Aufgabe 1:

Gegeben sei die partielle Differentialgleichung erster Ordnung

$$2uu_x - 4xuu_y = x^3.$$

- a) Man berechne die allgemeine Lösung.
- b) Mit Hilfe der allgemeinen Lösung bestimme man die Lösung, die der Anfangsbedingung $u(x, x^2) = x^2$ genügt.
- c) Man führe die Probe durch, ob die in b) berechnete Funktion auch wirklich die Anfangswertaufgabe löst.

Aufgabe 2:

Gegeben sei die Anfangsrandwertaufgabe

$$u_{tt} = u_{xx}$$
, für $0 < x < 2$ und $t > 0$, $u(0,t) = 0$, für $t \ge 0$, $u(2,t) = 1$, für $t \ge 0$, $u(x,0) = x^2/4$, für $0 \le x \le 2$, $u_t(x,0) = 0$, für $0 \le x \le 2$.

a) Man bestimme zunächst eine geeignete Funktion $\tilde{u}(x,t)$, die die Randbedingungen erfüllt, und transformiere die Anfangsrandwertaufgabe durch

$$v(x,t) := u(x,t) - \tilde{u}(x,t)$$

in ein Problem mit homogenen Randbedingungen.

- b) Anschließend löse man das Problem in v.
 - Hinweis: Dabei darf die sich aus dem Produktansatz ergebende Lösungsdarstellung verwendet werden.
- c) Man gebe die Lösung der Anfangsrandwertaufgabe an.