BC or Neumann BC for u at ∂Ω.

Meaning/interpretation: Characterizes real and imaginary parts of
holomorphic functions. Solutions u model electric potential for charge
density f/ε0 (with physical constant ε0 > 0).
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Chapter 1: Basics, Terminology, Examples 1.2 Various examples of PDEs

Diffusion or heat equation

Diffusion or heat equation for u : [0, T )× Ω→ R:

∂u

∂t
(t, x)−∆xu(t, x) = 0 for (t, x) ∈ ΩT ⊂ R×Rn ,

again with time and space variables and with abbreviation ST ..= (0, T )×S.

Classification: second-order, linear, homogeneous (has inhomogeneous variant).

Complement e.g. with IC and Dirichlet BC ( 1 BC at
”
parabolic boundary“)

u(0, x) = u0(x) for x ∈ Ω , u(t, x) = g(t, x) for (t, x) ∈ (∂Ω)T

for given u0 : Ω→ R and g : (∂Ω)T → R.

Interpretation: Solutions u model the mass density/concentration in
diffusion processes or the temperature in heat propagation.

In stationary case ∂u
∂t ≡ 0 get back Laplace equation.
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Chapter 1: Basics, Terminology, Examples 1.2 Various examples of PDEs

Navier-Stokes equations

Incompressible Navier-Stokes equations for (~v, p) : [0, T )× Ω→ Rn ×R:

ρ
∂~v

∂t
− µ∆x~v + ρ

n∑
i=1

vi
∂~v

∂xi
= −∇xp ,

divx~v = 0

 in ΩT ⊂ R×Rn

with constants ρ, µ > 0.

Classification: system of n+1 equations, second-order, semilinear.

Reasonable BCs as for diffusion equation (also known as no-slip BCs).

Interpretation: Solutions (~v, p) model velocity and pressure in the flow of
an incompressible fluid of constant density ρ and constant viscosity µ.
Foundational in fluid mechanics!

Specifically, for µ = 0, reduces to Euler equations in fluid mechanics and in
case ∂~v

∂t ≡ 0 gives stationary Navier-Stokes and Euler equations, respectively.
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Wave equation

Wave equation for u : R× Ω→ R:

∂2u

∂t2
(t, x)−∆xu(t, x) = 0 for (t, x) ∈ R× Ω ⊂ R×Rn

Classification: second-order, linear, homogeneous (has inhomogeneous variant).

Complement e.g. with 2 ICs and Dirichlet BC (still to be seen as 1 BC overall)

u(0, x) = u0(x) for x ∈ Ω ,
∂u

∂t
(0, x) = v0(x) for x ∈ Ω ,

u(t, x) = g(t, x) for (t, x) ∈ R× ∂Ω

for given u0, v0 : Ω→ R and g : R× ∂Ω→ R.

Interpretation: Solutions u model displacements in wave propagation
and/or in oscillations.

In stationary case ∂u
∂t ≡ 0 get back Laplace equation.
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Schrödinger equation

Schrödinger equation for ψ : R×Rn → C:

i~
∂ψ

∂t
+

~
2m

∆xψ − V ψ ≡ 0 in R×Rn

with given V : R×Rn → R and constants ~,m > 0.

Classification: scalar/system over C/R, second-order, linear, homogeneous.

Reasonably complemented with IC (ψ0 : Rn → C given):

ψ(0, · ) = ψ0 in Rn .

Interpretation: Solutions ψ are wavefunctions (quantum states) of particle
of mass m in potential V (with reduced Planck constant ~). Foundational for
quantum mechanics!

Product-exponential ansatz sometimes yields eigenvalue problem for ∆x.
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Chapter 1: Basics, Terminology, Examples 1.2 Various examples of PDEs

Maxwell equations

Vacuum Maxwell equations for ( ~E, ~B) : R×R3 → R3 ×R3:

ε0 divx ~E(t, x) = ρ(t, x) ,
∂ ~B
∂t (t, x) + rotx ~E(t, x) = 0 ,

divx ~B(t, x) = 0 ,

ε0µ0
∂ ~E
∂t (t, x)− rotx ~B(t, x) = −µ0~ (t, x)

 for (t, x) ∈ R×R3

with given (ρ,~ ) : R×R3 → R×R3 and constants ε0, µ0 > 0.

Classification: 8 component equations for 6 component functions (okay only

since rot strongly degenerate; rot ◦∇ ≡ 0, div ◦ rot ≡ 0), linear, inhomogeneous.

Complement with ICs ~E(0, x) = ~E0(x) and ~B(0, x) = ~B0(x) for given
( ~E0, ~B0) : R3 → R3 ×R3 s.t. ε0 div ~E0 = ρ(0, · ) and div ~B0 ≡ 0 in R3.

Interpretation: These four basic equations of electrodynamics determine
the electric field ~E and the magnetic field ~B from given electric charge
density ρ and electric current density~.
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Minimal surface equation

Minimal surface equation for u : Ω→ R:

div

( ∇u√
1 + |∇u|2

)
= 0 in Ω ⊂ Rn .

Classification: second-order, quasilinear.

Usually complemented with Dirichlet BC for u at ∂Ω or certain free BCs.

Interpretation: Graphs of solutions u are minimal surfaces, which have zero
mean curvature at each of their points and are relevant objects in
geometric analysis and differential geometry.
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Monge-Ampère equation

Monge-Ampère equation for u : Ω→ R:

det
(
D2u(x)

)
= f(x) for x ∈ Ω ⊂ Rn

with given (often everywhere positive) f : Ω→ R.

Classification: second-order, fully non-linear.

Reasonable with Dirichlet BC or Neumann BC or certain natural BC.

Applications: Solutions u are connected with optimal transport of mass
distributions and with surfaces of prescribed Gauss curvature.
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Key aspects of the lecture

The focus is now on treating in more detail the following very illustrative
model cases:

general first-order PDEs including the transport equation,

Laplace and Poisson equation (including eigenvalue problems),

diffusion or heat equation,

and wave equation.
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Chapter 2: First-Order PDEs

Chapter 2: First-Order PDEs

First-order PDEs occur in different applications, but mostly describe a
time evolution, which starts at a certain IC. In general one has a better
chance for explicitly solving or analyzing first-order PDEs than one has in
case of second-order and higher-order PDEs.

In this chapter we first discuss different aspects of a central application
context and only eventually approach a comparably general solution theory
and some specific cases.
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Chapter 2: First-Order PDEs 2.1 The continuity equation (and its background)

2.1 The continuity equation (and its background)

Here always use time/space variables (t, x) plus abbreviations ut ..= ∂u
∂t

and div(. . .) ..= divx(. . .). The continuity equation is the linear PDE

ut + div(u~v) ≡ 0 in open U ⊂ R×Rn

for an unknown function u : U → R and a given or u-dependent velocity
field ~v : U → Rn (both functions in variables (t, x) ∈ U).

Interpretation: If u is the density of quantity (often mass), which moves
according to ~v , then at time t and in a point x the temporal rate of
change ut(t, x) equals the spatial in/outflow density −div(u~v)(t, x)(
div(u~v)>0  source/outflow density; div(u~v)<0  sink/inflow density

)
.

In 1d case n = 1, which is already of interest, get simply

ut + (uv)x ≡ 0 in U ⊂ R×R .
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Chapter 2: First-Order PDEs 2.1 The continuity equation (and its background)

Continuity equation and conservation of mass

To underpin the interpretation consider the trajectory t 7→ Φ(t, x) of a
particle, which starts at time t = 0 at x ∈ U0. (Mathematically consider

Φ ∈ C2(I × U0,R
n), Φ(0, x) = x for x ∈ U0, with open 0 ∈ I ⊂ R, U0 ⊂ Rn.)

Then obtain the moving domain U ..= {(t,Φ(t, x)) : t ∈ I , x ∈ U0} and
the velocity field ~v of Φ in U , given by

~v(t,Φ(t, x)) = ∂tΦ(t, x) for (t, x) ∈ I × U0 .

Theorem (Continuity equation and conservation of mass)

In the above setting, if x 7→ Φ(t, x) is a diffeomorphism for each t ∈ I,
then, for u ∈ C1(U), the following are equivalent:

(1) u solves the continuity equation ut + div(u~v) ≡ 0 in U .

(2) Conservation of mass in moving domains: There holds

d

dt

∫
Φ(t,A0)

u(t, x) dx = 0

for each compact and measurable subset A0 ⊂ U0 and every t ∈ I.
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Chapter 2: First-Order PDEs 2.1 The continuity equation (and its background)

Continuity equation and conservation of mass (continued)

Complementary remarks:

In the theorem and in the sequel, compact sets are closed and bounded, while
measurable sets are (Jordan) measurable in the sense of Analysis III.

The hypotheses of the theorem are satisfied for the trajectories of an ODE
system in many (good) cases, but the derivation needs some more ODE theory.

Proof of the theorem on continuity equation and mass conservation:
The Reynolds transport theorem for derivation on moving domains
(see next slide) gives

d

dt

∫
Φ(t,A0)

u(t, x) dx =

∫
Φ(t,A0)

[
ut(t, x) + div(u~v)(t, x)

]
dx

for A0 as in (2) and t ∈ I. Thus, (1) =⇒ (2) is evident. Now suppose that
(2) holds. As every compact and measurable subset Bt ⊂ Φ(t, U0) has the
form Bt = Φ(t, A0), it is

∫
Bt

[
. . .
]

dx = 0 for each such Bt. So, one

deduces
[
. . .
]

= 0 for all x ∈ Φ(t, U0) and altogether for all (t, x) ∈ U .
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The Reynolds transport theorem

Theorem (Reynolds’ transport theorem)

Under the hypotheses of the previous theorem, it holds

d

dt

∫
Φ(t,A0)

u(t, x) dx =

∫
Φ(t,A0)

[
ut(t, x) + div(u~v )(t, x)

]
dx

for each compact and measurable subset A0 ⊂ U0 and every t ∈ I.

Proof: The change-of-variables rule from Analysis III asserts (DΦ ..= DxΦ)∫
Φ(t,A0) u(t, x) dx =

∫
A0
u(t,Φ(t, x)) |det(DΦ(t, x))|dx .

Differentiating for the occurrences of t on the right — for third one the
next lemma — then yields (in short-hand notation and with ∂tΦ =~v( · ,Φ))

d
dt

∫
Φ(t,A0) udx =

∫
A0

[
ut +∇u ·~v + (udiv~v)

]
( · ,Φ) |det(DΦ)|dx

=
∫
A0

[
ut + div(u~v)

]
( · ,Φ) |det(DΦ)|dx

=
∫

Φ(t,A0)

[
ut + div(u~v)

]
dx .
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Chapter 2: First-Order PDEs 2.1 The continuity equation (and its background)

Lemma for proof of Reynolds transport theorem

Lemma (Euler’s identity in fluid mechanics/derivative of the Jacobian)

Under the hypotheses and in the notation of the previous theorems, it holds

∂t|det(DΦ)| = (div~v)( · ,Φ) |det(DΦ)| in I × U0 .

Proof: By distinguishing between positive and negative sign of det(DΦ)
reduce to proving the claim without absolute values. By expanding the
determinant detA =

∑n
k=1 aik(adjA)ki of A = (aij) get

∂(detA)
∂aij

= (adjA)ji. With this compute first

∂t(det(DΦ)) =
∑n

i,j=1(adj(DΦ))ji∂t(DΦ)ij = trace(adj(DΦ)D∂tΦ)

and then continue with adjA = A−1 detA and ∂tΦ =~v( · ,Φ) to

. . . = trace[(DΦ)−1D(~v( · ,Φ))] det(DΦ)

= trace[(DΦ)−1D~v( · ,Φ)DΦ] det(DΦ)

= trace[D~v( · ,Φ)] det(DΦ) = (div~v)( · ,Φ) det(DΦ) .

So, the proof of the lemma (and the previous theorems) is complete.
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On interpretation and relevance of the continuity equation

Finally, we put on record the following observations on interpretation and

relevance of the continuity equation ut + div(u~v) ≡ 0 :

The equation models conservation of mass or charge in physical systems.
(For instance, conservation of charge ρt + div~ ≡ 0 is part of the Maxwell

equations, as these imply ρt = ε0(div ~E)t = ε0div( ~Et) = −div~ .)

In case of constant density u ≡ const the equation reduces to div~v ≡ 0.

(This occurs e.g. as incompressibility in Navier-Stokes/Euler equations.)

In case of constant velocity ~v ≡ a ∈ Rn the equation reduces to the
linear transport equation ut + a ·∇u ≡ 0.

In case of u~v = −C∇u with constant C > 0 the equation reduces to
the diffusion or heat equation ut − C∆u ≡ 0.
(Here, u~v = −C∇u, for concentration or temperature u, has an interpretation
as Fick’s law of diffusion or Fourier’s law of heat conduction, respectively.
In the stationary case and for electric potential u, from div~ ≡ 0 and Ohm’s
law of conductivity ~ = −C∇u in the same vein deduce the Laplace equation.)
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Chapter 2: First-Order PDEs 2.2 The method of characteristics

2.2 The method of characteristics

The method of characteristics reduces scalar first-order PDE to certain
underlying ODEs. This opens up a chance for explicitly determining
solutions by methods of DE I.
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Chapter 2: First-Order PDEs 2.2 The method of characteristics

Introductory example

In case of exemplary linear PDE (first-order, scalar, homogeneous)

2
∂u

∂x
(x, y)− ∂u

∂y
(x, y)− 4xu(x, y) = 0 for (x, y) ∈ R2

︸ ︷︷ ︸
= (2,−1) ·∇u(x, y)

only the derivative of u in direction of the vector (2,−1) does matter.
Therefore, consider (parametrized) straight lines

γ(x0,y0)(t)
..= (x0, y0) + t(2,−1) = (x0+2t, y0−t) for t ∈ R

with arbitrary base point (x0, y0) ∈ R2 and direction vector (2,−1) ∈ R2.
For ν(x0,y0)(t)

..= u(x0+2t, y0−t) (i.e. u along the lines) observe(
ν(x0,y0)

)′
(t) = 2

∂u

∂x
(x0+2t, y0−t)−

∂u

∂y
(x0+2t, y0−t) .

Thus, the PDE for u yields the following ODE for ν:

ν ′(t)− 4(x0+2t) ν(t) = 0 for t ∈ R .
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Chapter 2: First-Order PDEs 2.2 The method of characteristics

Introductory example (continued)

If the PDE is complemented with a Cauchy condition (e.g. an IC) which
prescribes u(x0, y0) for some (x0, y0) ∈ R2, one arrives at the IVP

ν ′(t)− 4(x0+2t) ν(t) = 0 with IC ν(0) = u(x0, y0) .

A solution formula from DE I then gives the solution of the ODE IVP:

u(x0+2t, y0−t) = ν(x0,y0)(t) = u(x0, y0) e(x0+2t)2−x2
0 .

If specifically one is concerned with an IC of simple form

u(x0, 0) = u0(x0) for x0 ∈ R ,
one can use the preceding result for y0 = 0 and exploit x = x0+2t,
y = y0−t = −t to determine the solution of the PDE IVP:

u(x, y) = u0(x+2y) ex
2−(x+2y)2

= u0(x+2y) e−4y2−4xy .
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Flow lines/characteristics

The general scalar linear first-order PDE is
n∑
i=1

ai(x)
∂u

∂xi
(x)︸ ︷︷ ︸

= a(x) ·∇u(x)

+ b(x)u(x) = f(x) for x ∈ Ω

(in open Ω ⊂ Rn, n ≥ 2, with a ∈ C1(Ω,Rn), b, f ∈ C0(Ω)).

The straight lines in the example replace by flow lines/characteristic curves
γx0 of the field a: By the Picard-Lindelöf theorem in DE I, for every x0 ∈ Ω,
there exists a unique solution γx0 ∈ C1(Ix0 ,Ω) to the nonlinear ODE IVP

γ ′(t) = a(γ(t)) for t ∈ Ix0 with IC γ(0) = x0

on a maximal existence interval Ix0 for a solution with values in Ω. Flow
lines never touch or intersect each other (but it is γx0(t) = γγx0 (s)(t−s)).

(By the way: The collection Φ(t, x0) ..= γx0(t) of all γx0 is called the flow of a. In

these terms the ODEs read ∂tΦ(t, x0) = a(Φ(t, x0)) and the ICs Φ(0, x0) = x0.)
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The method of characteristics in the linear case

Principle (method of characteristics for linear PDEs)

For Ω, a, b, f , γx0 , Ix0 as before, u ∈ C1(Ω), the following are equivalent:

(1) u solves the linear PDE a(x) ·∇u(x) + b(x)u(x) = f(x) for x ∈ Ω.

(2) For each x0 ∈ Ω, νx0 with νx0(t) ..= u(γx0(t)) solves the linear ODE

ν ′(t) + b(γx0(t)) ν(t) = f(γx0(t)) for t ∈ Ix0 .

This means: The PDE reduces to ODEs along the flow lines.

Proof: From νx0(t) = u(γx0(t)) deduce by chain rule and ODEs for the
flow lines (compare with the introductory example)

νx0
′ (t) = γx0

′ (t) ·∇u(γx0(t)) = a(γx0(t)) ·∇u(γx0(t)) .

Hence, the PDE evaluated at points x = γx0(t) yields the ODEs, and vice
versa the ODEs also yield the PDE, since each x ∈ Ω can be written as
x = γx0(t) (in fact x = γx(0), but can also use restricted x0 as on next slide).
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Cauchy conditions and general line of approach

The reasonable complement to scalar first-order PDEs is the Cauchy
condition

u(x) = u0(x) for x ∈ S .
Here given: curve (n=2), surface (n=3), and generally hypersurface S ⊂ Ω
such that S intersects each flow line exactly once; function u0 : S → R on S.

If the PDE is complemented this way, consider the ODEs for γ and ν only
for x0 ∈ S and complement the latter one with the corresponding IC

ν(0) = u0(x0) .

General line of approach for method of characteristic then:

Solve IVP for flow lines γx0 with x0 ∈ S.

Solve IVP for νx0 with x0 ∈ S, get u(γx0(t))=νx0(t) as term in t and x0.

Solve x = γx0(t) for (t, x0), get solution u(x) as term in x.
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Example for method of characteristics (linear case)

As an example, consider the Cauchy problem for a linear PDE

y
∂u

∂x
(x, y)− x ∂u

∂y
(x, y) + u(x, y) = 0 for (x, y) ∈ (0,∞)×R ,

u(x, 0) = e−x
2

for x ∈ (0,∞) .

Solve successively (where, for x0 > 0, we abbreviate γx0
= γ(x0,0), νx0

= ν(x0,0)):

read off
 IVP for flow lines: γ ′(t) =

(
0 1
−1 0

)
γ(t) with IC γ(0) =

( x0
0

)
solve
 flow lines: γx0(t) =

(
x0 cos t
−x0 sin t

)
for |t| < π

2

read off
 IVP for νx0 : ν ′(t) + ν(t) = 0 with IC ν(0) = e−x

2
0

solve
 solution: u(γx0(t)) = νx0(t) = e−t−x

2
0

Finally, solve
( x
y

)
= γx0(t) for t = − arctan(y/x) and x0 =

√
x2+y2.

plug in
 solution Cauchy problem for PDE: u(x, y) = earctan(y/x)−x2−y2

Thomas Schmidt (Maths Dept., UHH) DE II for Engineering TUHH, Summer 24 35 / 111



Chapter 2: First-Order PDEs 2.2 The method of characteristics

Method of characteristics for linear transport equation

As another example, consider the IVP for the linear transport equation

ut(t, x) + a(t, x) ·∇u(t, x) = 0 for (t, x) ∈ (0, T )×Rn
u(0, x) = u0(x) for x ∈ Rn

Approach then (where, for x0 ∈ Rn, we abbreviate γx0
= γ(0,x0), νx0

= ν(0,x0)):

read off
 IVP for flow lines: γ ′(t) = (1, a(γ(t))) with IC γ(0) = (0, x0)

leads to
 γx0(t) = (t, γ̃x0(t)) and γ̃ ′(t) = a(t, γ̃(t)) with IC γ̃(0) = x0

read off
 IVP for νx0 : ν ′(t) = 0 with IC ν(0) = u0(x0)

solve
 u(t, γ̃x0(t)) = νx0(t) = u0(x0), i.e. u constant along flow lines

It remains to solve x = γ̃x0(t). This works, for instance, for constant a with
correspondingly γ̃x0(t) = x0+ta, and then transforms u(t, x0+ta) = u0(x0)
into the solution formula u(t, x) = u0(x−ta) already known from Chapter 1.
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The method of characteristics in the quasilinear case

In the quasilinear case the method of characteristics works similarly:

Principle (method of characteristics for quasilinear PDEs)

Consider an open Ω ⊂ Rn, n ≥ 2, a ∈ C1(Ω×R,Rn), b ∈ C1(Ω×R).
Then, for u ∈ C1(Ω), the following are equivalent:

(1) u solves the quasilinear PDE a(x, u(x))·∇u(x) = b(x, u(x)) for x ∈ Ω.

(2) For each x0 ∈ Ω, the solution (γx0 , νx0) ∈ C1(Ix0 ,Ω×R) (on its
maximal existence interval Ix0) to the nonlinear ODE system

γ ′(t) = a(γ(t), ν(t))

ν ′(t) = b(γ(t), ν(t))
with ICs

γ(0) = x0

ν(0) = u(x0)

satisfies u(γx0(t)) = νx0(t) for all t ∈ Ix0 .

In the linear case we had specifically a(x, y) = a0(x) and b(x, y) = −b0(x)y+f(x).
Then the first ODE did involve solely γ, not ν, and could be solved a priori, the
second ODE was linear in ν. These features do not extend to the quasilinear case.
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General line of approach and proof (quasilinear case)

Also in the quasilinear case, the PDE is reasonably complemented with a
Cauchy condition u(x) = u0(x) for x ∈ S with suitable hypersurface S ⊂ Ω
and u0 : S → R, and the general line of approach does not change much:

Solve coupled IVP for (γx0 , νx0) with x0 ∈ S,
obtain γx0(t) and u(γx0(t)) = νx0(t) as terms in t, x0.

Solve x = γx0(t) for (t, x0), determine solution u(x) as term in x.

Proof of the general principle: For fixed x0 abbreviate ODE solutions as
γ = γx0 and y = yx0 on I = Ix0 , the prove the two implications separately:

(2)=⇒(1) (as in linear case): Use u(γ) = ν to compute (at points t ∈ I):

a(γ, u(γ)) ·∇u(γ) = a(γ, ν) ·∇u(γ)
ODEs for γ

= γ ′ ·∇u(γ)

=
[
u(γ)

]′
= ν ′

ODE for ν
= b(γ, ν) = b(γ, u(γ)) .

Since each x ∈ Ω has form x = γx0(t) (in fact x = γx(0)), deduce the PDE.
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Proof (quasilinear case; continued)

Proof (continued):

(1)=⇒(2) (now with more subtle reasoning for u(γ) = ν): Set

ψ(t) ..= ν(t)− u(γ(t)) for t ∈ I
to obtain

ψ′ = ν ′ − γ ′ ·∇u(γ) = b(γ, ν)− a(γ, ν) ·∇u(γ) .

Observe: If one had ν = u(γ) and could replace ν with u(γ), then the
right-hand side would vanish by the PDE. But u(γ) = ν is only the aim.

Anyway, it is ψ(0) = 0 by the ICs. If ψ 6≡ 0 holds, there is a
”
last point“

t∗ ∈ I s.t. ψ(t∗) = 0. Then use |∂yb(x, y)− ∂ya(x, y) ·∇u(x)| ≤ C for
(x, y) close to (γ(t∗), ν(t∗)) with bound C, get for t close to t∗ by
estimation of the replacement error that |ψ′| ≤ C|ν − u(γ)| = C|ψ|. By
subsequent lemma deduce ψ ≡ 0 near t∗, which contradicts the choice of
t∗ as

”
last point“. This leaves ψ ≡ 0 and thus u(γ) = ν as sole option.
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Lemma for the preceding proof (quasilinear case)

Lemma

If ψ ∈ C1(I) satisfies a differential inequality |ψ′| ≤ C|ψ| on an interval I
with C ∈ [0,∞), then ψ(t0) = 0 at some t0 ∈ I implies ψ ≡ 0 on all of I.

Proof: Suppose ψ(b) 6= 0 at some b ∈ I and denote by t∗ ∈ I the point
closest to b s.t. ψ(t∗) = 0. In case t∗ < b work with t∗ < a ≤ b, compute

log
|ψ(b)|
|ψ(a)| =

∫ b

a

d

dt
log |ψ(t)| dt =

∫ b

a

ψ′(t)

ψ(t)
dt ≤

∫ b

a

|ψ′(t)|
|ψ(t)| dt ≤ C(b−a) ,

get |ψ(b)| ≤ eC(b−a)|ψ(a)|. For a→ t∗ deduce |ψ(b)| ≤ eC(b−t∗)|ψ(t∗)| = 0,
contradiction to ψ(b) 6= 0! In case t∗ > b, similarly use b ≤ a < t∗ and
−
∫ a
b . . . to reach a contradiction. The conclusion is ψ(b) = 0 for all b ∈ I.

Remark: The lemma is a special case of Gronwall’s lemma, which estimates
solutions to differential inequalities by solutions of corresponding DEs.
(Here the ODE is ψ′ = ψ with IC ψ(t0) = 0. This has solely ψ ≡ 0 as solution.)
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Example for method of characteristics (quasilinear case)

As an example, consider the Cauchy problem for a PDE

xu(x, y)
∂u

∂x
(x, y) + 2y u(x, y)

∂u

∂y
(x, y) = −u(x, y)2 for (x, y) ∈ Ω ,

u(x, 2x−1) = 1 for 0 < x < 1

in the reasonable domain Ω ..= {(x, y) ∈ R2 : x > 0 , y < x2} (cf. below).

Solve successively (with γx0 = γ(x0,2x0−1), νx0 = ν(x0,2x0−1) for 0 < x0 < 1):

read off
 PDE is quasilinear with a(x, y, w) = (xw, 2yw), b(x, y, w) = −w2.

read off
 The characteristic ODE system to the PDE reads

γ1
′ = ν γ1 with IC γ1(0) = x0 ,

γ2
′ = 2ν γ2 with IC γ2(0) = 2x0−1 ,

ν ′ = −ν2 with IC ν(0) = 1 .
solve for ν
 u(γx0(t)) = νx0(t) = (t+1)−1
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Example for method of characteristics (continued)

simplify for γ
 

γ1
′(t) = (t+1)−1 γ1(t) with IC γ1(0) = x0 ,

γ2
′(t) = 2(t+1)−1 γ2(t) with IC γ2(0) = 2x0−1

solve for γ
 characteristic curves: γx0(t) =

(
x0(t+1)

(2x0−1)(t+1)2

)
Now record Ix0 = (−1,∞), in

( x
y

)
= γx0(t) first eliminate x0 by writing

2x
t+1 = 2x0 = y

(t+1)2 +1, then solve a quadratic equation in t to find

t = x− 1+
√
x2−y (positive sign in front of the root due to x

t+1 = x0 < 1).

νx0 (t)=(t+1)−1

 solution Cauchy problem for PDE: u(x, y) =
(
x+

√
x2−y

)−1

Geometric background: γx0
parametrizes branch {(x, ax0

x2) : 0<x<∞} of
parabola with start near origin and ax0

..= (2x0−1)/x2
0, where all ax0

∈ (−∞, 1)
are realized by 0 < x0 < 1. The union of all branches is the above-defined domain
Ω, which is just right for solving the PDE of this example on it.

By the way: Dividing the PDE of this example by u 6= 0 one gets back to the
linear case. This changes only the parametrizations γx0 , νx0 , but not the geometry.
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Concluding remarks on the method of characteristics

Concluding remarks on the method of characteristics for a(·, u)·∇u = b(·, u):

For a(x,w) independent of w (semilinear case) first approach the ODEs for γ,
which are then independent of ν. For b(x,w) independent of x (as in preceding
example) first approach the ODE for ν, which is then independent of γ.

In general, however, the ODEs may be fully coupled, and often there is
no explicit formula for solutions (γ, ν) of the ODE system.

Also solving x = γx0(t) for t, x0 may not work by an explicit formula or
may fail at all (e.g. due to non-uniqueness if different γx0 intersect). In
good cases one can solve at least locally and can apply the method of
characteristics in proving local existence results, but no details on this!

Further quasilinear cases and examples follow in the next section.

In principle the method covers even the fully nonlinear case. But then the
characteristic ODE systems gets still more complicated and additionally
involves placeholders for derivatives of u. No details on this either!
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2.3 Scalar conservation laws

Scalar conservation laws are first-order PDE of form

ut + divx
(
~F (u)

)
≡ 0 in (0, T )× Ω

for a scalar function u of variables (t, x) ∈ (0, T )× Ω, where as usual
Ω ⊂ Rn, T > 0, and ~F : R→ Rn are given.

The equation is quasilinear (chain rule!) and in case u 6= 0 is nothing but a
version the continuity equation from 2.1 with u-dependent velocity field

~v(t, x) ..=
~F (u(t,x))
u(t,x) . Thus, by 2.1 we have conservation of mass in moving

domains (end e.g. with BC ~v ≡ 0 at (0, T )×∂Ω in all of (0, T )×Ω as well).

Here we treat space dimension n = 1 only, for simplicity with Ω = R and
T =∞. Thus, we are concerned with (in two equivalent formulations)

ut +
(
F (u)

)
x
≡ 0 rsp. ut + f(u)·ux ≡ 0 in (0,∞)×R

where F, f : R→ R are given and correspond to each other by F ′ = f .
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Burgers’ equation

For F (w) ..= aw and f ≡ a we get back the linear transport equation.

However, the focus is now more on the nonlinear model case F (w) ..= 1
2w

2

and correspondingly f(w) ..= w of Burgers’ equation

ut +
(

1
2u

2
)
x
≡ 0 rsp. ut + u·ux ≡ 0 in (0,∞)×R

Burgers’ equation serves as basic nonlinear 1d model for time evolution of
a mass density u with potential emergence of shock waves, e.g. ultrasonic
waves in air. (A nonlinearity of similar type in 3d is the convective term in the

Navier-Stokes and Euler equations.)
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Method of characteristics for conservation laws

Now consider the Cauchy-Problem for a conservation law with IC

ut + f(u)·ux ≡ 0 in (0,∞)×R , u(0, · ) = u0 on R

and apply the method of characteristics (again index x0 short for (0,x0)):

characteristic ODEs: γ ′ = (1, f(ν)) with IC γ(0) = (0, x0),
ν ′ ≡ 0 with IC ν(0) = u0(x0),

solution: νx0 ≡ u0(x0) constant, thus u constant along γx0 ,

γx0(t) =
(
t, x0+t f(u0(x0))

)
(characteristic lines).

Thus, deduce the implicit solution formula u
(
t, x0+tf(u0(x0))

)
= u0(x0).

If one can indeed solve and in fact obtain a solution u, depends on f, u0.

(By the way, in the nonlinear case the
”
velocity“ f(u0(x0)) of γx0 differs from the

particle velocity ~v(γx0) ≡ F (u0(x0))
u0(x0) modeled in 2.1.)
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Exemplary solutions of Burgers’ equation

In the model case of Burgers’ equation ut + u·ux ≡ 0 with f(w) = w one
has the following examples (with u constant on shown characteristic lines):

For u0(x) ..= x, from u(t, (1+t)x0) = x0 pass to u(t, x) = x
1+t and

obtain a solution defined for all t ≥ 0 and x ∈ R.

x

t

For u0(x) = −x, from u(t, (1−t)x0) = −x0 pass to u(t, x) = −x
1−t and

obtain a solution with singularity at t = 1 (and opposite sign for t > 1).

x

t

The problem in this example is that all characteristic lines
γx0(t) = (t, (1−t)x0) intersect at (t, x) = (1, 0).
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Exemplary solutions of Burgers’ equation (continued)

Similar to the preceding example, but more relevant (as u0 ≥ 0 bounded) is:

For u0(x) =

{
1 , x ≤ 0

1−x , 0 < x < 1
0 , x ≥ 1

obtain by u(t, x) =

{
1 , x ≤ t

1−x
1−t , t < x < 1
0 , x ≥ 1

a solution only for t < 1 (for t ≥ 1 ambiguity in case distinction).

u ≡ 1

u =?

u ≡ 0

x

t

x

1t

u0

u(t, ·)

All those γx0 with x0 ∈ [0, 1] intersect at (t, x) = (1, 1).

(The kinks of u0 at x = 0 and x = 1 and of u at x = t and x = 1 are not
essential and are not the root of the problem here.)

In the sequel we introduce a new kind of solution, which stays defined
even for t ≥ 1 and resolves the problem of this example and similar ones.
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Test functions and integration by parts

In the sequel call ϕ ∈ C1([0,∞)×R) with ϕ ≡ 0 outside [0,M ]×[−M,M ]
for some M ∈ [0,∞) (roughly speaking with

”
zero boundary values at

∞“) a test function. For such ϕ and a solution u to ut +
(
F (u)

)
x
≡ 0

with u(0, · ) = u0 the compute (arguments (t, x) dropped for ease of notation)

0 =

∫ ∞
0

∫ ∞
−∞

[
ut +

(
F (u)

)
x

]
ϕdx dt

=

∫ ∞
−∞

[ ∫ ∞
0

utϕdt

]
dx+

∫ ∞
0

[ ∫ ∞
−∞

(
F (u)

)
x
ϕdx

]
dt

ibp
=

∫ ∞
−∞

[
−u(0, x)ϕ(0, x)−

∫ ∞
0
uϕt dt

]
dx+

∫ ∞
0

[
−
∫ ∞
−∞

F (u)ϕx dx

]
dt

= −
∫ ∞

0

∫ ∞
−∞

[
uϕt + F (u)ϕx

]
dx dt−

∫ ∞
−∞

u0(x)ϕ(0, x) dx .

(One may also write ±M instead of ±∞; does not change anything here.)

The decisive point is that all derivatives are shifted from u to ϕ.
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Weak solutions

On the basis of the preceding computation one defines:

Definition (weak solutions)

Consider F ∈ C0(R) and‡ u0 ∈ L∞loc(R). A weak solution or integral
solution to the Cauchy problem for a conservation law

ut +
(
F (u)

)
x
≡ 0 in (0,∞)×R , u(0, · ) = u0 on R

is a function‡ u ∈ L∞loc

(
[0,∞)×R

)
such that∫ ∞

0

∫ ∞
−∞

[
uϕt + F (u)ϕx

]
dx dt+

∫ ∞
−∞

u0(x)ϕ(0, x) dx = 0

holds for all test functions ϕ (in the sense of the previous slide).

Indeed, the preceding computation proves that each
”
ordinary“ solution is

a weak solution as well. But there are further weak solutions:
‡ u0∈L∞loc(R) and u∈L∞loc

(
[0,∞)×R

)
mean essentially: u0 : R→R bounded on each interval

[−M,M ] and u : [0,∞)×R→R bounded on each rectangle [0,M ]×[−M,M ] with M ∈ [0,∞).
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Riemann problems and shock-wave solutions

A Riemann problem for a conservation law is a Cauchy problem with initial
datum discontinuous at x = 0 (wl, wr ∈ R constants, wr 6= wl) of form

ut +
(
F (u)

)
x
≡ 0 in (0,∞)×R , u(0, x) =

{
wl for x < 0
wr for x > 0

We will show that a weak solution of this problem is given by the
correspondingly discontinuous function

u(t, x) =
{
wl for x < m·t
wr for x > m·t ,

where m ∈ R is determined by the Rankine–Hugoniot condition

m ..=
F (wr)− F (wl)

wr − wl
.

One takes this solution as a shock wave whose wave front is described by
x = m·t and moves at speed m.
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Shock-wave solutions to Burgers’ equation

In the specific case F (w) = 1
2w

2 the Rankine–Hugoniot condition reads

m =
1
2w

2
r − 1

2w
2
l

wr − wl
= 1

2 (wl + wr) .

Therefore, the Riemann-Problem for Burgers’ equation (with wl, wr ∈ R)

ut +
(

1
2u

2
)
x
≡ 0 in (0,∞)×R , u(0, x) =

{
wl for x < 0
wr for x > 0

has a weak solution given by the shock wave

u(t, x) =

{
wl for x < 1

2(wl+wr)·t
wr for x > 1

2(wl+wr)·t
.

In case wl = 1, wr = 0 get m = 1
2 (left picture). In the example of slide 48

an analogous shock wave (t, x shifted; right picture) is developed at t = 1.

u ≡ 1 u ≡ 0

x

t

u ≡ 1 u ≡ 0

x

t
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Chapter 2: First-Order PDEs 2.3 Scalar conservation laws

General shock-wave solutions

General wave fronts describe by a function s ∈ C1
(
[0,∞)

)
. Then partition

D ..= (0,∞)×R into the realms left and right of the wave front x = s(t)

Dl
..= {(t, x) ∈ D : x < s(t)} and Dr

..= {(t, x) ∈ D : x > s(t)}
with corresponding functions ul ∈ C1

(
Dl

)
and ur ∈ C1

(
Dr

)
and with

initial data u0,l ∈ C0
(
(−∞, s(0)]

)
and u0,r ∈ C0

(
[s(0),∞)

)
.

Dl

ul

u0,l

Dr

ur

u0,r

x

t

s(0)

s

With this terminology the preceding cases can be generalized as follows.
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General shock-wave solutions (continued)

Theorem (on general shock-wave solutions to conservations laws)

For s,Dl, Dr, ul, ur, u0,l, u0,r as before and F ∈ C1(R), it is equivalent:

(1) The (potentially discontinuous) function

u(t, x) ..=
{
ul for x < s(t)
ur for x > s(t)

is a weak solution to the Cauchy problem

ut +
(
F (u)

)
x
≡ 0 in D , u(0, x) =

{
u0,l(x) for x < s(0)
u0,r(x) for x > s(0)

(2) ul and ur solve the
”
ordinary“ Cauchy problems in Dl and Dr with

u0,l and u0,r, and the general Rankine–Hugoniot condition

s′(t) =
F (ur(t, x))− F (ul(t, x))

ur(t, x)− ul(t, x)

is satisfied for all (t, x) such that x = s(t) and ur(t, x) 6= ul(t, x).
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Proof of the theorem on shock-wave solutions

Proof of the theorem: For test function ϕ, look at l- and r-terms of∫
D

[
uϕt + F (u)ϕx

]
d(t, x) +

∫ ∞
−∞

u0 ϕ(0, · ) dx

(cf. definition weak solution). If ur solves, rewrite r-terms first as∫
Dr

[
uϕt + F (u)ϕx

]
d(t, x) +

∫ ∞
s(0)

u0 ϕ(0, · ) dx

=

∫
Dr

[
rot
(−F (u)ϕ

uϕ

)
− rot

(
−F (u)
u

)
ϕ

]
d(t, x) +

∫ ∞
s(0)

u0 ϕ(0, · ) dx ,

then by Green’s theorem (∂Dr union of {0}×[s(0),∞) and {(t, x)∈D :x=s(t)};
parametrize as curve c with tangent vectors (0,−1) and (1, s′), respectively) find

=

∮
c

(−F (ur)ϕ
ur ϕ

)
· d(t, x)−

∫
Dr

[
ut+

(
F (u)

)
x

]
ϕd(t, x) +

∫ ∞
s(0)

u0 ϕ(0, · ) dx

=

∫ ∞
0

[
−F (ur(t, s(t))) + s′(t)ur(t, s(t))

]
ϕ(t, s(t)) dt .
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Proof of the theorem on shock-wave solutions (continued)

If ul solves, rewrite l-terms in similar way as∫ ∞
0

[
F (ul(t, s(t)))− s′(t)ul(t, s(t))

]
ϕ(t, s(t)) dt .

In combination, for a weak solution need to have
(arguments t and (t, s(t)) omitted for better readability)∫ ∞

0

[
−(F (ur)−F (ul)) + s′ (ur−ul)

]
ϕdt = 0

for all test functions ϕ. This is equivalent with

s′(t)(ur(t, x)− ul(t, x)) = F (ur(t, x))− F (ul(t, x)) for x = s(t)

and by rearranging terms also with

s′(t) =
F (ur(t, x))− F (ul(t, x))

ur(t, x)− ul(t, x)
for x = s(t) s.t. ur(t, x) 6= ul(t, x) .

So, (2)=⇒(1) is proved. By keeping track which (other) integrals in the
computation need to vanish, one deduces (1)=⇒(2) as well.
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Rarefaction waves (case of Burgers’ equation)

The Riemann problem for Burgers’ equation

ut + u·ux ≡ 0 in (0,∞)×R , u(0, x) =
{
wl for x < 0
wr for x > 0

with constants wl, wr ∈ R has in case wr > wl as one weak solution the
shock wave discussed before (picture for wl = 0, wr = 1)

u(t, x) =

{
wl for x < 1

2(wl+wr)·t
wr for x > 1

2(wl+wr)·t
u ≡ 0 u ≡ 1

x

t

and as another weak solution the rarefaction wave (picture for wl = 0, wr = 1)

u(t, x) =

{ wl for x < wl·t
x
t for wl·t < x < wr·t
wr for x > wr·t

u ≡ 0

0<u<1

u ≡ 1

x

t

Thus, in this case the solution is not unique!!!. For yet other solutions the
shock (front) turns into a rarefaction wave at an arbitrary time t∗ > 0.
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Rarefaction waves (case of a general conservation law)

For a general conservation law, there are analogous rarefaction waves:

Theorem (on rarefaction-wave solutions to a general conservation law)

For wl, wr ∈ R s.t. wr > wl and f ∈ C1(R) s.t. infR f
′ > 0 (in particular

f strictly increasing, inverse function f−1 exists), the formula

u(t, x) ..=


wl for x < f(wl)·t

f−1
(
x
t

)
for f(wl)·t < x < f(wr)·t

wr for x > f(wr)·t
yields a weak solution to the Riemann problem for a conservation law

ut + f(u)·ux ≡ 0 in (0,∞)×R , u(0, x) =
{
wl for x < 0
wr for x > 0

.

The model case of Burgers’ equation is simply f(w) = w and f−1(χ) = χ.
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Proof of the theorem on rarefaction waves

On proving the theorem: For u defined in the theorem read off/check:

u satisfies the IC at t = 0 (evident).

u solves ut+f(u)·ux ≡ 0 where x<f(wl)·t or x>f(wr)·t (there u≡const).

Where f(wl)·t < x < f(wr)·t holds, deduce from u(t, x) = f−1
(
x
t

)
by

chain rule and definition of inverse function the solution property:[
ut+f(u)·ux

]
(t, x) =

(
f−1

)′(x
t

)
·
(
− x
t2

)
+ f

(
f−1

(
x
t

))
·
(
f−1

)′(x
t

)
·1
t

=
(
f−1

)′(x
t

)
·
(
− x
t2

+
x

t
·1
t

)
= 0 .

u continuously extends at x = f(wl)·t and x = f(wr)·t with t > 0
(as e.g., for x = f(wl)·t, one has f−1

(
x
t

)
= f−1(f(wl)) = wl).

On this basis then proceed similar to the proof of the theorem on shocks.

(More precisely: Use Green or int. by parts on portions of {(t, x) : |(t, x)| ≥ ε}.
Show that integrals on {(t, x) : |(t, x)| < ε} are small, since u is bounded and
|(ut, ux)| is finitely integrable near (0, 0). We omit all further details here.)
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(Non-)Uniqueness and
”
physical“ solutions

For ut+f(u)·ux ≡ 0 (with f as in the last theorem), we record:

We saw that the solution to the Riemann problem with wr > wl is not
unique. Among the weak solutions the rarefaction wave (continuous!) is
physically more plausible than the shock wave (discontinuous!).

(In addition, the rarefaction wave is unique
”
from time t∗ > 0 onward“, the

shock may or may not turn into a rarefaction wave at each time t∗ > 0.)

In the Riemann problem with wr < wl, however, the shock wave has no
alternative. Thus, in full generality one cannot rule out discontinuities.

”
Physical“ solutions include shocks with ur(t, s(t)) ≤ ul(t, s(t)) along

the wave front s and in general are weak solutions u such that

ur(t, x) ≤ ul(t, x) for all (t, x) ∈ (0,∞)×R , (∗)
where ul(t, x) ..= limh↘0 u(t, x−h) and ur(t, x) ..= limh↘0 u(t, x+h).
A technical variant of (∗) characterizes a class of solutions known as
entropy solutions and, for these, gains full mathematical uniqueness.
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Final example for combined phenomena

The Cauchy problem for Burgers’ equation

ut + u·ux ≡ 0 in (0,∞)×R , u(0, x) =

{
0 for x < 0 or x > 2

2−1
2x for 0 < x < 2

has a
”
weak solution for t < 2“ (singularity at (t, x) = (2, 4)) given by

u(t, x) =

{
0 for x < s0(t) or x > s2(t)

4−x
2−t for s0(t) < x < s2(t)

with two shock-wave fronts s0(t) = 4−
√

8(2−t) and s2(t) = 4−
√

2(2−t).

u ≡ 0 u ≡ 0

1<u<∞
x

t

s0
s2

(0, 2)

(2, 4)

Formula 4−x
2−t obtained via characteristics, then s0 and s2 determined from

Rankine-Hugenoit condition by solving ODE! Shock at s0 is
”
unphysical“.
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Final example for combined phenomena (continued)

The
”
physical“ weak solution of the previous Cauchy problem is rather

u(t, x) =


0 for x < 0 or x > s2(t)
x
t for 0 < x < min{2t, s2(t)}

4−x
2−t for 2t < x < s2(t)

with rarefaction wave from (t, x) = (0, 0) onward and with single shock-wave

front s2(t) =

{
4−
√

2(2−t) for t ≤ 3
2√

6t for t ≥ 3
2

(computed via Rankine-Hugenoit).

u ≡ 0 u ≡ 0

1<u<2

0<u<2

x

t

s2
(0, 2)

(3
2
, 3)

For other solutions the shock-wave front s0 of the previous slide turns into
a rarefaction wave only at a time t∗ ∈ (0, 2). In fact, there are yet others . . .
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Chapter 3: Second-Order PDEs

This chapter deals with three model cases of second-order PDEs, as
previously announced:

the Laplace and Poisson equation (including eigenvalue problems),

the diffusion or heat equation,

and the wave equation.

In comparison with first-order PDEs, fully elementary formulas for solutions
are now more rare and usually can be found for specific cases only. Still,
there is a multifaceted solution theory, which comes with (more or less
explicit) integral formulas for solutions in quite some generality.
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3.1 The Laplace and Poisson equation

This section treats the Laplace equation and the Poisson equation

∆u ≡ 0 and ∆u = f in open Ω ⊂ Rn ,
where until further notice we understand n ≥ 2. The equations are often
complemented with the earlier-mentioned Dirichlet BC u = g at ∂Ω.

It is standard to coin a terms of its own for solutions to Laplace’s equation:

Definition (harmonic functions)

A function u ∈ C2(Ω) is called harmonic in open Ω ⊂ Rn if it solves the
Laplace equation ∆u ≡ 0 in Ω.

Since the Laplace equation is linear, one readily checks (for r, s ∈ R):

u and v harmonic in Ω =⇒ ru+ sv harmonic in Ω .

Specifically for n = 2, one can obtain (cf. next slide) harmonic functions
as real and imaginary parts of holomorphic functions.
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Entire harmonic functions, harmonic polynomials

Examples for harmonic functions u on all of Rn, called entire harmonic
functions, are harmonic polynomials:

degree 0: all constant functions, e.g. u ≡ 1,

degree 1: all linear functions, e.g. u(x) = xi,

degree 2: e.g. u(x) = x2
i−x2

j and u(x) = xixj with i 6= j

(n = 2  x2−y2 and xy real and imaginary parts of holomorphic z2),

degree 3: e.g. u(x) = x3
i−3xix

2
j and u(x) = xixjxk with i 6= j 6= k 6= i

(n = 2  x3−3xy2 real part of holomorphic z3),

degree 4 and higher: . . . .

Also combinations, e.g. x3
1−3x1x

2
2 − 7x2x3 + 4 for n = 3, are harmonic!

Other entire harmonic u, which are not polynomials:

e.g. u(x) = exi cosxj and u(x) = exi sinxj with i 6= j

(n = 2  ex cos y and ex sin y real and imaginary parts of holomorphic ez).
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The fundamental solution to Laplace’s equation

Definition/Proposition (fundamental solution to Laplace’s equation)

The function Φ given by

Φ(x) ..= 1
2π log |x| for n = 2 , Φ(x) ..= − 1

n(n−2)αn
|x|2−n for n ≥ 3

(with measure αn of unit ball B1
..= {x∈Rn : |x|<1} in Rn; α2 = π, α3 = 4

3π)

is harmonic in Rn \ {0} and is called the fundamental solution to Laplace’s
equation. All rotationally symmetric harmonic functions u(x) = h(|x|) in
Rn \ {0} take the form u(x) = aΦ(x)+b with a, b ∈ R.

The fundamental solution Φ is singular at x = 0 and does not extend to all of
Rn. Its singularity is prototypical for harmonic functions.

The choice of the prefactors 1
2π rsp. − 1

n(n−2)αn
may seem peculiar, but has

its advantages: It avoids the explicit occurrence of such factors in the next
theorem and normalizes to

∫
∂B1

∂νΦ(x) dS(x) = 1.

Φ has a physical interpretation as the electrical potential of an electrical unit
charge placed in the origin.
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Derivation of the fundamental solution

Derivation of the fundamental solution and the proposition: First

compute the auxiliary derivatives ∂
∂xi
|x| = xi

|x| and ∂
∂xi

xi
|x| =

|x|2−x2
i

|x|3 . Then,

for rotationally symmetric u(x) = h(|x|), derive successively:

∂iu(x) = h′(|x|) xi|x| , ∂2
i u(x) = h′′(|x|) x2

i
|x|2 + h′(|x|) |x|

2−x2
i

|x|3 ,

∆u(x) = h′′(|x|) |x|2|x|2 + h′(|x|)n|x|2−|x|2|x|3 = h′′(|x|) + n−1
|x| h

′(|x|) .

Thus, u is harmonic if and only if h solves the ODE

h′′(r) + n−1
r h′(r) = 0 .

The ODE solutions satisfy h′(r) = c r1−n and thus are exactly (b, c ∈ R)

h(r) = c log r + b for n = 2 , h(r) = − c
n−2 r

2−n + b for n ≥ 3 .

By using u(x) = h(|x|) get form of Φ and proposition
(
with a = nαnc

)
.
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Solution formula for Poisson’s equation

Solutions to Poisson’s equation with general right-hand side f can be
obtained from an integral formula, which involves the fundamental solution:

Theorem (solving Poisson’s equation by convolution with Φ)

For f ∈ C1(Rn) with {x ∈ Rn : f(x) 6= 0} bounded, by setting

u(x) ..=

∫
Rn

Φ(x−y)f(y) dy for x ∈ Rn ,

one obtains a solution u ∈ C2(Rn) to Poisson’s equation

∆u = f in Rn .

The proof of the theorem is more intricate and is not discussed here.

The formula of the theorem does not allow for prescribing a BC (on
bounded open Ω ⊂ Rn) and in this aspect remains unsatisfactory.
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The maximum principle for harmonic functions

Theorem (maximum principle for harmonic functions)

If u ∈ C2(Ω)∩C0(Ω) is harmonic in bounded open Ω ⊂ Rn, then one has:

(1) weak maximum principle: There holds

min
∂Ω

u ≤ u(x) ≤ max
∂Ω

u for all x ∈ Ω .

(2) strong maximum principle: If Ω is connected and u is non-constant,
there holds even

min
∂Ω

u < u(x) < max
∂Ω

u for all x ∈ Ω .

Corollary 1: For harmonic u, as in the theorem, one further has

|u(x)| ≤ max
∂Ω
|u| for all x ∈ Ω .

Proof: For x ∈ Ω, it is either |u(x)| = u(x) ≤ max∂Ω u ≤ max∂Ω |u| or, since −u
is harmonic as well, |u(x)| = −u(x) ≤ max∂Ω(−u) ≤ max∂Ω |u|.
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Conclusions for the Dirichlet problem

Corollary 2 (uniqueness in the Dirichlet problem for Poisson’s equation)

For bounded open Ω ⊂ Rn, f ∈ C0(Ω), g ∈ C0(∂Ω), the
Dirichlet problem for Poisson’s equation

∆u = f in Ω , u = g at ∂Ω

has at most one solution u ∈ C2(Ω) ∩ C0(Ω).

Proof: If u1, u2 are two solutions, then u2−u1 is harmonic with u2−u1 ≡ 0 at ∂Ω.
Corollary 1 then implies |u2(x)−u1(x)| ≤ 0 for all x ∈ Ω and thus u2 = u1.

Corollary 3: For solutions u1 and u2 to

∆ui = f in Ω , ui = gi at ∂Ω

(Ω, f , g1, g2 as before), one has continuous dependence on boundary data:

max
Ω
|u2−u1| ≤ max

∂Ω
|g2−g1| .

Proof: Corollary 1 for harmonic function u2−u1 with u2−u1 = g2−g1 at ∂Ω.
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Proof of the weak maximum principle

Proof of the weak maximum principle: For arbitrary ε > 0 set
uε(x) ..= u(x)+ε|x|2 and observe

trace(D2uε(x)) = ∆uε(x) = ∆u(x) + 2nε = 2nε > 0 for x ∈ Ω .

Thus, D2uε(x) is not a negative-semidefinite matrix, uε does not have a
max in Ω (necessary criterion) and reaches maxΩ uε only at ∂Ω. This gives

u(x) ≤ uε(x) < max
∂Ω

uε ≤ max
∂Ω

u+ εmax
y∈∂Ω

|y|2 for x ∈ Ω .

In the limit ε→ 0 infer u(x) ≤ max∂Ω u. The reverse inequality
u(x) ≥ min∂Ω u follows similarly (e.g. with help of uε(x) ..= u(x)−ε|x|2).

Warning! Though the first part of the proof works with ‘<’, in the limit ε→ 0
merely ‘≤’ remains. Thus, the argument confirms the weak maximum principle,
but not the strong one (which is obtained later via the mean value property).
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Poisson kernel and Poisson integral formula

An integral formula solves the Dirichlet problem for Laplace’s equation on
the unit ball B1

..= B1(0) ..= {x ∈ Rn : |x| < 1} in Rn:

Definition (Poisson kernel)

The (n-dimensional) Poisson kernel KP is defined by

KP(x, y) ..= 1
nαn

1−|x|2
|y−x|n for x ∈ B1 , y ∈ ∂B1 .

Theorem (Poisson integral formula)

For every g ∈ C0(∂B1), the unique solution u ∈ C2(B1) ∩ C0
(
B1

)
to

∆u ≡ 0 in B1 , u = g at ∂B1

is given by the Poisson integral formula (PIF )

u(x) =

∫
∂B1

KP(x, y) g(y) dS(y) for x ∈ B1 .

(The integral with dS is in case n = 2 a path integral of first kind, in case n = 3
a surface integral of first kind, for n ≥ 3 an (n−1)-dimensional analog of these.)
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Remarks on the Poisson integral formula

The PIF expresses the solution u at an arbitrary point x ∈ B1 as
integral of the boundary values g at ∂B1 only.

In particular the PIF ensures existence of the solution,
(whose uniqueness we already know from the maximum principle).

A closely related variant is the PIF for the Dirichlet problem on an
arbitrary ball Br(x0) ..= {x ∈ Rn : |x−x0| < r} with center x0 ∈ Rn
and radius r > 0:

u(x) =
1

rn−1

∫
∂Br(x0)

KP

(x−x0

r
,
y−x0

r

)
g(y) dS(y) for x ∈ Br(x0) .

For the Dirichlet problem to Laplace’s equation on an arbitrary smooth
domain Ω ⊂ Rn, one has a variant of the PIF (Green function
representation) with a certain Ω-dependent kernel instead of KP.
However, one can explicitly compute this kernel only for particularly
simple Ω, beside balls e.g. for the half-space Ω = {x ∈ Rn : xn > 0}.
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Proof of the theorem on the Poisson integral formula

On proving the theorem: On needs three decisive properties of KP:

(1) KP(x, y) is harmonic in x ∈ B1 in the sense of ∆x(KP(x, y)) = 0
(check by direct computation).

(2) For fixed x∗ ∈ ∂B1, it is limx→x∗ KP(x, y) = 0 for y ∈ ∂B1 \ {x∗}
(convergence uniform away from x∗; check by direct computation as well).

(3) It holds
∫
∂B1

KP(x, y) dS(y) = 1 for all x ∈ B1 (proof more tricky).

From (1) one deduces that the PIF defines a harmonic function u with
∆u ≡ 0 in B1. Moreover, for x∗ ∈ ∂B1, the computation

lim
x→x∗

∫
∂B1

KP(x, y)g(y) dS(y)
(2)
= lim

x→x∗

∫
∂B1

KP(x, y)g(x∗) dS(y)
(3)
= g(x∗) ,

shows u(x∗) = g(x∗) and confirms also the Dirichlet BC u = g at ∂B1.
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Concluding remarks on the Poisson integral formula

Alternatively one can derive the PIF and its variants by a (more)
constructive approach.

In principle, one can solve the Dirichlet problem for Poisson’s equation

∆u = f in Ω , u = g at ∂Ω

as follows: A solution u is obtained as u = u∗+u0, where u∗ solves
∆u∗ = f in Ω with arbitrary boundary values (thm on convolution with
Φ) and u0 solves ∆u0 ≡ 0 in Ω with u0 = g−u∗ at ∂Ω (PIF or variant).
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The mean value property

Another remarkable property of harmonic functions is:

Corollary (mean value property)

For u ∈ C2(Br(x0)) ∩ C0
(
Br(x0)

)
harmonic in Br(x0), one has the mean

value properties . . .

. . . on the solid ball : u(x0) =
1

αnrn

∫
Br(x0)

u(x) dx ,

. . . on the surface of the ball : u(x0) =
1

nαnrn−1

∫
∂Br(x0)

u(y) dS(y) .

Here, the division by the volume αnr
n and the surface area nαnr

n−1 of
the ball Br(x0) turns the right-hand sides into mean values of u.
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Proofs of mean value property and strong max. principle

Proof of the mean value property: The version for the surface is the
PIF for Br(x0) with x = x0 (taking into account KP(0, · ) = 1

nαn
). With

this version and polar coordinates compute∫
Br(x0)

u(x) dx =

∫ r

0

∫
∂B%(x0)

u(y) dS(y) d%

=

∫ r

0
nαn%

n−1u(x0) d% = αnr
nu(x0) ,

which confirms the version for the solid ball.

Proof of the strong max. principle: For M ..= max∂Ω u, it is u ≤M in Ω
(weak max. principle). Now show: u(x0) = M at x0 ∈ Ω =⇒ u constant.

For Br(x0) ⊂ Ω , from u ≤M and 1
αnrn

∫
Br(x0)u(x)dx = u(x0) = M (by

mean value property) deduce that u ≡M is constant on Br(x0). The
same arguments works at every point of Br(x0), and altogether u ≡M is
constant in all of Ω as claimed (since Ω is connected by assumption).
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Euclidean product ansatz for ∆u ≡ 0

Specific PDE solutions in R2 (or Ω ⊂ R2) can be found by product ansatz

u(x, y) = ϕ(x)ψ(y) with factors ϕ,ψ ∈ C2(R) .

Plugging this into the Laplace equation ∆u ≡ 0 in R2 yields (for ϕ 6= 0 6= ψ)

ϕ′′(x)ψ(y) + ϕ(x)ψ′′(y) = 0 and equivalently
ϕ′′(x)

ϕ(x)
= −ψ

′′(y)

ψ(y)
.

Since the last equation involves x only on the left and y only on the right,

one gets ϕ′′(x)
ϕ(x) = −ψ′′(y)

ψ(y) = K for a constant K ∈ R and infers the ODEs

ϕ′′(x) = Kϕ(x) and ψ′′(y) = −Kψ(y) .

(very basic) case K = 0: ϕ and ψ are affine functions.
 Solution u(x, y) is linear combination of xy, x, y, and 1.
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Euclidean product ansatz for ∆u ≡ 0 (continued)

case K > 0: For K = ω2, 0 6= ω ∈ R, the general solutions of the
ODEs are (with constants A1, A2, B1, B2 ∈ R)

ϕ(x) = A1eωx +A2e−ωx , ψ(y) = B1 cos(ωy) +B2 sin(ωy) ,

and the solutions of Laplace’s equation is (with constants Cij = AiBj)

u(x, y) = ϕ(x)ψ(y) = C11eωx cos(ωy) + C21e−ωx cos(ωy)

+ C12eωx sin(ωy) + C22e−ωx sin(ωy)

case K < 0: For K = −ω2, 0 6= ω ∈ R, one finds analogously

u(x, y) = ϕ(x)ψ(y) = C11 cos(ωx)eωy + C21 sin(ωx)eωy

+ C12 cos(ωx)e−ωy + C22 sin(ωx)e−ωy .

A similar type of solutions has been mentioned already on slide 65.
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Euclidean product ansatz for −∆u = λu

The (Dirichlet) eigenvalue problem for the Laplace operator on Ω ⊂ R2 is
about solutions 6≡ 0 to the Dirichlet problem for the Helmholtz equation

−∆u = λu in Ω , u ≡ 0 at ∂Ω

with parameter λ ∈ R. The product ansatz u(x, y) = ϕ(x)ψ(y) gives

constancy of −ϕ′′(x)
ϕ(x) = λ+ ψ′′(y)

ψ(y) and then induces the ODEs

ϕ′′(x) = −K1ϕ(x) and ψ′′(y) = −K2ψ(y) ,

with constants K1,K2 ∈ R s.t. K1 +K2 = λ. In contrast to the preceding
considerations, in case λ > 0 one may have two positive constants K1 = ω2

1

and K2 = ω2
2 and thus may have periodic solutions to both ODEs:

ϕ(x) = A1 cos(ω1x)+A2 sin(ω1x) , ψ(y) = B1 cos(ω2y)+B2 sin(ω2y) .
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Euclidean product ansatz for −∆u = λu (continued)

In case λ = ω2
1+ω2

2 with non-zero integers ω1, ω2, this yields sine solutions

u(x, y) = C sin(ω1x) sin(ω2y)

(with constant C ∈ R) to the (Dirichlet) eigenvalue problem on the square

−∆u = λu in (0, π)2 , u ≡ 0 at ∂
(
(0, π)2) .

Fourier methods (compare the following) show that these solutions (and

linear combinations) are the only solutions 6≡ 0. Hence, one puts on record:

The positive integers λ = ω2
1 + ω2

2 with integers ω1, ω2 are the
(Dirichlet) eigenvalues of the Laplace operator −∆ on (0, π)2. The
sequence of these eigenvalues starts 2, 5, 8, 10, 13, 17, 18, 20, 25, 26, . . ..

The solutions 6≡ 0 for a given eigenvalue λ (here the above sine solutions

and linear combinations of these with same λ) are eigenfunctions of −∆.

Similarly, also on other domains Ω, the eigenvalues of −∆ are a sequence
of positive numbers (but usually are not integers).
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Remarks on the Euclidean product ansatz

Remarks on the Euclidean product ansatz:

In general, the ansatz u(x, y) = ϕ(x)ψ(y) yields specific solutions in
R2 or in Ω ⊂ R2 only and correspondingly can produce solutions with
specific boundary conditions at ∂Ω only.

On Rn (or on Ω ⊂ Rn) one can use the analogous product ansatz
u(x) = ψ1(x1)ψ2(x2) . . . ψn(xn). Then similar computations yield
specific solutions to the Laplace equation in Rn and the Dirichlet
eigenvalues and eigenfunctions of −∆ on the cube (0, π)n

(and more generally also on cuboids in Rn).
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Fourier (sine) ansatz for ∆u ≡ 0

Alternatively, for PDE solutions u in R2 such that u(x, y) is 2π-periodic in
x and odd in x, one may use the ansatz

u(x, y) =

∞∑
k=1

ak(y) sin(kx)

of a Fourier (sine) series in x with y-dependent coefficients ak ∈ C2(R)
(no cosine terms here, since u(x, y) is assumed to be odd in x!).

Plugging the ansatz into the Laplace equation ∆u ≡ 0 in R2 gives
∞∑
k=1

[
a′′k(y)−k2ak(y)

]
sin(kx) = 0 .

Comparing coefficients, one deduces ODEs a′′k(y) = k2ak(y) with solutions

ak(y) = bke
ky + b̃ke

−ky or ak(y) = ck sinh(ky) + c̃k sinh(k(y−L))

(for free constants bk, b̃k, ck, c̃k ∈ R and arbitrary given L ∈ (0,∞)).
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Fourier (sine) ansatz for ∆u ≡ 0 (continued)

The solutions formula just derived can be cast in form

u(x, y) =

∞∑
k=1

[
ck sinh(ky) + c̃k sinh(k(y−L))

]
sin(kx)

and is useful for the Dirichlet Problem on a rectangle

∆u ≡ 0 in (0, π)×(0, L) ,

u(0, · ) ≡ 0 , u(π, · ) ≡ 0

u( · , 0) = g0 , u( · , L) = gL

0 0

g0

gL

with L > 0 and g0, gL ∈ C1(R) odd and 2π-periodic (after extension).

Here, ck, c̃k are determined by the Fourier coefficients (FCs) of g0, gL:

u(x, 0) =
∑∞

k=1 c̃k sinh(−kL) sin(kx)  c̃k sinh(−kL) FCs of g0

u(x, L) =
∑∞

k=1 ck sinh(kL) sin(kx)  ck sinh(kL) FCs of gL

In this way, for this type of Dirichlet problem, always find a solution u
(in form of an infinite series).
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Example for a Fourier ansatz

As an example consider the Dirichlet problem for the Laplace equation

∆u ≡ 0 in (0, π)×(0, 1) ,

u(0, y) ≡ 0 , u(π, y) ≡ 0 for 0<y<1 ,

u(x, 0) = 0 , u(x, 1) = x(π−x) for 0<x<π .

The BC u(x, 0) = 0 means g0 ≡ 0 and implies c̃k = 0 for all k. Hence, the
solution formula (with L = 1) reduces to

u(x, y) =

∞∑
k=1

ck sinh(ky) sin(kx)

with the Fourier coefficients ck sinh(k) of the odd function
g1(x) = x(π−|x|) determined by the following coefficient formula:

ck sinh(k) =
1

π

∫ π

−π
g1(x) sin(kx) dx =

2

π

∫ π

0
g1(x) sin(kx) dx .
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Example for a Fourier ansatz (continued)

With multiple integrations (by parts) compute, for the examplary case:

ck sinh(k) =
2

π

∫ π

0
x(π−x) sin(kx) dx =

2

π

∫ π

0
(πx−x2) sin(kx) dx

=
2

πk

[
−(πx−x2) cos(kx)

∣∣π
x=0︸ ︷︷ ︸

=0

+

∫ π

0
(π−2x) cos(kx) dx

]

=
2

πk2

[
(π−2x) sin(kx)

∣∣π
x=0︸ ︷︷ ︸

=0

+2

∫ π

0
sin(kx) dx

]

= − 4

πk3
cos(kx)

∣∣π
x=0

=

0 , k even
8

πk3
, k odd

.

This yields the solution u of the Dirichlet problem as the infinite series

u(x, y) =

∞∑
k=1
k odd

8

πk3 sinh(k)
sinh(ky) sin(kx) .
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Remarks on the Fourier ansatz

Remarks on the Fourier ansatz:

Clearly, one may transform from an arbitrary rectangle
(x1, x2)×(y1, y2) with x1 < x2 and y1 < y2 to (0, π)×(0, L).(
Translate, scale with factor π

x2−x1
, take L ..= π(y2−y1)

x2−x1
!
)

For the eigenvalue problem on a square/rectangle/cube/cuboid, a
similar computation confirms that all eigenvalues have been found.

The Poisson equation ∆u = f can be treated in similar manner
if one expands also f(x, y) as a Fourier series in x

If the roles of x and y are switched, the ansatz applies analogously.

In contrast to the simple product ansatz discussed before, the
Fourier ansatz can partially deal with general boundary data
(at least on two sides on a rectangle if one has zero data on the other two).
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Polar-coordinates product ansatz for ∆u ≡ 0

One can express the 2d Laplace operator in planar polar coordinates as

∆u(r cosϑ, r sinϑ) =

[
d2

dr2
+

1

r

d

dr
+

1

r2

d2

dϑ2

]
u(r cosϑ, r sinϑ)

for r > 0 and ϑ ∈ R (checking formula
”
from right to left“ straightforward).

Thus, the polar-coordinates product ansatz

u(r cosϑ, r sinϑ) = η(r)κ(ϑ) with factors η ∈ C2((0,∞)), κ ∈ C2(R)

for solutions u to Laplace’s equation ∆u ≡ 0 in R2 yields

η′′(r)κ(ϑ) +
1

r
η′(r)κ(ϑ) +

1

r2
η(r)κ′′(ϑ) = 0 .

The rewriting r2η′′(r)
η(r) + r η′(r)

η(r) = −κ′′(ϑ)
κ(ϑ) leads to the ODEs (λ ∈ R constant)

r2η′′(r) + r η′(r) = λ η(r) and κ′′(ϑ) = −λκ(ϑ) .

Thomas Schmidt (Maths Dept., UHH) DE II for Engineering TUHH, Summer 24 88 / 111



Chapter 3: Second-Order PDEs 3.1 The Laplace and Poisson equation

Polar-coordinates product ansatz for ∆u ≡ 0 (continued)

The (relevant) solutions of these two ODEs can be made fully explicit:

ODE κ′′ = −λκ: polar-coordinates structure  only 2π-periodic
solutions κ relevant, and these exist only for λ = ω2 in the following
cases:

case ω = 0: κ constant,

case ω ∈ Z \ {0}: κ(ϑ) = B1 cos(ωϑ) +B2 sin(ωϑ).

ODE r2η′′(r) + r η′(r) = ω2 η(r): is Eulerian, by DE I equivalent with
η̃ ′′(s) = ω2 η̃(s) via trafos η̃(s) = η(es) and η(r) = η̃(log r). Therefore:

case ω = 0: η̃(s) = A1s+A2  η(r) = A1 log r +A2

case ω ∈ Z \ {0}: η̃(s) = A1eωs +A2e−ωs  η(r) = A1r
ω +A2r

−ω.

All in all, u(r cosϑ, r sinϑ) = η(r)κ(ϑ) is a linear combination of:

case ω = 0: log r (fundamental sol. in polar coords) and 1 (constant),

case ω ∈ Z \ {0}: rω cos(ωϑ), rω sin(ωϑ) (harmonic poly.s in pol. coords)
and r−ω cos(ωϑ), r−ω sin(ωϑ) (new types of solutions with singularity;
correspond to partial derivatives of the fundamental solution).
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Chapter 3: Second-Order PDEs 3.2 The diffusion or heat equation

3.2 The diffusion or heat equation

The homogeneous and inhomogeneous diffusion or heat equation (HE) for
a scalar function u of time-space variables (t, x) read

ut −∆u ≡ 0 in ΩT and ut −∆u = f in ΩT ,

respectively, with an open spatial domain Ω ⊂ Rn and a time horizon
T ∈ (0,∞], and with abbreviations ST ..= (0, T )× S and ∆ ..= ∆x.

Basic remarks on the heat equation:

The typical Cauchy-Dirichlet problem complements the heat equation
with an IC u(0, · ) = u0 in Ω and a Dirichlet BC u = g at (∂Ω)T .

The heat equation is linear. Its theory often resembles the one of the
Laplace and Poisson equation (with modified effects in the variable t).

If not stated otherwise, the space dimension n ∈ N is arbitrary.
However, partially we will restrict our treatment to the 1d case n=1.
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Exemplary solutions to the 1d HE, and parabolic scaling

Exemplary solutions to the 1d homogeneous HE (n=1) in all of R×R are:

solutions in product(-ansatz) form u(t, x) = ϕ(t)ψ(x),

e.g. u(t, x) = et±x or u(t, x) = et coshx, u(t, x) = et sinhx,

e.g. u(t, x) = e−t cosx, u(t, x) = e−t sinx,

polynomial solutions,

e.g. u(t, x) = 2t+x2, u(t, x) = 6tx+x3, u(t, x) = 12t2+12tx2+x4.

The polynomial examples are homogeneous in (t, x2). Corresponding
analogies between t and x2 are typical for the heat equation and manifest
also in the parabolic scaling of the heat equation (valid for arbitrary n):

u solves the homogeneous heat equation , λ > 0

=⇒ ũ(t, x) ..= u(λ2t, λx) solves the homogeneous heat equation .

Proof computation:
(

d
dt−∆x

)
ũ(t, x) = λ2ut(λ

2t, λx)−λ2∆u(λ2t, λx) = 0.
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The fundamental solution of the heat equation

The fundamental solution Φ of the heat equation is given by

Φ(t, x) =
1√

4πt
n exp

(
−|x|

2

4t

)
for (t, x) ∈ (0,∞)×Rn

and has the following properties:

Φ is positive and solves the heat equation in (0,∞)×Rn,∫
Rn Φ(t, x) dx = 1 for all t > 0 (normalization),

Φ(λ2t, λx) = λ−nΦ(t, x) for all t, λ > 0 and x ∈ Rn (scaling),

Φ(t, x) is rotationally symmetric in x,

limt↘0 Φ(t, x) =
{

0 for x 6= 0
∞ for x = 0

for x ∈ Rn (
”
initial condition“).

One can derive the formula for Φ from (e.g.) the first four properties. A
physics interpretation is that Φ describes the evolution of a unit amount of
heat or a unit mass concentrated at time t = 0 in the point x = 0.
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Solution formula for the Cauchy problem for the HE

In the full-space case Ω = Rn, one considers the Cauchy problem out of
HE and IC (BC dropped) and can solve by the following integral formula:

Theorem (solving the HE Cauchy problem by partial convolution with Φ)

For bounded u0 ∈ C0(Rn), by setting

u(t, x) ..=

∫
Rn

Φ(t, x−y)u0(y) dy

one obtains a bounded solution u ∈ C2((0, T )×Rn) ∩ C0([0, T )×Rn) to
the Cauchy problem for the homogeneous heat equation

ut −∆u ≡ 0 in (0, T )×Rn , u(0, · ) = u0 in Rn .

The theorem resembles the solution of Poisson’s equation by convolution,
but has in common even more with the PIF. In fact, Φ has properties very
much analogous to those of the Poisson kernel KP used in the proof of the
PIF, and the current theorem can derived in essentially the same way.
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Conservation principle for heat and mass

Corollary (conservation principle for heat and mass)

If u0 ∈ C0(Rn) is bounded with
∫
Rn |u0(x)|dx <∞, the solution u of the

theorem satisfies∫
Rn

u(t, x) dx =

∫
Rn

u0(x) dx for all t > 0 .

Physical meaning: Total amount of heat and total mass, respectively, (if
finite) are preserved from initial time t = 0 up to any time t > 0.

Proof of the corollary: Use the formula of the theorem to compute∫
Rn

u(t, x) dx =

∫
Rn

∫
Rn

Φ(t, x−y)u0(y) dy dx

=

∫
Rn

∫
Rn

Φ(t, x−y) dx︸ ︷︷ ︸
=1

u0(y) dy =

∫
Rn

u0(y) dy .
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Fourier (sine) ansatz for the 1d heat equation ut−uxx ≡ 0

The Cauchy-Dirichlet problem for the 1d HE on (0, π)

ut − uxx ≡ 0 in (0, T )×(0, π) ,

u(0, · ) = u0 , u( · , 0) ≡ 0 , u( · , π) ≡ 0

0 0

u0

can be approached, as done earlier for Laplace’s equation, by a
Fourier (sine) series ansatz with t-dependent coefficients ak ∈ C1((0, T )):

u(t, x) =

∞∑
k=1

ak(t) sin(kx)

This ansatz in the heat equation gives the ODE a′k(t) = −k2ak(t) with
solution ak(t) = ck exp(−k2t). All in all, this results in the solution formula

u(t, x) =

∞∑
k=1

ck exp(−k2t) sin(kx) ,

where evaluation at t = 0 reveals that ck ∈ R are the Fourier coefficients
of the (odd and 2π-periodic extension of the) initial datum u0 ∈ C1(R).
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Example for the Fourier series ansatz for the 1d HE

As an example consider the Cauchy-Dirichlet problem for the HE (with T=∞)

ut − uxx ≡ 0 in (0,∞)×(0, π) ,

u(0, x) = x(π−x) for 0<x<π ,

u(t, 0) = 0 , u(t, π) = 0 for 0<t<∞ .

The Fourier coefficients of u0(x) = x(π−|x|) are

ck =
2

π

∫ π

0
x(π−x) sin(kx) dx = . . . =

0 , k even
8

πk3
, k odd

,

where the actual computation has been carried out already on slide 86.
Plugging the results into the solution formula for the current situation gives

u(t, x) =
∞∑
k=1
k odd

8

πk3
exp(−k2t) sin(kx) .
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Remarks on the Fourier series ansatz for the 1d HE

Remarks on the Fourier series ansatz for the 1d HE:

From (x1, x2) with arbitrary x1 < x2 one may transform to (0, π).(
Translate, use parabolic scaling with factor λ = π

x2−x1
!
)

The inhomogeneous 1d HE ut − uxx = f can be treated in similar
manner if one expands also f(t, x) as a Fourier series in x.

In contrast to a simple product ansatz, the Fourier ansatz can deal with
general initial data (at least in case of zero Dirichlet boundary data, and in

some other cases as well).
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The maximum principle for the heat equation

The maximum principle for the homogeneous HE resembles the
one for Laplace’s equation, but uses only the parabolic boundary

∂parΩT
..=
(
{0}×Ω

)
∪ (∂Ω)T

of the time-space cylinder ΩT = (0, T )×Ω:

ΩT

∂parΩT

Theorem (maximum principle for the homogeneous heat equation)

For a solution u ∈ C2(ΩT ) ∩ C0
(
[0, T )×Ω

)
to the homogeneous heat

equation in ΩT , with bounded open Ω ⊂ Rn and T ∈ (0,∞], one has:

(1) weak maximum principle: There holds

inf
∂parΩT

u ≤ u(t, x) ≤ sup
∂parΩT

u for all (t, x) ∈ ΩT .

(2) strong maximum principle: If Ω is connected and u is non-constant in
Ωt with t ∈ (0, T ), there holds even

inf
∂parΩt

u < u(t, x) < sup
∂parΩt

u for all x ∈ Ω .
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Conclusions from the maximum principle for the HE

Corollary 1: For a solution u to the homogeneous HE, as in the theorem:

|u(t, x)| ≤ sup
∂parΩT

|u| for all (t, x) ∈ ΩT .

Corollary 2 (uniqueness in the Cauchy-Dirichlet problem for the HE)

For bounded open Ω ⊂ Rn, T ∈ (0,∞], f ∈ C0(ΩT ), u0 ∈ C0(Ω),
g ∈ C0((∂Ω)T ), the Cauchy-Dirichlet problem for the heat equation

ut −∆u = f in ΩT ,

u(0, · ) = u0 in Ω , u = g at (∂Ω)T

has at most one solution u ∈ C2(ΩT ) ∩ C0
(
[0, T )×Ω

)
.

The corollaries are proved the same way as for the Laplace/Poisson eqn.
Also the earlier Corollary 3 (cont. dependence on boundary data) has an analog.
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Chapter 3: Second-Order PDEs 3.2 The diffusion or heat equation

Proof of the weak maximum principle for the heat equation

In analogy with the case of Laplace’s equation one implements:

Proof of the weak maximum principle: It is enough to prove the claim
in ΩΘ with 0 < Θ < T . For uε(t, x) ..= u(t, x)−εt with ε > 0 observe

(uε)t(t, x)−∆uε(t, x) < 0 for all (t, x) ∈ (0,Θ]×Ω .

Since a maximum point (t, x) of uε in (0,Θ]×Ω necessarily satisfies
(uε)t(t, x) ≥ 0 and ∆uε(t, x) ≤ 0, such a point does not exist. This
implies max[0,Θ]×Ω uε = sup∂parΩΘ

uε and

u(t, x)− εΘ < uε(t, x) < sup
∂parΩΘ

uε ≤ sup
∂parΩΘ

u for (t, x) ∈ ΩΘ .

In the limit ε→ 0 one infers u(t, x) ≤ sup∂parΩΘ
u. The reverse inequality

u(t, x) ≥ inf∂parΩΘ
u follows similarly.

The proof of the strong maximum principle requires an HE-adapted mean value
property and is not discussed here any further.
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Chapter 3: Second-Order PDEs 3.3 The wave equation

3.3 The wave equation

The homogeneous and inhomogeneous wave equation (WE) for a scalar
function u of time-space variables (t, x) read

utt −∆u ≡ 0 in ΩT and utt −∆u = f in ΩT ,

respectively, with open Ω ⊂ Rn and T ∈ (0,∞] (other terminology as before).

Basic remarks on the wave equation:

The typical Cauchy-Dirichlet problem complements the wave equation
with two ICs u(0, · ) = u0 and ut(0, · ) = v0 in Ω and with a Dirichlet
BC u = g at (∂Ω)T .

Also the wave equation is linear, but its theory strongly differs from the
ones of the Laplace/Poisson equation and the heat equation.

We mostly work in space dimension n = 1 and turn briefly to n ∈ {2, 3}.
Theory for arbitrary n ∈ N is beyond the scope of this lecture.
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Chapter 3: Second-Order PDEs 3.3 The wave equation

Exemplary solutions to the 1d wave equation

Exemplary solutions u to the 1d wave equation (n=1) in all of R×R are:

solutions in product(-ansatz) form u(t, x) = ϕ(t)ψ(x),

e.g. e±te±x (all 4 combinations of signs; alternatively write with cosh, sinh)

e.g. cos t cosx, cos t sinx, sin t cosx, sin t sinx

polynomial solutions,

e.g. u(t, x) = t2+x2, u(t, x) = t3+3tx2, u(t, x) = t4+6t2x2+x4.

For comparison with the following theory, we put on record that all exemplary
solutions can be rewritten as functions of x+t and x−t, e.g.

ete−x = e−(x−t) , cos t cosx = 1
2 cos(x+t) + 1

2 cos(x−t) ,
sin t sinx = − 1

2 sin(x+t) + 1
2 sin(x−t) , t2+x2 = 1

2 (x+t)2 + 1
2 (x−t)2 .
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Chapter 3: Second-Order PDEs 3.3 The wave equation

Solving the 1d wave equation by change of variables

The homogeneous 1d WE utt−uxx ≡ 0 in (t1, t2)×(x1, x2) can be solved
by change of variables r = x+t

2 , s = x−t
2 or equivalently x = r+s, t = r−s:

If u solves, for w(r, s) ..= u(r−s, r+s), one finds the simple PDE wsr ≡ 0,
and then one can solve by two integrations. The resulting general solution
is w(r, s) = h(2r) + k(2s) and in terms of the original u reads

u(t, x) = h(x+t) + k(x−t) with arbitrary functions h, k ∈ C2(R) .

Interpretation: h(x+t) leftward-moving wave packet (speed −1),
k(x−t) rightward-moving wave packet (speed 1).

Calculation of the PDE wsr ≡ 0 for w: From w(r, s) ..= u(r−s, r+s) deduce by
the chain rule first ws(r, s) = −ut(r−s, r+s) + ux(r−s, r+s) and then

wsr(r, s) = −utt(r−s, r+s)− utx(r−s, r+s) + uxt(r−s, r+s) + uxx(r−s, r+s)
= −utt(r−s, r+s) + uxx(r−s, r+s) WE

= 0 .
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Chapter 3: Second-Order PDEs 3.3 The wave equation

Cauchy problem for the 1d WE, d’Alembert’s formula

The preceding solution formula can be adapted to the Cauchy problem for
the 1d WE with the two ICs for u(0, · ) and ut(0, · ):

Theorem (d’Alembert’s solution formula for Cauchy problem for 1d WE)

Consider u0 ∈ C2(R) and v0 ∈ C1(R). The unique solution u ∈ C2(R×R)
to the Cauchy problem for the homogeneous 1d wave equation

utt − uxx ≡ 0 in R×R ,
u(0, · ) = u0 in R , ut(0, · ) = v0 in R

is given by d’Alembert’s solution formula

u(t, x) ..=
1

2
u0(x+ t) +

1

2
u0(x− t) +

1

2

∫ x+t

x−t
v0(y) dy for (t, x) ∈ R×R .

Interpretation: wave propagation (as before) with initial displacement
u0 and initial velocity v0 at time t = 0.

The WE utt−c2uxx ≡ 0 with speed of propagation c > 0 can be solved
analogously by u(t, x) ..= 1

2u0(x+ct) + 1
2u0(x−ct) + 1

2c

∫ x+ct
x−ct v0(y) dy.
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Chapter 3: Second-Order PDEs 3.3 The wave equation

Deduction of d’Alembert’s formula

Proof/deduction of d’Alembert’s solution formula:

On the basis of the solution formula u(t, x) = h(x+t) + k(x−t), compute:

ICs
 

h+ k = u0

h′ − k′ = v0

derivative
 

h′ + k′ = u′0
h′ − k′ = v0

solve
 

h′ = 1
2u
′
0 + 1

2v0

k′ = 1
2u
′
0 − 1

2v0

antiderivative
 

h(x) = 1
2u0(x) + 1

2

∫ x
0 v0(y) dy + C

k(x) = 1
2u0(x)− 1

2

∫ x
0 v0(y) dy − C (same C, as h+k = u0)

plug in
 

u(t, x) = h(x+t) + k(x−t)
= 1

2u0(x+t) + 1
2u0(x−t) + 1

2

∫ x+t
x−t v0(y) dy

So, d’Alembert’s formula is obtained.
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Chapter 3: Second-Order PDEs 3.3 The wave equation

Cauchy-Dirichlet problem for the 1d WE on the half-line

In strong analogy with d’Alembert’s formula one may solve the Cauchy-
Dirichlet problem for the homogeneous 1d wave equation on (0,∞):

utt − uxx ≡ 0 in (0,∞)×(0,∞) ,

u(0, · ) = u0 in (0,∞) , ut(0, · ) = v0 in (0,∞) ,

u( · , 0) = g in (0,∞) .

For u0, g ∈ C2([0,∞)), v0 ∈ C1([0,∞)) with g(0) = u0(0), g′(0) = v0(0),
g′′(0) = u′′0(0) (compatibility of data at (t, x) = (0, 0)), obtain the solution as

u(t, x) =

{
1
2u0(x+t) + 1

2u0(x−t) + 1
2

∫ x+t
x−t v0(y) dy for x ≥ t

1
2u0(t+x)− 1

2u0(t−x) + g(t−x) + 1
2

∫ t+x
t−x v0(y) dy for x ≤ t

.

Specifically for g ≡ 0, the last formula models the odd reflection of wave
packets on a string or rope which is clamped at x = 0.

For bounded intervals Ω, in principle one can derive similar formulas, but possibly
will need lots of case distinctions (since multiple reflection may occur).
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Chapter 3: Second-Order PDEs 3.3 The wave equation

Fourier (sine) ansatz for the 1d wave equation utt−uxx ≡ 0

The Cauchy-Dirichlet problem for the 1d WE on (0, π)

utt − uxx ≡ 0 in (−T, T )×(0, π) ,

u(0, · ) = u0 , ut(0, · ) = v0 ,

u( · , 0) ≡ 0 , u( · , π) ≡ 0

0 0
u0 and v0

can also be treated by the previous method. However, more favorable is
usually the Fourier (sine) series ansatz with ak ∈ C2((−T, T )):

u(t, x) =

∞∑
k=1

ak(t) sin(kx) .

This ansatz in the WE leads to the ODE a′′k(t) = −k2ak(t) with general
solution ak(t) = ck cos(kt) + c̃k sin(kt). This results in the solution formula

u(t, x) =

∞∑
k=1

[
ck cos(kt) + c̃k sin(kt)

]
sin(kx) ,

where ck and kc̃k are the Fourier coefficients of the (odd and 2π-periodic
extensions of the) initial data u0 ∈ C2(R) and v0 ∈ C1(R).
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Chapter 3: Second-Order PDEs 3.3 The wave equation

Cauchy problem for the 3d and 2d wave equation

Theorem (solution formulas for the Cauchy problem for the 3d and 2d WE)

Consider u0 ∈ C3(R) and v0 ∈ C2(R). The unique solution u ∈ C2(R×Rn)
to the Cauchy problem for the homogeneous wave equation

utt −∆u ≡ 0 in R×Rn ,
u(0, · ) = u0 in Rn , ut(0, · ) = v0 in Rn

with n ∈ {2, 3} is given as follows:

case n = 3: Kirchhoff’s solution formula for (t, x) ∈ (R\{0})×R3:

u(t, x) ..=
1

4πt2

∫
∂B|t|(x)

[
u0(y) + (y−x) ·∇u0(y) + t v0(y)

]
dS(y) ,

case n = 2: Poisson’s solution formula for (t, x) ∈ (R\{0})×R2:

u(t, x) ..=
1

2π|t|

∫
B|t|(x)

u0(y) + (y−x) ·∇u0(y) + t v0(y)√
t2−|y−x|2

dy .

The Kirchhoff formula involves a surface integral over the surface ∂B|t|(x) of the
ball B|t|(x), the Poisson formula involves an integral over the circular disc B|t|(x).
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Chapter 3: Second-Order PDEs 3.3 The wave equation

On the verification of Kirchhoff’s formula

Partial verification: For n = 3, split integral as u(t, x) = uu0
(t, x)+uv0(t, x) with

uv0(t, x) ..=
1

4πt2

∫
∂B|t|(x)

t v0(y) dS(y) =
t

4π

∫
∂B1

v0(x+tν) dS(ν) .

For t > 0, then verify solution property of uv0
(
via
(
tf(t)

)
tt

=
(
2+t d

dt

)
f ′(t)

)
:(

uv0
)
tt

(t, x) =
1

4π

(
2+t

d

dt

)∫
∂B1

ν ·∇v0(x+tν) dS(ν)

=
1

4π

(
2+t

d

dt

)
1

t2︸ ︷︷ ︸
= 2

t2− 2t
t3 + 1

t
d
dt = 1

t
d
dt

∫
∂Bt(x)

y−x
t

·∇v0(y) dS(y)

=
1

4πt

d

dt

∫
Bt(x)

∆v0(y) dy =
1

4πt

∫
∂Bt(x)

∆v0(y) dS(y)

=
t

4π

∫
∂B1

∆v0(x+tν) dS(ν) = ∆x

[
uv0(t, x)

]
.

Solution properties for t < 0 and for uu0 follow similarly. The proof that Kirchhoff’s
formula yields all solutions, however, is more elaborate. Poisson’s formula for
n = 2 can be deduced by Hadamard’s method of (dimension) descent.
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Concluding remark on the wave equation

Concluding remark on the wave equation:

In case of the Dirichlet problem for Laplace’s equation or the Cauchy
problem for the heat equation, solution formulas use the boundary or
initial datum on its full domain. In contrast, for computing a solution u
of the wave equation utt−∆u ≡ 0 at (t, x) one merely needs . . .

case n = 1 (d’Alembert): u0 at {x−t, x+t} and v0 in (x−|t|, x+|t|) only,
case n = 3 (Kirchhoff): u0 and v0 at ∂B|t|(x) only,
case n = 2 (Poisson): u0 and v0 in B|t|(x) only.

This highlights a central point of the theory: The wave equation models
wave propagation with (scalar) speed 1 (and in form utt−c2∆u ≡ 0
with arbitrary speed c > 0). This contrasts with infinite speed of
propagation in the previously considered case of the heat equation.
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