Aufgabe 1 a	a): ('1+1-	<u>+1+1</u>	Punkte\
Truisanc I c	L/• \	.	1 1	1 unixuc

Man kreuze in jeder der Teilaufgaben a) -d) alle wahren (=richtigen) Aussagen an.

a)		Mit dem Produktansatz kann man jede partielle Differentialgleichung analytisch lösen.
	X	Ein Produktansatz liefert Lösungen bei gewissen partiellen Differentialgleichungen.
		Ein Produktansatz liefert immer die eindeutige Lösung einer partiellen Differentialgleichung.
		Falls der Produktansatz keine Lösung liefert, ist die partielle Differentialgleichung unlösbar.
b)		Gleichungen vom Typ $u_t+f(u)_x=0,\ u(x,0)=u_0(x),\ x\in\mathbb{R},\ t\in(0,\infty)$ können mit der Charakteristikenmethode immer gelöst werden.
c)	Maximu	ımprinzipien existieren für
	X	die Laplacegleichung,

d) Zum Beweis der Eindeutigkeit bei Anfangsrandwertaufgaben der Wärmeleitungsgleichung (auf beschränktem räumlichen Gebiet) sind folgende Methoden typischerweise hilfreich

alle homogenen elliptischen Gleichungen, alle inhomogenen elliptischen Gleichungen.

viculoach typischerweise minreich		
X	Maximumprinzip,	
	Reflexionsmethode,	
	Variation der Konstanten	
X	Energiemethoden.	

Aufgabe 1 b):	(1+1+1+1)	Punkte)
---------------	-----------	---------

Man kreuze in jeder der Teilaufgaben a) -d) alle wahren (=richtigen) Aussagen an.

a)		Beweis der Eindeutigkeit bei Anfangsrandwertaufgaben der leitungsgleichung (auf beschränktem räumlichen Gebiet) sind folgende len typischerweise hilfreich	
		Reflexionsmethode,	
	X	Maximumprinzip,	
		Variation der Konstanten,	
	X	Energiemethoden.	
b) Maximumprinzipien existieren für			
		alle homogenen elliptischen Gleichungen,	
	X	die Laplacegleichung,	
		alle inhomogenen elliptischen Gleichungen.	
c)		Gleichungen vom Typ $u_t + f(u)_x = 0$, $u(x,0) = u_0(x)$, $x \in \mathbb{R}$, $t \in (0,\infty)$	
		können mit der Charakteristikenmethode immer gelöst werden.	
d)		Mit dem Produktansatz kann man jede partielle Differentialgleichung analytisch lösen.	
		Ein Produktansatz liefert immer die eindeutige Lösung einer partiellen Differentialgleichung.	
	X	Ein Produktansatz liefert Lösungen bei gewissen partiellen Differentialgleichungen.	
		Falls der Produktansatz keine Lösung liefert, ist die partielle Differentialgleichung unlösbar	

3

Aufgabe 2: (4+4 Punkte)

a) Man löse die Anfangswertaufgabe

$$u_x + 2u_y = 0$$
 mit $u(x, 3x) = x^3 + x$

unter Verwendung der Charakteristikenmethode.

b) Gegeben sei das Anfangswertproblem

$$u_{tt} = 25u_{xx}, x \in \mathbb{R}, t > 0,$$

 $u(x,0) = \sin x, x \in \mathbb{R},$
 $u_t(x,0) = 1.$

- (i) Für den Punkt $(x_0, t_0) = (6, 2)$ gebe man den Abhängigkeitsbereich der Lösung an.
- (ii) Für $x \in [-10, 20]$ zeichne man den Bestimmtheitsbereich der Lösung für $t \geq 0$.
- (iii) Man löse das Anfangswertproblem.

Lösung:

a) (4 Punkte)

charakteristische Differentialgleichungen $\dot{x} = 1$, $\dot{y} = 2$

$$\dot{x} = 1 \Rightarrow x = t$$

 $y'(x) = 2 \Rightarrow y = 2x + C \Rightarrow C = y - 2x$

allgemeine Lösung $u(x,y) = \psi(y-2x)$

Anfangsbedingung $x^3 + x = u(x, 3x) = \psi(3x - 2x) = \psi(x)$

Lösung der Anfangswertaufgabe $u(x, y) = (y - 2x)^3 + (y - 2x)$

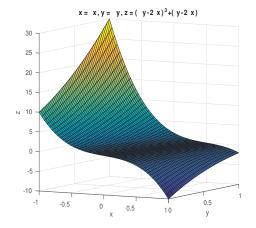
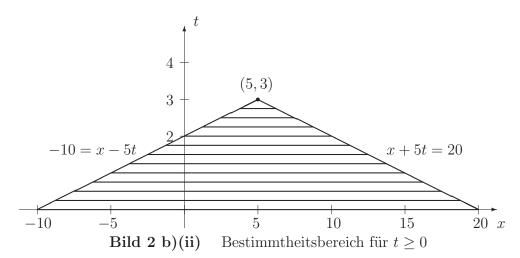


Bild 2 a): (keine Wertung) Lösung u(x, y)

- b) Ein Vergleich von $u_{tt} = c^2 u_{xx}$ mit $u_{tt} = 25 u_{xx}$ ergibt c = 5.
 - (i) (1 Punkt) Abhängigkeitsbereich $(x_0, t_0) = (6, 2)$: $A = [x_0 - ct_0, x_0 + ct_0] = [-4, 16]$
 - (ii) (2 Punkte)



(iii) (1 Punkte)

Mit der d'Alembertschen Lösungsformel erhält man

$$u(x,t) = \frac{1}{2}(\sin(x+5t) + \sin(x-5t)) + \frac{1}{2 \cdot 5} \int_{x-5t}^{x+5t} 1 dy = \frac{1}{2}(\sin(x+5t) + \sin(x-5t)) + t.$$

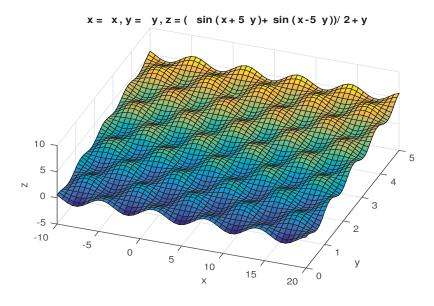


Bild 2 b)(iii): (keine Wertung) Lösung u(x,y)

Aufgabe 3: (2+6 Punkte)

a) Man schreibe folgende Differentialgleichung zweiter Ordnung in Matrix-Vektorschreibweise und bestimme den Typ

$$5u_{xx} - 10u_{xt} + 5u_{tt} - 3u_x + u = x + t.$$

b) Gegeben sei das Dirichlet-Problems im Dreiviertelkreis

$$r^{2}u_{rr} + ru_{r} + u_{\varphi\varphi} = 0 \quad \text{für} \quad r < 3 \quad \text{und} \quad 0 < \varphi < \frac{3\pi}{2} ,$$

$$u(r,0) = 0 = u\left(r, \frac{3\pi}{2}\right) \quad \text{für} \quad 0 \le r \le 3 ,$$

$$u(3,\varphi) = \varphi(2\varphi - 3\pi) \quad \text{für} \quad 0 \le \varphi \le \frac{3\pi}{2} .$$

- (i) Man berechne die Lösung u des Dirichlet-Problems. Hinweis: Es darf die sich aus dem Produktansatz ergebende Lösungsdarstellung verwendet werden.
- (ii) Man bestimme den maximalen und minimalen Funktionswert von u.

Lösung:

a) (2 Punkte)

$$5u_{xx} - 10u_{xt} + 5u_{tt} - 3u_x + u = x + t \Leftrightarrow \nabla^T \underbrace{\begin{pmatrix} 5 & -5 \\ -5 & 5 \end{pmatrix}}_{=: \mathbf{A}} \nabla u + (-3, 0)\nabla u + u = x + t$$

$$\Rightarrow$$
 det $\mathbf{A} = 25 - 25 = 0$

Damit ist die Differentialgleichung in ganz \mathbb{R}^2 von parabolischem Typ.

- b) (6 Punkte)
 - (i) Aus dem Produktansatz ergibt sich die Lösungsdarstellung

$$u(r,\varphi) = \sum_{k=1}^{\infty} b_k r^{2k/3} \sin\left(\frac{2k\varphi}{3}\right) .$$

Die noch nicht verwendete Randbedingung

$$\varphi(2\varphi - 3\pi) = u(3, \varphi) = \sum_{k=1}^{\infty} b_k 3^{2k/3} \sin\left(\frac{2k\varphi}{3}\right)$$

erfordern eine ungerade Fourier-Reihenentwicklung der Periode $T=3\pi$ mit den Fourier-Koeffizienten:

$$c_k = \frac{4}{3\pi} \int_0^{3\pi/2} \varphi(2\varphi - 3\pi) \sin\left(\frac{2k\varphi}{3}\right) d\varphi$$

$$= \frac{4}{3\pi} \cdot \frac{3}{2k} \left(-\varphi(2\varphi - 3\pi)\cos\left(\frac{2k\varphi}{3}\right)\Big|_0^{3\pi/2} + \int_0^{3\pi/2} (4\varphi - 3\pi)\cos\left(\frac{2k\varphi}{3}\right) d\varphi\right)$$

$$= \frac{4}{3\pi} \cdot \frac{3}{2k} \cdot \frac{3}{2k} \left((4\varphi - 3\pi)\sin\left(\frac{2k\varphi}{3}\right)\Big|_0^{3\pi/2} - \int_0^{3\pi/2} 4\sin\left(\frac{2k\varphi}{3}\right) d\varphi\right)$$

$$= \frac{4}{3\pi} \cdot \frac{3}{2k} \cdot \frac{3}{2k} \cdot \frac{3}{2k} \cdot 4\cos\left(\frac{2k\varphi}{3}\right)\Big|_0^{3\pi/2} = \frac{18(\cos(k\pi) - 1)}{k^3\pi} = c_k$$

Damit lautet die Lösung

$$u(r,\varphi) = \sum_{k=1}^{\infty} c_k \left(\frac{r}{3}\right)^{2k/3} \sin\left(\frac{2k\varphi}{3}\right) .$$

= $r \sin(x)$, z = 18 (-2) ((r/3)^{2/3} $\sin(2 x/3)$ +(r/3)² $\sin(2 x)/3^3$ +(r/3)^{10/3} §

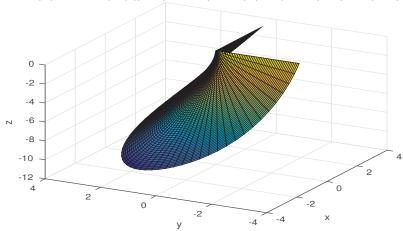


Bild 3 b): (keine Wertung) Lösung $u(r,\varphi)$

(ii) Da u harmonisch und nicht konstant ist, werden Maximum und Minimum nur auf dem Rand angenommen:

$$u_{\text{max}} = u(0,0) = 0, \quad u_{\text{min}} = u\left(3, \frac{3\pi}{4}\right) = \frac{3\pi}{4}\left(\frac{3\pi}{2} - 3\pi\right) = -\frac{9\pi^2}{8} \approx -11.1033.$$