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Chapter 1: Basics, terminology, examples

Chapter 1: Basics, terminology, examples

Definition (ordinary DE)

An ordinary differential equations (in brief : an ODE ) is an equation with
derivatives up to order m ≥ 1 in implicit form

F (t, u(t), u′(t), u′′(t), . . . , u(m)(t)) = 0

or alternatively in explicit form (i.e. solved for u(m))

u(m)(t) = f(t, u(t), u′(t), u′′(t), . . . , u(m−1)(t))

for an unknown function u : I → Rn of a single variable t ∈ I ⊂ R.

If the equation holds for all‡ t ∈ I, one calls u a solution of the DE on I.

In contrast: multiple variables  DE II, PDE, partial DE.

Caution: Also common to use x(t), y(t), or y(x) instead of u(t)!

‡I interval or at least without single points; in boundary points use one-sided derivative.
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Chapter 1: Basics, terminology, examples

Terminology in connection with ODEs

Brief functional notation for previous ODEs:

F ( · , u, u′, u′′, . . . , u(m)) ≡ 0 rsp. u(m) = f( · , u, u′, u′′, . . . , u(m−1)) .

Terminology:

m: order of the ODE (provided u(m) indeed occurs),

n: number of (component) functions (of u : I → Rn),

N : number of (component) equations (of ODE with
”
=“ in RN ),

F, f : given structure function of the ODE
(function from domain in R×(Rn)1+m rsp. R×(Rn)m to RN ).

From now mostly N = n only (as ODE with N 6= n over/underdetermined).

N = n = 1: scalar ODE for one function,

N = n ≥ 2: ODE system for multiple functions.

Thomas Schmidt (Maths Dept., UHH) DE I for Engineering TUHH, Winter 24/25 5 / 111



Chapter 1: Basics, terminology, examples

First examples of ODEs

Oversimplified examples (with N = n arbitrary  scalar or as a system):

u′ ≡ 0 has order m = 1.
All solutions: constant functions u(t) = C with C ∈ Rn.

u′′ ≡ 0 has order m = 2.
All solutions: affine functions u(t) = C1t+ C0 with C0, C1 ∈ Rn.

First reasonable examples (still N = n arbitrary):

u′ = u has order m = 1.
Easy-to-guess solutions: u(t) = Cet with C ∈ Rn.

u′ = λu with parameter λ ∈ R has order m = 1.
Easy-to-guess solutions: u(t) = Ceλt with C ∈ Rn.

u′′ = −u has order m = 2.
Easy-to-guess solutions: u(t) = C1 sin(t) + C2 cos(t) with C1, C2 ∈ Rn.

(Soon: The guessed solutions are in fact the only solutions.)
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Chapter 1: Basics, terminology, examples

Further examples of ODEs

Further examples:

(u′)2 = u is a scalar first-order ODE (i.e. m = N = n = 1).

Easy-to-guess solutions: u(t) = 1
4(t− t0)2 with t0 ∈ R and u ≡ 0.

(In this case not yet all solutions!)

u′1 = t3 + u1 + u2
2 ,

u′2 = t2u1u2

or equivalently

(
u′1
u′2

)
=

(
t3 + u1 + u2

2

t2u1u2

)
is a

system of two first-order ODEs for an R2-valued function u =

(
u1

u2

)

(i.e. m = 1, N = n = 2).

Rule of thumb (for N = n, explicit form): Solution involves m·n constants.


Side remark: In general no such rule for implicit form, since e.g.:

3u
′ ≡ 0 (scalar): no solution at all (as 3y 6= 0 for all y ∈ R),

u′(2−u′) ≡ 0 (scalar): u(t) = C and u(t) = 2t+C
”
too many“ solutions.



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Chapter 1: Basics, terminology, examples

Initial values and boundary values

Determination of mn constants from mn additional conditions,
typical on interval I are either initial conditions (ICs)

u(t0) = y0 , u
′(t0) = y1 , u

′′(t0) = y2 , . . . , u
(m−1)(t0) = ym−1

at one given point t0 ∈ I with given y0, y1, . . . , ym−1 ∈ Rn or in case
I = [t1, t2] boundary conditions (BCs)

r(u(t1), u(t2), u′(t1), u′(t2), . . . , u(m−1)(t1), u(m−1)(t2)) = 0

at two points t1, t2 with given function r : (Rn)2m → (Rn)m.

An ODE together with given initial or boundary conditions is called an
initial value problem (IVP) or boundary value problem (BVP),
respectively.

In general only IVPs/BVPs (not ODEs alone) can be solved uniquely.
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Chapter 1: Basics, terminology, examples

More terminology in connection with ODEs

More terminology:

In an autonomous ODE, t does not occur separately, but only in form
of u(t), u′(t), . . . , u(m)(t), i.e. it has the slightly more specific form

F0(u(t), u′(t), . . . , u(m)(t)) = 0 .

Linear ODEs come with affine dependence on u(t), u′(t), . . . , u(m)(t),
i.e. they have the form

Am(t)u(m)(t) + . . .+A2(t)u′′(t) +A1(t)u′(t) +A0(t)u(t) = b(t)

with coefficients‡ Ak and inhomogeneity b, or in brief
∑m

k=0
Ak(t)u

(k)(t) = b(t) .

A linear ODE with constant coefficients is one with constant Ak only.
In case b ≡ 0 a linear ODE is homogeneous, otherwise inhomogeneous.

‡Ak(t)∈R or Ak(t)∈Rn×n (scalar or matrix coefficients), but in any case b(t) ∈ Rn.
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Chapter 1: Basics, terminology, examples

Scalar linear first-order ODEs; homogeneous case

Theorem

For I interval, a : I → R continuous, A antiderivative of a (i.e. A′ = a),
the solutions of the scalar ODE

u′(t) = a(t)u(t) rsp. u′ = au

on I are exactly the functions u of form

u(t) = CeA(t) rsp. u = CeA with constant C ∈ R .

Proof/verifying calculation:

u(t) = CeA(t)  u′(t) = A′(t)CeA(t) = a(t)CeA(t) = a(t)u(t)  u sol.

u sol.  (e−Au)′ = e−Au′ − e−AA′u = e−A(u′ − au)
ODE≡ 0

 e−Au = C  u = CeA.

Corollary: solution formula for corresponding IVP with IC u(t0) = y0:

u(t) = y0eA(t)−A(t0) .
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Chapter 1: Basics, terminology, examples

Application in examples; homogeneous case

Applications of theorem and IVP solution formula u(t) = y0eA(t)−A(t0):

u′ = λu
read off
 a ≡ λ, A(t) = λt

thm
 solutions u(t) = Ceλt.

(formula seen before, but now shown that these are the only solutions.)

IVP for u′(t) = 2
tu(t) with IC u(1) = 5

read off
 a(t) = 2

t , A(t) = 2 ln t, t0 = 1, y0 = 5
solution formula

 solution u(t) = 5eA(t)−A(1) = 5e2 ln t = 5t2.

(valid e.g. on interval (0,∞), where 2
t defined with antiderivative 2 ln t.)
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Chapter 1: Basics, terminology, examples

Scalar linear first-order ODEs; inhomogeneous case

Theorem

For I interval, a, b : I → R continuous with antiderivatives A of a, B∗ of
e−Ab, the solutions of the scalar ODE

u′ = au+ b

on I are exactly the functions u of form

u = eA(B∗ + C) with constant C ∈ R .

Proof/verifying calculation similar as before!

Corollary: solution formula for corresponding IVP with IC u(t0) = y0:

u(t) = eA(t)
[
B∗(t)−B∗(t0) + y0e−A(t0)

]

FTC
= eA(t)

[ ∫ t

t0

e−A(s)b(s) ds+ y0e−A(t0)

]
.
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Chapter 1: Basics, terminology, examples

Application in example; inhomogeneous case

Application IVP solution formula u(t) = eA(t)
[∫ t
t0

e−A(s)b(s)ds+ y0e−A(t0)
]
:

IVP for u′(t) = 2
tu(t)+t ln t with IC u(1) = 5

read off
 b(t) = t ln t.

Then by solution formula (A(t) = 2 ln t, t0 = 1, y0 = 5 as before):

u(t) = e2 ln t
[ ∫ t

1 e−2 ln ss ln s ds+ 5
]

= t2
[ ∫ t

1
ln s
s ds+ 5

]

= t2
[

1
2(ln t)2 − 1

2(ln 1)2 + 5
]

= 1
2 t

2(ln t)2 + 5t2

(valid once more on interval (0,∞)).
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Chapter 1: Basics, terminology, examples

Example: ODEs of a pendulum

The ODE of a simple physical pendulum is the scalar non-linear ODE

ϕ′′(t) = −(g/L) sin(ϕ(t))

where ϕ(t): displacement angle at time t,

g: gravity acceleration (constant > 0),

L: length of thread (constant > 0).

L

m

ϕg

mgϕ
(

Derivation: tang. force: mg sin(ϕ), tang. accel.: Lϕ′′

 equation of motion mLϕ′′ = −mg sin(ϕ).

)

The linearized pendulum ODE (cf. harmonic oscillator) is the scalar ODE

ϕ′′(t) = −(g/L)ϕ(t)

(Small-angle approximation of the preceding, as sin(ϕ) ≈ ϕ for small ϕ).

All solutions: ϕ(t) = C1 sin(ωt)+C2 cos(ωt) with ω ..=
√
g/L, Ci ∈ R.
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Chapter 1: Basics, terminology, examples

Example: general equations of motion

Equations of motion for (point-like) particle of mass m > 0:

m~x ′′(t) = ~F (t, ~x(t), ~x ′(t))

is a system of 3 ODEs for the position vector ~x : I → R3 (here once with
arrows on top of all 3d vectors). The force ~F acting on the particle is e.g.:

gravity ~Fgrav(t, ~x,~v) = −mg~e3 with gravity acceleration g,

Lorentz force ~FLor(t, ~x,~v) = q ~E(t, ~x) + q ~v × ~B(t, ~x) with charge q and
time-position-dependent electric field ~E and magnetic field ~B,

air drag (no wind; not point-like) ~Fdrag(t, ~x,~v) = −Cdrag|~v|~v with Cdrag

dependent on cross section, drag coefficient of particle and air density

or possibly the sum of some of these terms.

With view towards such ODEs, another word for solution is trajectory.
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Chapter 1: Basics, terminology, examples

Example: ODE of control loop element

ODE of a simple control loop element (order 1, scalar, linear, inhomogeneous)

y′(t) = −λy(t) + λw(t)

for output y with given input w and constant λ.




Derivation (with d damping and k spring constant):
damping force −dy′,
spring force k(w−y) (Hooke’s law with balance at w = y),
force balance −dy′+ k(w−y) = 0 gives ODE with λ = k

d .


 y

w

Solution with IC y(t0) = y0 (special case of previous solution formula):

y(t) = y0e−λ(t−t0) + λ

∫ t

t0

eλ(s−t)w(s) ds .
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Chapter 1: Basics, terminology, examples

Example: ODE of electrical RLC circuit

ODE of electrical RLC circuit (order 2, scalar, linear, inhomogeneous)

LI ′′(t) +RI ′(t) + 1
C I(t) = U ′(t)

for electric current I with the following given:

inductance L, resistance R, capacitance C (const.),

applied voltage U .

U(t)∼

C

R

L




Derivation:
Ohm’s law: UR = RI,
capacitor charging current: I = CU ′C,
coil/inductor voltage: UL = LI ′,

Kirchhoff rule UL +UR +UC = U
differentiate
 ODE.




Soon: Solutions are damped oscillations.
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Chapter 1: Basics, terminology, examples

Side remark: reduction-to-first-order principle

An ODE of arbitrary order m

F ( · , u, u′, . . . , u(m−1), u(m)) ≡ 0 for u : I → Rn

can be rewritten purely formally as a system of order 1

u′0 = u1 ,

u′1 = u2 ,
...

...
u′m−2 = um−1 ,

F ( · , u0, u1, . . . , um−1, u
′
m−1) ≡ 0

for




u0

u1

u2
...

um−2

um−1




: I → (Rn)m .

Great for theory, less useful for practical computations!

Example: LI ′′ +RI ′ + 1
C I = U ′ turns into

{
I ′0 = I1

LI ′1 +RI1 + 1
C I0 = U ′

.
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Chapter 2: Methods for solving non-linear ODEs

Chapter 2: Methods for solving non-linear ODEs

First solutions formulas for linear ODEs were in the previous chapter, and
their general treatment follows. For non-linear ODEs, in contrast, there is
no general approach. In a sense one may only try around. Among possible
approaches this chapter treats, for non-linear first-order ODEs, the methods

separation of variables,

changes of variable (specifically Bernoulli and Riccati ODEs),

exact ODEs

plus some special cases of non-linear second-order ODEs.
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Chapter 2: Methods for solving non-linear ODEs 2.1 Separation of variables

2.1 Separation of variables

Separation of variables: Try to rearrange an ODE in form g(u)u′ = h, i.e.
with all u rsp. u(t) on the left where also u′ is, all separate t on the right.
If this works, one can solve (at least in principle).

Illustration by examples:

u′ = t2

2u

rearrange
 2uu′ = t2

antideriv.
 u(t)2 = 1

3 t
3 + C

solve
 u(t) = ±

√
1
3 t

3 + C.

u′ = u(u−1)
rearrange
 u′

u(u−1) ≡ 1

antideriv.
 ln

∣∣1− 1
u(t)

∣∣ = t+ C
solve
 u(t) =

(
1± et+C

)−1
.

Here used (auxiliary calculation!): 1
x(x−1) has antiderivative ln

∣∣1− 1
x

∣∣.
Caution! Initial division by u(u−1) allowed only if 0 6= u 6= 1.
Plugging in shows that u ≡ 0 and u ≡ 1 are indeed additional solutions.(
All solutions except u ≡ 0 can also be written as u(t) =

(
1 + C̃et

)−1
.
)
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Chapter 2: Methods for solving non-linear ODEs 2.1 Separation of variables

Separation of variables, general background

General principle behind:

Principle (ODEs with separated variables)

Fix intervals I, J and continuous g : J → R, h : I → R with antiderivatives G, H.

Then, for differentiable u : I → J , the scalar ODE

g(u(t))u′(t) = h(t) rsp. g(u)u′ = h

on I is equivalent by taking antiderivatives to the equation

G(u(t)) = H(t) + C with constant of integration C ∈ R .

Proof: d
dtG(u(t)) = G′(u(t))u′(t) = g(u(t))u′(t) and H ′(t) = h(t).

reduces ODE to derivative-free equation, which can be solved for u(t).
(Formally: If g is free of zeros, the solutions are u(t) = G−1(H(t) + C) with
the differentiable inverse function G−1 of G.)

computation of antiderivatives G,H and solving for u(t) can be involved!
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Chapter 2: Methods for solving non-linear ODEs 2.1 Separation of variables

Sample application: exponential population model

Most simple population model: Ansatz with change p′(t) proportional to
population p(t) at each time t ∈ R gives the IVP already seen

p′ = λ p , p(t0) = p0

with: change rate λ ∈ R (equals birth rate minus death rate),

initial population p0 ∈ R at initial time t0 ∈ R, in reality p0 ≥ 0.

The solutions already determined

p(t) = p0eλ(t−t0)

exhibit for λ > 0 exponential growth, for λ < 0 exponential decay.

But this model does not reflect bounded capacity (e.g. in habitat), as
limt→∞ p(t) =∞ for λ > 0  unrealistic at least over longer time!
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Chapter 2: Methods for solving non-linear ODEs 2.1 Separation of variables

Sample application: logistic population model

Slightly refined population model with maximal capacity M > p0 > 0:

p′ = λ p (M−p) , p(t0) = p0 .

Solve by separation of variables (case M = 1, λ = −1 already seen):

rearrange
 p′

p(M−p) = λ
antideriv.
 1

M ln p(t)
M−p(t) = λ(t−t0) + 1

M lnC with C > 0

solve
 p(t) = M CeMλ(t−t0)

CeMλ(t−t0)+1
.

Here used (auxiliary calculation!): 1
x(M−x) has antidervative 1

M ln x
M−x .

From p0 = p(t0) = M C
C+1 determine additionally C = p0

M−p0 , find solution

p(t) = M
pe(t)

pe(t) +M−p0
with abbreviation pe(t) = p0eMλ(t−t0) .

For λ > 0 known as logistic growth with in particular limt→∞ p(t) = M .
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Chapter 2: Methods for solving non-linear ODEs 2.2 Changes of variable

2.2 Changes of variable

Occassionally one can simply and then solve ODE by changes of variable.
The two basic types are:

New function y replaces u (change of dependent variable):
y(t) = Y (u(t)) and slightly more generally y(t) = Yt(u(t)),

New
”
time“ s replaces t (change of independent variable):

t = T (s), ũ(s) = u(T (s))

with differentiably reversable maps Y , Yt, T (in application just specific terms).

There is no general rule for finding changes of variable, but for specific
cases (some on the next slides) useful changes of variable are known.

In general, with each change of variable one attempts the 3-step principle:
determine transformed ODE with new variable,
solve in terms of the new variable,
transform solution back to original variable.
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Chapter 2: Methods for solving non-linear ODEs 2.2 Changes of variable

Change of variable for Bernoulli ODEs

Bernoulli ODEs are scalar ODEs (in general for positive u) of type

u′(t) = a(t)u(t) + b(t)u(t)α

with given coefficient functions a, b and parameter‡ α ∈ R \ {0, 1}.
The change of variable y(t) ..= u(t)1−α transforms by

y′(t) = (1− α)u(t)−αu′(t) = (1− α)[a(t)u(t)1−α + b(t)]

= (1− α)[a(t)y(t) + b(t)] ,

to a linear ODE for y, for which the solution formula of Chapter 1 applies.

Example: u′(t) = u(t) + tu(t)2

read off
 α = 2, a ≡ 1, b(t) = t, new ODE: y′(t) = −y(t)− t

sol. formula
 y(t) = e−t[(1−t)et + C] = 1−t+ Ce−t

transf. back
 u(t) = y(t)−1 =

(
1−t+ Ce−t

)−1

‡Cases α = 0 and α = 1 excluded above, since in these the ODE is directly linear.
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Chapter 2: Methods for solving non-linear ODEs 2.2 Changes of variable

Change of variable for Riccati ODEs

Riccati ODEs are scalar ODEs of type

u′(t) = a(t)u(t) + b(t)u(t)2 + c(t)

with coefficients a, b, c. Given a special solution u0 (which one does know

or can guess) the change of variable y(t) ..=
(
u(t)−u0(t)

)−1
transforms by

y′(t) =
u′0(t)−u′(t)

(u(t)−u0(t))2
= . . . = −

[
a(t) + 2u0(t)b(t)

]
y(t)− b(t)

to a linear ODE for y, for which the solution formula of Chapter 1 applies.

Example: u′(t) = 3tu(t)− tu(t)2 − 2t with special solution u0 ≡ 1

read off
 a(t) = 3t, b(t) = −t, c(t) = −2t, new ODE: y′(t) = −ty(t) + t

sol. formula
 y(t) = e−

1
2
t2
(
e

1
2
t2 + C

)
= 1 + Ce−

1
2
t2

transf. back
 u(t) = y(t)−1 + u0(t) =

(
1 + Ce−

1
2
t2
)−1

+ 1
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Chapter 2: Methods for solving non-linear ODEs 2.2 Changes of variable

Change of variable for similarity ODEs

Similarity ODEs are scalar ODEs (on intervals where t 6= 0) of type

u′(t) = f

(
u(t)

t

)

with structure function f . The change of variable y(t) = u(t)
t transforms by

y′(t) =
u′(t)
t
− u(t)

t2
=

1

t

[
f

(
u(t)

t

)
− u(t)

t

]
=

1

t

[
f(y(t))− y(t)

]

to an ODE for y, solvable (in principle) by separation of variables.

Example: u′(t) = 1 + u(t)
t +

(
u(t)
t

)2

read off
 f(x) = 1 + x+ x2, new ODE: y′(t) = 1

t [1 + y(t)2]
sep. var.
 y(t) = tan(ln|t|+ C)

transf. back
 u(t) = t y(t) = t tan(ln|t|+ C)
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Chapter 2: Methods for solving non-linear ODEs 2.2 Changes of variable

Change of variable for Euler-Cauchy ODEs

Euler-Cauchy ODEs are scalar, linear, homogeneous ODEs of special type

amt
mu(m)(t) + . . .+ a2t

2u′′(t) + a1tu
′(t) + a0u(t) ≡ 0

with constants ak ∈ R, but in effect with non-constant coefficients akt
k.

One checks (on intervals where t > 0): The change of variable t = es,
ũ(s) = u(es) transforms to an ODE for ũ with constant coefficients, and
this ODE can be solved (in principle) by methods of the next chapter.

Example (which works out already now): t2u′′(t) + tu′(t) + u(t) = 0

From ũ(s) = u(es) deduce first ũ′(s) = esu′(es) and then with ODE
ũ′′(s) = (es)2u′′(es) + esu′(es) = −u(es) = −ũ(s) (new ODE).
Chap. 1 or. 3
 ũ(s) = C1 sin(s) + C2 cos(s)

transf.back
 u(t) = ũ(ln t) = C1 sin(ln t) + C2 cos(ln t)
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Chapter 2: Methods for solving non-linear ODEs 2.3 Exact ODEs

2.3 Exact ODEs

3-step procedure for given scalar ODE of type

f(t, u(t)) + g(t, u(t))u′(t) = 0

(with f, g defined on
”
suitably good“ domain D ⊂ R2):

Check if the integrability criterion

∂f

∂x
(t, x) =

∂g

∂t
(t, x) for all (t, x) ∈ D

is valid. If
”
yes“, one has an exact ODE. Only then proceed further!

Integrate
∫
f(t, x) dt and

∫
g(t, x) dx. By choosing constants of

integration reach a common result Ψ(t, x).

Determine solutions u by solving Ψ(t, u(t)) = C for u(t).
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Chapter 2: Methods for solving non-linear ODEs 2.3 Exact ODEs

Example for solving an exact ODE

Example: Solve 1 + u
t2
− 1

tu
′ ≡ 0 as follows:

read off
 f(t, x) = 1 + x

t2
, g(t, x) = −1

t

check integrability criterion: ∂f
∂x (t, x) = 1

t2
, ∂g
∂t (t, x) = 1

t2
, X

integrate:
∫
f(t, x) dt = t− x

t + const(x) ,∫
g(t, x) dx = −x

t + const(t)
choose consts
 potential: Ψ(t, x) = t− x

t

principle
 equation (equivalent to ODE): t− u(t)

t = C
solve
 solutions: u(t) = t2 − Ct
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Chapter 2: Methods for solving non-linear ODEs 2.3 Exact ODEs

Exact ODEs, general background

General principle behind:

Principle (exact ODEs)

On open D ⊂ R2 consider both partial derivatives f = ∂Ψ
∂t and g = ∂Ψ

∂x of
a C1 function Ψ: D → R of the variables (t, x) ∈ D. Then the scalar ODE

f(t, u(t)) + g(t, u(t))u′(t) = 0

is called exact‡ and, for differentiable u : I → R with (t, u(t)) ∈ D on
intervals I, is equivalent by taking antiderivatives to the equation

Ψ(t, u(t)) = C with constant of integration C ∈ R .

Proof: Chain rule gives d
dtΨ(t, u(t)) = f(t, u(t)) + g(t, u(t))u′(t).

Same as with separation of variables: reduces ODE to derivative-free equation,
which can ideally be solved for u(t).

‡The word
”
exact“ comes from an analogous structure in the theory of differential forms.
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Chapter 2: Methods for solving non-linear ODEs 2.3 Exact ODEs

Potentials of 2d vector fields

Hence, for given f , g, we wonder in which cases there is a Ψ such that
f = ∂Ψ

∂t and g = ∂Ψ
∂x hold. Indeed, these two conditions are summarized in

(
f
g

)
= ∇Ψ

(
vector field

(
f
g

)
equals gradient of Ψ

)
,

and then fall under the following general notion
(
with

(
f
g

)
replaced by V

)
:

Definition (potentials)

A potential/antiderivative of a vector field V : D → R2 on open D ⊂ R2

is a differentiable function Ψ: D → R such that ∇Ψ = V holds on D.
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Chapter 2: Methods for solving non-linear ODEs 2.3 Exact ODEs

Integrability criterion for 2d vector fields

The integrability criterion ∂f
∂x = ∂g

∂t is then nothing but precisely the
following Analysis-3 criterion spelled out for V =

(
f
g

)
:

Theorem (integrability criterion for 2d vector fields)

Consider a simply connected domain‡ D in R2 and a C1 vector field
V : D → R2 of the variables (t, x) ∈ D. Then there exists a potential for

V if and only if the integrability criterion ∂V1
∂x = ∂V2

∂t is satisfied on D.

Side remark (cf. Analysis 3): In general one may express a potential Ψ of a vector
field with integrability criterion satisfied via oriented line integrals. For explicit
computation of Ψ, however, it usually suffices to integrate separately with respect
to t and x (as seen in the earlier example).

‡A domain is a non-empty, open, and connected subset. A domain in R2 is simply
connected if it contains (roughly speaking) “no holes”.
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Chapter 2: Methods for solving non-linear ODEs 2.3 Exact ODEs

Treatment of non-exact ODEs, integrating factors

If f(t, u(t)) + g(t, u(t))u′(t) = 0 is not exact, the following may help:

Principle: Seek equivalent exact ODE

h(t, u(t))f(t, u(t)) + h(t, u(t))g(t, u(t))u′(t) = 0 (∗)

with integrating factor h(t, u(t)) 6= 0 to be determined.

Make ansatz e.g. h(t, x) = ϕ(t), h(t, x) = ϕ(x), h(t, x) = ϕ(t+x), or

h(t, x) = ϕ(tx). Integrability criterion ∂(hf)
∂x = ∂(hg)

∂t for (∗) yields
ODE for ϕ, from which one can (hopefully) determine ϕ and then h.
(But: This is a trial-and-error method. No guarantee that it really helps!)

After successful determination of h one proceeds as discussed earlier.
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Chapter 2: Methods for solving non-linear ODEs 2.3 Exact ODEs

Example for determining an integrating factor

Example: Treat 2t+t2+u+ (1+t2+u)u′ ≡ 0 as follows:

read off
 f(t, x) = 2t+ t2 + x, g(t, x) = 1 + t2 + x

check integrability criterion: ∂f
∂x (t, x) = 1, ∂g

∂t (t, x) = 2t  not exact

ansatz h(t, x) = ϕ(t+x) for integrating factor h
int.crit.
 ϕ′(t+x)f(t, x) +ϕ(t+x)∂f∂x (t, x) = ϕ′(t+x)g(t, x) +ϕ(t+x)∂g∂t (t, x)

compute
 ϕ′(t+x)(2t−1) = ϕ(t+x)(2t−1), also ϕ′(s) = ϕ(s)

solve
 ϕ(s) = es, thus integrating factor h(t, x) = et+x

equivalent, exact ODE: et+u(2t+ t2 + u) + et+u(1 + t2 + u)u′ ≡ 0
as before
 potential Ψ(t, x) = et+x(t2+x),

equivalent equation et+u(t)(t2+u(t)) = C not explicitly solvable
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Chapter 2: Methods for solving non-linear ODEs 2.4 Specific second-order ODEs

2.4 Specific second-order ODEs

Specific types of non-linear second-order ODE can be solved (in principle)
by reduction to first order:

type F (t, u′(t), u′′(t)) = 0 (
”
no u(t)“):

Solve as first-order ODE for u′, then determine u.

type u′′(t) = g(u(t)) (explicit, autonomous,
”
no u′(t)“):

Deduce d
dt

1
2u
′(t)2 = u′′(t)u′(t) ODE

= g(u(t))u′(t) = d
dtG(u(t)) with

antiderivative G of g, solve first-order ODE 1
2u
′(t)2 = G(u(t))+C.

type u′′(t) = f0(u(t), u′(t)) (explicit, autonomous):

Change of variable y(x) = u′(u−1(x)) = 1
(u−1)′(x)

leads to first-order

ODE y′(x) = f0(x,y(x))
y(x) for y(x). Solve for y, then determine u−1, u.

(Works essentially if y has no zeros, produces invertible u!)
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Chapter 3: Linear ODEs and linear systems of ODEs

This chapter delves into the treatment of linear ODEs and linear
systems of ODEs and discusses their general mathematical theory
along with further methods for explicitly computing solutions
(beyond the earlier solutions formulas for the scalar first-order case).

We here work (for reasons to be revealed soon) with solutions u : I → Kn

where I is still an interval‡ in R, but now K stands as a wildcard for either
R or C (real or complex numbers).

‡Empty intervals and intervals which consist of a single point are always excluded now.

Thomas Schmidt (Maths Dept., UHH) DE I for Engineering TUHH, Winter 24/25 37 / 111



Chapter 3: Linear ODEs and linear systems of ODEs 3.1 General solution theory for linear ODEs

3.1 General solution theory for linear ODEs

We consider, for m,n ∈ N, a general linear system of ODEs
∑m

k=0
Ak(t)u

(k)(t) = b(t)

for u ∈ Cm(I,Kn) with matrix coefficients Ak ∈ C0(I,Kn×n) and
inhomogeneity b ∈ C0(I,Kn). With the differential operator

L : Cm(I,Kn)→ C0(I,Kn) , L[u](t) ..=
∑m

k=0
Ak(t)u

(k)(t)

the above inhomogeneous system and its homogeneous counterpart read

L[u] = b on I and L[u] ≡ 0 on I .

Concrete example (with m = 2, n = 2, K = R):
(
u′′1(t)
u′′2(t)

)

A2(t) = I2
(identity matrix)

+

(
et −5
t3 2t

)

︸ ︷︷ ︸
A1(t)

(
u′1(t)
u′2(t)

)

︸ ︷︷ ︸
u′(t)

+

(
1 t7

0 e−t

)

︸ ︷︷ ︸
A0(t)

(
u1(t)
u2(t)

)

︸ ︷︷ ︸
u(t)

=

(
2t−1
−3

)

︸ ︷︷ ︸
b(t)
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Chapter 3: Linear ODEs and linear systems of ODEs 3.1 General solution theory for linear ODEs

Solution structure for linear ODEs

Theorem: For linear systems (as before), it holds:

(1) The differential operator L is linear
(i.e. L[ru+sv] = rL[u] + sL[v] for all u, v ∈ Cm(I,Kn) and r, s ∈ K).

(2) The solutions of the homogeneous system L[u] ≡ 0 on I form a vector
(sub-)space (of Cm(I,Kn)), the solutions vector space of the system.

(3) Given one solution u0 of L[u] = b on I one obtains all solutions of
L[u] = b on I in form u = u0+uh with solutions uh of L[u] ≡ 0 on I
(general inhom. sol. = special/particular inhom. sol. + general hom. sol.).

Proof: (1): L[ru+sv](t) =
∑m
k=0Ak(t)(ru+sv)(k)(t)

= r
∑m
k=0Ak(t)u(k)(t) + s

∑m
k=0Ak(t)v(k)(t)

= rL[u](t) + sL[v](t)

(2): L[u] ≡ 0, L[v] ≡ 0 =⇒ L[ru+sv]
(1)
= rL[u] + sL[v] ≡ r·0 + s·0 = 0

(3): L[uh] ≡ 0
L[u0]=b

=⇒ L[u0+uh
=..u

] = b and L[u] = b
L[u0]=b

=⇒ L[u−u0
=..uh

] ≡ 0
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Chapter 3: Linear ODEs and linear systems of ODEs 3.1 General solution theory for linear ODEs

IVPs and degrees of freedom for linear ODEs

Theorem: For linear systems (as before) with Am = In (explicit form):

(1) Existence and uniqueness theorem for linear IVPs: For arbitrary t0 ∈ I
and y0, y1, . . . , ym−1 ∈ Kn, there exist a unique solution to

L[u] = b on I , u(t0) = y0, u
′(t0) = y1, . . . , u

(m−1)(t0) = ym−1 .

(2) The solutions vector space of L[u] ≡ 0 on I has dimension mn.

Decisive: By Part (2) one may express every solution u of L[u] ≡ 0 on I in
terms of an arbitrary basis u1, u2, . . . , umn of the solutions vector space as

u = C1u1 + C2u2 + . . .+ Cmnumn with C1, C2, . . . , Cmn ∈ K .
This confirms the rule of thumb

”
solution with mn constants“ of Chapter 1.

Proof: (1) is proved in the later Chapter 6 (and then directly in wider generality).
(2): For each t0 ∈ I, the linear map u 7→ (u(t0), . . . , u(m−1)(t0)) from the solutions
vector space of L[u] ≡ 0 to (Kn)m ∼= Kmn is one-to-one and onto by (1), hence
preserves bases. So, the solutions vector space has the dimension mn of Kmn.
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Chapter 3: Linear ODEs and linear systems of ODEs 3.2 Scalar linear ODEs with constant coefficients

3.2 Scalar linear ODEs with constant coefficients

For a scalar homogeneous linear ODE of arbitrary order m ∈ N with
constant coefficients ak ∈ K and leading coefficient am 6= 0

L[u] ..=
m∑

k=0

aku
(k) ≡ 0 (∗)

for u ∈ Cm(I,K), try the exponential ansatz u(t) = eλt with λ ∈ K: In
view of u(k)(t) = λkeλt and L[u](t) =

(∑m
k=0 akλ

k
)
eλt obtain a solution

u of (∗) if and only if λ ∈ K is zero of the characteristic polynomial

p(λ) ..=
m∑

k=0

akλ
k .

In the sequel, this very basic idea will be extended and refined:
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Chapter 3: Linear ODEs and linear systems of ODEs 3.2 Scalar linear ODEs with constant coefficients

Examples for exponential solutions; homogeneous case

example u′′ = u or equivalently u′′ − u ≡ 0 :
read off
 characteristic polynomial: p(λ) = λ2 − 1 = (λ−1)(λ+1),

zeros: λ1 = 1 and λ2 = −1 with multiplicities d1 = d2 = 1
principle
 general solution: u(t) = C1et + C2e−t with C1, C2 ∈ K(

= R1 cosh(t) +R2 sinh(t) with R1 = C1+C2, R2 = C1−C2

)

example u′′′ + 3u′′ − 4u ≡ 0 :
read off
 characteristic polynomial: p(λ) = λ3 + 3λ2 − 4

solve p(λ)
!
=0

 zeros: λ1 = 1 with d1 = 1 and λ2 = −2 with d2 = 2,
p(λ) = (λ−1)(λ+2)2

principle
 general solution: u(t) = C1et + C2e−2t + C3te

−2t
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Chapter 3: Linear ODEs and linear systems of ODEs 3.2 Scalar linear ODEs with constant coefficients

Exponential solutions in case of non-real zeros

Caution! Over K = C a polynomial p of degree m always has m zeros
(counted with multiplicity!!), and the multiplicities di satisfy

∑`
i=1 di = m.

Over K = R this is not true in general. Hence, even for real coefficients
ak ∈ R one may need to calculate over C:

example u′′ = −u or equivalently u′′ + u ≡ 0 (cf. Chapter 1) :
read off
 characteristic polynomial: p(λ) = λ2 + 1 = (λ−i)(λ+i),

zeros: λ1 = i and λ2 = −i with d1 = d2 = 1
principle
 general complex sol.: u(t) = C1eit + C2e−it with C1, C2 ∈ C

Re(·)
 general real sol.: uR(t) = R1 cos(t)+R2 sin(t) with R1, R2 ∈ R(

where R1 = Re(C1+C2), R2 = Im(C2−C1)
)

Here, the last step was computing the real part uR = Re(u) with the help
of eit = cos(t) + i sin(t). In general cases with real coefficients ak ∈ R,
one analogously obtains all real solutions as the real parts (or alternatively
as the imaginary parts) of the complex solutions. Later more on this!
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Chapter 3: Linear ODEs and linear systems of ODEs 3.2 Scalar linear ODEs with constant coefficients

Exponential solutions of scalar homogeneous linear ODEs

The background behind the computations is:

Principle (exponential solutions; homogeneous case)

(1) If λ ∈ K is a multiplicity-d zero of the charact. polynomial p, then
eλt, teλt, t2eλt, . . . , td−1eλt are d linearly independent solutions of (∗).

(2) If λ1, . . . , λ` ∈ K are distinct zeros of p with correspond. multiplicities
d1, . . . , d` ∈ N, then also u(t) =

∑`
i=1

∑di−1
j=0 Ci,jt

jeλit with Ci,j ∈ K
is a solution of (∗). In case

∑`
i=1 di = m this is the general solution.

Proof: (1): By induction: For d = 1, see beginning of 3.2. For d ≥ 2, factorize
p(z) = p̃(z)(z−λ) such that λ is a multiplicity-(d−1) zero of p̃. By induction

hypothesis (IH), uj(t) ..= tjeλt with j ≤ d−2 solve L̃[u] ≡ 0, where L̃ is the
differential operator corresponding to p̃. For all j ≤ d−1, then deduce:

(
d
dt−λ

)
uj(t) = d

dt

(
tjeλt

)
− λtjeλt = (jtj−1+λtj−λtj)eλt = juj−1(t) ,

L[uj ] = L̃
[(

d
dt−λ

)
uj
]

= jL̃[uj−1]
IH≡ 0 .

(2): Now follows by theory in 3.1 (L linear, solutions vector space has dim. m).
Thomas Schmidt (Maths Dept., UHH) DE I for Engineering TUHH, Winter 24/25 44 / 111



Chapter 3: Linear ODEs and linear systems of ODEs 3.2 Scalar linear ODEs with constant coefficients

Exponential solutions of scalar, inhomogeneous linear ODEs

For a scalar inhomogeneous, linear ODE with constant coefficients ak ∈ K
(where still m ∈ N and am 6= 0)

L[u] ..=
m∑

k=0

aku
(k) = b (∗∗)

with characteristic polynomial p(λ) ..=
∑m

k=0 akλ
k the main issue left is

determining a special solution u0. Here is a rule for approaching this:

Theorem (exponential solutions in case of exponential inhomogeneity)

In case b(t) =
∑q

h=0 bht
heζt with q ∈ N0, bh, ζ ∈ K the ansatz

u0(t) =

{∑q
h=0Bht

heζt, if ζ is not a zero of p∑q
h=0Bht

d+heζt, if ζ is a multiplicity-d zero of p

with suitably determined Bh ∈ K yields a special solution u0 of (∗∗).

This can be verified via induction on q, but here we omit this proof.
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Chapter 3: Linear ODEs and linear systems of ODEs 3.2 Scalar linear ODEs with constant coefficients

Example: oscillator equation with inhomogeneity

u′′(t) + ω2u(t) = eiξt with ω, ξ ∈ R has p(λ) = λ2+ω2 = (λ−iω)(λ+iω).

In case ξ 6= ±ω observe that iξ is not a zero of p.
ansatz
 special solution u0(t) = B0eiξt with (use ODE!) B0 = 1

ω2−ξ2
In case ξ = ±ω observe that iξ is a multiplicity-1 zero of p.
ansatz
 special solution u0(t) = B0te

iξt with (use ODE!) B0 = − i
2ξ

The general solution then is u = u0+uh with uh(t) = C1eiωt+C2e−iωt.

Interpretation: oscillator of eigenfrequency |ω|2π driven with frequency |ξ|2π .
For ξ 6=±ω get bounded u, but resonance ξ=±ω produces lim

t→∞
|u(t)|=∞.

For u′′(t) + ω2u(t) = cos(ξt) taking the real part yields more realistic real

solutions uR(t) =

{ 1
ω2−ξ2 cos(ξt), if ξ 6= ±ω
1
2ξ t sin(ξt), if ξ = ±ω

}
+R1 cos(ωt)+R2 sin(ωt).
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Chapter 3: Linear ODEs and linear systems of ODEs 3.1 General solution theory for linear ODEs (addendum)

Addendum to Section 3.1: fundamental systems

For general linear systems (with operator L[u] ..=
∑m

k=0Aku
(k) and

Ak ∈ C0(I,Kn×n) as in Section 3.1), we additionally introduce:

Definition

A basis of the solutions vector space of the homogeneous system L[u] ≡ 0
on I is called a fundamental system (FS) for L[u] ≡ 0 on I.

For case Am = In seen before: representation of general solution u with FS
out of mn basis solutions ui of L[u] ≡ 0 and with mn constants Ci ∈ K:

for L[u] ≡ 0 (homogeneous): u = C1u1 + C2u2 + . . .+ Cmnumn,

for L[u] = b (inhomogeneous): u = u0 +C1u1 +C2u2 + . . .+Cmnumn
with one special/particular solution u0 of L[u] = b.
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Chapter 3: Linear ODEs and linear systems of ODEs 3.3 First-order linear systems of ODEs

3.3 First-order linear systems of ODEs

We restrict considerations on linear systems of ODEs to the first-order case
(cf. end of Chapter 1 for a corresponding reduction), i.e. to homogeneous
and inhomogeneous linear systems of n ∈ N differential equations

u′ = Au and u′ = Au+ b ,

respectively, for u ∈ C1(I,Kn) with coefficient matrix A ∈ C0(I,Kn×n)
and inhomogeneity b ∈ C0(I,Kn).
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Chapter 3: Linear ODEs and linear systems of ODEs 3.3 First-order linear systems of ODEs

Fundamental matrices

Definition

Whenever u1, u2, . . . , un ∈ C1(I,Kn) are solutions of the system u′ = Au
with A ∈ C0(I,Kn×n), one calls the matrix function‡

W (t) ..=

(
u1(t)

∣∣∣∣u2(t)

∣∣∣∣ . . .
∣∣∣∣un(t)

)
∈ Kn×n

a solutions matrix for u′ = Au on I. If u1, u2, . . . , un is even an FS, one
calls W a fundamental (solutions) matrix (FM) for u′ = Au on I.

Every solutions matrix W solves the matrix ODE W ′ = AW .
(Verification: W ′i = u′i = Aui = AWi = (AW )i with index i for ith column)

Important for theory: For an FM, the matrix W (t) is invertible at all t ∈ I.
(Verification via basis preservation from proof in Section 3.1 and linear algebra:

u1, . . . , un basis solutions
3.1⇐⇒ u1(t), . . . , un(t) basis in Kn

lin alg⇐⇒ W (t) invertible)

‡For orders m ≥ 2, one may build W (t) ∈ Kmn×mn by inserting into its ith column the

vectors ui(t), u
′
i(t), . . . , u(m−1)(t) (below each other). However, this is not needed here.
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Chapter 3: Linear ODEs and linear systems of ODEs 3.3 First-order linear systems of ODEs

Fundamental matrices and abstract solution formulas

An FM W for the homogeneous system u′ = Au allows for writing down:

a representation of the general solution with constant vector C ∈ Kn . . .

for u′ = Au (homogeneous): u(t) = W (t)C,

for u′ = Au+ b (inhomogeneous): u(t) = W (t)[B∗(t)+C]
with antiderivative B∗ of W−1b.

(Verification that u0 = WB∗ is a special solution of u′ = Au+ b:

u′0 = (WB∗)′ = W ′B∗+W (B∗)′ = AWB∗+WW−1b = Au0 + b.)

a solution formula for the IVP with IC u(t0) = y0 (where t0 ∈ I, y0 ∈ Kn) . . .

for u′ = Au (homogeneous): u(t) = W (t)W (t0)−1y0,

for u′ = Au+ b (inhom.): u(t) = W (t)
[∫ t
t0
W (s)−1b(s) ds+W (t0)−1y0

]

(The solution formulas of Chapter 1 correspond to the special case n = 1.)

Main issue left: compute FS and FM, respectively. More on this follows:
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Chapter 3: Linear ODEs and linear systems of ODEs 3.3 First-order linear systems of ODEs

Eigenvalue-eigenvector solutions

Consider a homogeneous linear system of n ∈ N ODEs with constant
coefficients

u′ = Au (hS)

for u ∈ C1(I,Kn) with constant coefficient matrix A ∈ Kn×n.

The exponential ansatz u(t) = eλtv with λ ∈ K and vector v ∈ Kn gives

u′(t)−Au(t) = λeλtv − eλtAv = eλt(λv −Av)

and thus yields a solution of (hS) if and only if Av = λv holds, i.e. if and
only if v is an eigenvalue of the matrix A for the eigenvalue λ (or v = 0).

One may call such solutions eigenvalue-eigenvector solutions.
We now generalize these as follows:
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Exponential solutions of homogeneous linear systems

Convention: For s ∈ N, call v ∈ Kn a step-s generalized eigenvector (GEV) of
A ∈ Kn×n for the eigenvalue λ ∈ K if (A−λIn)sv = 0 6= (A−λIn)s−1v holds.

(Then: If v is step-s GEV, then (A−λIn)jv is step-(s−j) GEV for same eigenvalue.
Step-1 generalized eigenvectors are nothing but eigenvectors.)

Theorem: For A ∈ Kn×n, there holds:

(1) Whenever v ∈ Kn is a step-s GEV of A for the eigenvalue λ ∈ K, then
u(t) = eλt

∑s−1
j=0

1
j! t

jvj with vj ..= (A−λIn)jv is a solution of u′ = Au.

(2) Given a basis of Kn out of generalized eigenvectors of A, the
corresponding solutions of the preceding type form an FS for u′ = Au.

Proof: (1): Use λvj−Avj = −vj+1 and vs = 0 plus an index shift to compute:

u′(t)−Au(t) = eλt
∑s−1
j=0

(
j
j! t

j−1vj + 1
j! t

jλvj − 1
j! t

jAvj
)

= eλt
(∑s−1

j=1
1

(j−1)! t
j−1vj −

∑s−2
j=0

1
j! t

jvj+1

)
= 0 .

(2): As observed earlier: n linearly independent solutions are basis solutions.
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Example: exponential solutions of a homogeneous system

In (favorable) case of u′ = Au with A ..=
(

2 1 −3
0 2 0
0 0 2

)
proceed this way:

read off
 characteristic polynomial: p(λ) = det

( λ−2 −1 3
0 λ−2 0
0 0 λ−2

)
= (λ−2)3

read off
 2 is the sole eigenvalue of A and has algebraic multiplicity 3.

Then use A−2I3 =
(

0 1 −3
0 0 0
0 0 0

)
in computing the (generalized) eigenvectors:(

0 1 −3
0 0 0
0 0 0

∣∣∣ 0
0
0

)
 linearly independent eigenvectors e.g.

(
1
0
0

)
and

(
0
3
1

)

(
0 1 −3
0 0 0
0 0 0

∣∣∣ 1
0
0

)
 step-2 GEV e.g.

(
0
1
0

)
with (A−2I3)

(
0
1
0

)
=
(

1
0
0

)

•
(

0 1 −3
0 0 0
0 0 0

∣∣∣ 0
3
1

)
 no GEV (also clear from dimension argument)

thm
 general solution: C1e2t

(
1
0
0

)
+ C2e2t

(
0
3
1

)
+ C3e2t

[(
0
1
0

)
+t
(

1
0
0

)]
,

an FS: e2t
(

1
0
0

)
, e2t

(
0
3
1

)
, e2t

(
t
1
0

)
, an FM: e2t

(
1 0 t
0 3 1
0 1 0

)
(both not unique!)
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Real fundamental system in case of non-real eigenvalues

For real A ∈ Rn×n and a (G)EV v ∈ Cn of A for eigenvalue λ ∈ C, also v
is a (G)EV of A for the eigenvalue λ (as e.g. in EV case: Av = Av = λv = λv).
Thus, non-real eigenvalues, (G)EVs, and solutions of u′ = Au occur in
pairs conjugate to each other. This is the starting point for:

Principle (general real solution and real fundamental system for u′ = Au)

For real coefficients A ∈ Rn×n and a non-real‡ solution v of u′ = Au with
complex-conjugate solution v, one may . . .

replace a term C1v+C2v (with Ci ∈ C) in the general complex solution,
for the general real solution, by R1Re(v)+R2Im(v) (with Ri ∈ R),

correspondingly replace basis solutions v and v of a complex FS, for a
real FS, by Re(v) and Im(v).

Proof: In essence observe u′ = Au =⇒ Re(u)′ = Re(u′) = Re(Au) = ARe(u)
and Re(C1v+C2v) = R1Re(v)+R2Im(v) for suitable choice of constants.

‡The
”
non-real“ assumption is to be understood the way that it excludes v = Cv0 with

C ∈ C and Rn-valued v0. This ensures linear independency of v and v over C.
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Example: computing real FS despite non-real eigenvalues (1)

In the exemplary case u′ = Au with A ..=

(
0 0 1 0
0 0 0 1
−2 2 0 0
2 −2 0 0

)
proceed this way:

compute
 characteristic polynomial: λ4+4λ2 = λ2(λ−2i)(λ+2i)

read off
 A has multiplicity-2 eigenvalue 0 and multiplicity-1-eigenvalues ±2i.

For eigenvalue 0 get EV

(
1
1
0
0

)
and step-2 GEV

(
0
0
1
1

)
with A

(
0
0
1
1

)
=

(
1
1
0
0

)
.

For eigenvalues ±2i use A∓2i·I4:

(
∓2i 0 1 0
0 ∓2i 0 1
−2 2 ∓2i 0
2 −2 0 ∓2i

∣∣∣∣∣
0
0
0
0

)
 EV

(
1
−1
±2i
∓2i

)
.

thm
 a complex FS:

(
1
1
0
0

)
,

(
0
0
1
1

)
+t

(
1
1
0
0

)
, e2it

( 1
−1
2i
−2i

)
, e−2it

( 1
−1
−2i
2i

)

principle
 a real FS:

(
1
1
0
0

)
,

(
t
t
1
1

)
,

( cos(2t)
− cos(2t)
−2 sin(2t)
2 sin(2t)

)
,

( sin(2t)
− sin(2t)
2 cos(2t)
−2 cos(2t)

)
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Example: computing real FS despite non-real eigenvalues (2)

In the exemplary case u′ = Au with A ..=

(
1 −1 1 0
1 1 0 1
0 0 1 −1
0 0 1 1

)
proceed this way:

compute
 characteristic polynomial: (λ2−2λ+2)2 = (λ−1−i)2(λ−1+i)2

read off
 A has multiplicity-2 eigenvalues 1+i and 1−i.

For eigenvalue 1+i, solve linear systems with coefficients A−(1+i)I4 to

find EV

(
1
−i
0
0

)
and step-2 GEV

(
0
0
1
−i

)
with (A−(1+i)I4)

(
0
0
1
−i

)
=

(
1
−i
0
0

)
.

For eigenvalue 1−i, obtain conjugate results with −i in place of i.

thm
 

e(1±i)t=ete±it
a complex FM: et

(
eit e−it teit te−it

−ieit ie−it −iteit ite−it

0 0 eit e−it

0 0 −ieit ie−it

)

principle
 a real FM: et

( cos(t) sin(t) t cos(t) t sin(t)
sin(t) − cos(t) t sin(t) −t cos(t)

0 0 cos(t) sin(t)
0 0 sin(t) − cos(t)

)
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Addendum: matrix exponential

Addendum: Alternatively, one can use the matrix exponential series

eM ..=
∞∑

k=0

1

k!
Mk ∈ Kn×n for M ∈ Kn×n

(Mk denotes k-fold matrix product; convergence of series is entry-wise)
to obtain an FM W for u′ = Au with A ∈ Kn×n

”
simply“ as W (t) = etA.(

Background: d
dte

tA = d
dt

∑∞
k=1

1
k! (tA)k = A

∑∞
k=1

1
(k−1)! (tA)k−1 = AetA.

)

However, computation of etA in general requires determining a normal form of A,
which still relies on computing GEVs. Only once this is achieved one may compute
etA with the help of the following rules (for λi ∈ K and J,M,N, T ∈ Kn×n):

rule ediag(λ1,...,λn) = diag(eλ1 , . . . , eλn) for diagonal matrices,

exponential law eM+N = eMeN = eNeM only in case MN = NM ,

transformation rule eTJT
−1

= T eJT−1 for invertible T .
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The variation of constants

A solutions formula for u′ = Au+b based on an FM for u′ = Au has
already been discussed. A more concrete rereading of this formula is:

Principle (solving inhomogeneous systems by variation of constants)

Whenever u1, u2, . . . , un is an FS for u′ = Au on I with A ∈ C0(I,Kn×n),
one obtains all solutions of u′ = Au+ b on I with b ∈ C0(I,Kn) in form

u(t) = K1(t)u1(t)+ . . .+Kn(t)un(t) with functions Ki ∈ C1(I,K) such

that K ′i(t) solve the linear system K ′1(t)u1(t)+ . . .+K ′n(t)un(t) = b(t) .

Ki take the place of the constants Ci in the general solution of u′ = Au.

application in computations: first solve linear system (corresponds to
inverting FM), then integrate K ′i to find Ki. In principle analogous is:

Proof: In view of u′−Au =
∑n
i=1

[
K ′iui+Ki

(
u′i−Aui

)] ui solve
=

∑n
i=1K

′
iui the

ansatz leads to the system for K ′i(t) with parameter t ∈ I. Rewriting this system
as W (t)K ′(t) = b(t) with FM W ..= (u1| . . . |un) and K ′ ..= (K ′1, . . . ,K

′
n), the

solutions K ′(t) = W (t)−1b(t) are contin. in t, and Ki exist as antiderivatives.
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Example for applying the variation of constants

For u′(t) =
(

2 1 −3
0 2 0
0 0 2

)
u(t)+

(
t
−1
−2

)
an FM e2t

(
1 0 t
0 3 1
0 1 0

)
has been determined.

read off
 linear system of eqns:





e2tK ′1(t) + te2tK ′3(t) = t ,
3e2tK ′2(t) + e2tK ′3(t) = −1 ,
e2tK ′2(t) = −2

solve
 K ′1(t) = −4te−2t, K ′2(t) = −2e−2t, K ′3(t) = 5e−2t

antider.
 K1(t) = (2t+1)e−2t+C1, K2(t) = e−2t+C2, K3(t) = −5

2e−2t+C3

From ansatz obtain general solution of inhomogeneous system as follows:

u(t) = K1(t)e2t
(

1
0
0

)
+K2(t)e2t

(
0
3
1

)
+K3(t)e2t

(
t
1
0

)

=
(
2t+1+C1e2t

)( 1
0
0

)
+
(
1+C2e2t

)( 0
3
1

)
+
(
−5

2+C3e2t
)( t

1
0

)

=

(
−t/2+1

1/2
1

)
+ C1e2t

(
1
0
0

)
+ C2e2t

(
0
3
1

)
+ C3e2t

(
t
1
0

)
.
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Scalar linear equation versus first-order linear system

Concluding remark: A scalar linear equation of order m
m∑

k=0

aku
(k) ≡ 0 (slG)

with leading coefficient am = 1 is equivalent (compare end of Chapter 1;
components of v : I → Km correspond to u, u′, u′′, . . . , u(m−1) : I → K)
with the system of m first-order linear equations

v′ = Av with A ..=




0 1 0 ··· 0 0
0 0 1 ··· 0 0
· · · · · ·· · · · · ·· · · · · ·
0 0 0 ··· 1 0
0 0 0 ··· 0 1
−a0 −a1 −a2 ··· −am−2 −am−1


 .

One checks (e.g. by Laplace expansion along last row) that (slG) and A
have the same characteristic polynomial and then grasps the background
reasons for the similarity of the methods in Sections 3.2 and 3.3.
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3.4 d’Alembert reduction

A method for solving linear ODE with non-constant coefficients is based on:

Principle (reducing order from 2 to 1 based on a known solution)

For a0, a1, b : I → K, consider the scalar linear second-order ODE

u′′ + a1u
′ + a0u = b on I . (∗)

Whenever a known solution u0 of the homogeneous version of (∗) has no
zeros, then u = wu0 is a solution of (∗) if and only if w solves

w′′ +
(

2u′0
u0

+a1

)
w′ = b

u0
on I . (∗∗)

Proof: u = wu0 in (∗) yields: w′′u0+2w′u′0+wu′′0+a1w
′u0+a1wu

′
0+a0wu0 = b

u0 solves⇐⇒ w′′u0 + 2w′u′0 + a1w
′u0 = b

division by u0 6=0⇐⇒ (∗∗).

Decisive: For ODE (∗∗) of order 1 in w′ have a solution formula. From w′
determine w by integration, and then get all solutions u = wu0 of (∗).
Side remark: In a similar way one can use a known solution to reduce scalar equations
from order m to m−1 and first-order systems from n equations to n−1 equations.
The above, however, should be the case which is useful most frequently.
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Example for applying d’Alembert’s reduction

In case of u′′ + 1
t2
u′ − 1

t3
u ≡ 0 with solution u0(t) = t, proceed this way:

read off
 a1(t) = 1

t2
, a0(t) = − 1

t3
, b ≡ 0

principle
 first-order ODE w′′ +

(
2
t+

1
t2

)
w′ ≡ 0 for w′

sol. formula
 w′(t) = Ce−2 ln(|t|)+1/t = C

t2
e1/t

antideriv.
 w(t) = C1e1/t + C2 (with choice C1 = −C)

u=wu0 general solutions of original ODE: u(t) = C1te
1/t + C2t

(Valid this way on each interval I such that 0 /∈ I.)
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3.5 On linear boundary value problems

Reminder: A boundary value problem (BVP) combines an ODE (instead of
the ICs considered before) with boundary conditions (BCs) which involve
evaluations u(t1) and u(t2) of solutions u at two points t1 and t2. While
the typical case is I = [t1, t2], the theory works even for arbitrary t1, t2 ∈ I.

BVPs differ from IVPs inasmuch as existence and uniqueness of solutions
may fail in specific cases, but still one has good criteria for their availability:
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Boundary value problems for first-order linear systems

Consider, for u : I → Kn, a first-order linear boundary value problem

u′ = Au+b on I with BC Γ1u(t1)+Γ2u(t2) = y , (BVP)

where t1, t2 ∈ I, Γ1,Γ2 ∈ Kn×n and y ∈ Kn are given.

Based on an FM the following criterion decides on solvability of the BVP:

Theorem (solvability criterion for linear BVPs; existence and uniqueness)

Fix t1, t2 ∈ I, Γ1,Γ2 ∈ Kn×n, and an FM W for u′ = Au on I.
Then, (BVP) is uniquely solvable for all b ∈ C0(I,Kn) and all y ∈ Kn if
and only if Γ1W (t1)+Γ2W (t2) ∈ Kn×n is an invertible matrix.

Proof: Write general solution of u′ = Au+b as u(t) = u0(t)+W (t)C with C ∈ Kn.
Plug this into BC to find

(
Γ1W (t1)+Γ2W (t2)

)
C = y − Γ1u0(t1)− Γ2u0(t2),

which is always uniquely solvable (only) for invertible Γ1W (t1)+Γ2W (t2).

Remark: IVP corresponds to special case Γ1 = In (or invertible at least), Γ2 = 0.
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Boundary value problems for second-order linear equations

The general scalar second-order linear boundary value problem reads

u′′+a1u
′+a0u = b on I with BC Γ1

(
u(t1)
u′(t1)

)
+Γ2

(
u(t2)
u′(t2)

)
= y ,

where now Γ1,Γ2 ∈ K2×2, y ∈ K2. Specifically, for Γ1 =
( γ11 0
γ21 0

)
,

Γ2 =
( γ12 0
γ22 0

)
, y =

( y1
y2

)
this reduces to the BVP with zero-order BCs:

u′′+a1u
′+a0u = b on I with BCs

γ11u(t1)+γ12u(t2) = y1

γ21u(t1)+γ22u(t2) = y2
(BVP2)

The solvability criterion then carries forward from the equivalent first-order
system v′ = Av+

(
0
b

)
for v =

( u
u′
)

(cf. earlier) to the above equation:

Corollary (solvability criterion for scalar second-order linear BVPs)

Fix t1, t2∈I, γ11, γ12, γ21, γ22∈K, and an FS u1, u2 for u′′+a1u
′+a0u ≡ 0.

Then, (BVP2) is uniquely solvable for all b ∈ C0(I,K) and all y1, y2 ∈ K
if and only if

( γ11 γ12
γ21 γ22

)(
u1(t1) u2(t1)
u1(t2) u2(t2)

)
∈ K2×2 is an invertible matrix.
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Example for BVP solvability, boundary eigenvalue problem

For u′′+ω2u = b with BCs u(t1) = y1, u(t2) = y2 (ω ∈ R\{0} parameter),

start from FS cos(ωt), sin(ωt) for u′′+ω2u ≡ 0 and
( γ11 γ12
γ21 γ22

)
=
(

1 0
0 1

)
.

Solvability criterion: above BVP always uniquely solvable

⇐⇒
( cos(ωt1) sin(ωt1)
cos(ωt2) sin(ωt2)

)
invertible

det(·)⇐⇒ sin(ω(t2−t1)) 6= 0

⇐⇒ ω 6= kπ
t2−t1 for all k ∈ Z.

For the exceptional values ω = kπ
t2−t1 , k ∈ Z\{0}: Homogeneous BVP with b ≡ 0,

y1 = 0, y2 = 0 has infinitely many solutions u(t) = C sin(ω(t−t1)) with C ∈ R.

Inhomogeneous BVP has either infinitely many solutions (e.g. b ≡ 0, y2 = y1) or

no solution at all (e.g. b ≡ 0, y2 6= y1).

With L[u] ..= −u′′ write homogeneous ODE as L[u] = ω2u. One calls the

infinitely many (!) exceptional values ω2 =
(

kπ
t2−t1

)2
, k ∈ N, the eigenvalues

and the corresponding solutions 6≡ 0 the eigenfunctions of the operator L.
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3.6 The Laplace transform

An alternative approach to linear ODE is based on the following concept:

Definition (Laplace transform)

The Laplace transform Lf of a function f : [0,∞)→ K, which is Riemann
integrable over all [t1, t2] with 0 < t1 < t2 <∞ (e.g. is continuous or is
piecewise continuous), is defined as

Lf(s) ..=

∫ ∞

0
e−stf(t) dt ∈ C for suitable s ∈ C .

For Lf = F one also writes f(t) c sF (s) or F (s) s cf(t) (Doetsch symbol).

Basic existence assertion: In case of at most exponential growth
|f(t)| ≤ Ceγ0t for all t ≥ 0 with fixed C ∈ [0,∞), γ0 ∈ R, the transform
F (s) is defined at least on the half-plane of s ∈ C such that Re(s) > γ0.

(Justification: From |e−stf(t)| = e−Re(s)t|f(t)| ≤ Ce(γ0−Re(s))t deduce
absolute convergence

∫∞
0
|e−stf(t)|dt ≤ C

∫∞
0

e(γ0−Re(s))t dt <∞.)
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On inversion of the Laplace transform

Remark: The Laplace transform is closely related to the Fourier transform, defined
for g : R→ K as Fg(ξ) ..=

∫∞
−∞ e−iξtg(t) dt ∈ C for ξ ∈ R. More precisely, there

holds Lf(γ+iξ) = F(fγ)(ξ) with abbreviation fγ(t) ..=
{

e−γtf(t) for t ≥ 0
0 for t < 0

.

Essential advantage of Laplace transform over Fourier transform:
Still defined without problems for functions/solutions of exponential growth.

Decisive: Continuous f of at most exponential growth are fully determined
by their Laplace transform Lf (and even by F(fγ) for a single γ > γ0). In
this sense, the Laplace transform is one-to-one and does not lose
information. For such f, g, it holds Lf = Lg =⇒ f = g. In fact, there
are even inversion formulas, which express f in terms of Lf (or F(fγ)).

For reasons of time, no details and proofs on this!
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Examples of Laplace transforms

Table of correspondencies (important Laplace-transform pairs):

tk c s k!
sk+1 for k ∈ N0 (F defined where Re(s) > 0)

eλt c s 1
s−λ for λ ∈ K (F defined where Re(s) > Re(λ))

eαt cos(ωt)
eαt sin(ωt)

c s s−α
(s−α)2+ω2c s ω
(s−α)2+ω2

}
for α, ω ∈ R (F defined where Re(s) > α)

Verifications: 1.) For f(t) = tk, argue by induction on k:

Base (k = 0): F (s) =
∫∞
0

e−st dt
FTC
=
[
− 1
se−st

]∞
t=0

= limt→∞
(
− 1
se−st

)
+ 1

s = 1
s

Step (k ≥ 1): F (s) =
∫∞
0

e−sttkdt
ibp
=
[
− 1
se−sttk

]∞
t=0︸ ︷︷ ︸

=0

+k
s

∫∞
0

e−sttk−1dt
︸ ︷︷ ︸

=
(k−1)!

sk

= k!
sk+1

2.) For f(t) = eλt compute: F (s) =
∫∞
0

e−steλt dt
FTC
=
[

1
λ−se(λ−s)t

]∞
t=0

= 1
s−λ

3.) Use eαtcos(ωt) = e(α+iω)t+e(α−iω)t

2 and eαtsin(ωt) = e(α+iω)t−e(α−iω)t

2i and
linearity on next slide to deduce remaining claims from the one for f(t) = eλt.
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Chapter 3: Linear ODEs and linear systems of ODEs 3.6 The Laplace transform

Calculation rules for Laplace transforms

Calculation rules (for integrable f, g : [0,∞)→ K of at most exponential growth;

transforms defined where Re(s) > γ0 for growth exponent γ0; always F = Lf):

linearity: L(rf+sg) = rLf + sLg for r, s ∈ K.

derivation rules: L
(
f ′
)
(s) = sLf(s)−f(0) for contin. differentiable f ,

L
(
f (k)

)
(s) = skLf(s)−∑k−1

i=0 s
k−i−1f (i)(0) for f in Ck, k ∈ N0

(in other words: f (k)(t) c sskF (s)−∑k−1
i=0 s

k−i−1f (i)(0)).

multiplication rule: tkf(t) c s(−1)kF (k)(s) for k ∈ N0

(in other words: L(tkf)(s) = (−1)k(Lf)(k)(s) where tkf stands for t 7→ tkf(t)).

Proofs: 1.) Checking linearity is straightforward.

2.) L
(
f ′
)
(s) =

∫∞
0

e−stf ′(t)dt
ibp
=
[
e−stf(t)

]∞
t=0

+s
∫∞
0

e−stf(t)dt = sLf(s)−f(0).

The rule for L
(
f (k)

)
follows iteratively.

3.) (Lf)(k)(s) = dk

dsk

∫∞
0

e−stf(t)dt =
∫∞
0

e−st(−t)kf(t)dt = (−1)kL(tkf)(s).
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Chapter 3: Linear ODEs and linear systems of ODEs 3.6 The Laplace transform

Calculation rules for Laplace transforms (continued)

Integration and division rules for Laplace transforms can be obtained by

”
reading backwards“ the derivations and multiplication rules.

Further calculations rules are (same general framework):

scaling rule: f(αt) c s 1
αF
(
s
α

)
for α > 0.

exponential rule: eλtf(t) c sF (s−λ) for λ ∈ K.

translation rule: f(t0+t) c sest0F (s) for t0 ∈ R provided that f ≡ 0
holds on [0, t0), t0 > 0 or that one sets f ..≡ 0 on [t0, 0), t0 < 0.

Sketch of proof: First use definition. Then change variables τ = αt, read off the

claim by rearranging terms, or change variables τ = t0+t, respectively.
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Chapter 3: Linear ODEs and linear systems of ODEs 3.6 The Laplace transform

Example 1: solving a linear IVP via Laplace transform

A central application of the Laplace transform is

solving scalar linear IVPs with constant coefficients .

Exemplary IVP: u′′ − 4u′ + 3u ≡ 0 on [0,∞) with u(0) = 1, u′(0) = 5

For computing the solution u apply L to the ODE, and proceed as follows:

linearity
 L(u′′)− 4L (u′) + 3Lu ≡ 0

derivation rule, ICs
 

(
s2Lu(s)−5−s

)
− 4
(
sLu(s)−1

)
+ 3Lu(s) = 0

solve for Lu(s)
 Lu(s) = s+1

s2−4s+3
= 2(s−1)−(s−3)

(s−1)(s−3) = 2
s−3 − 1

s−1

(in general needs partial fraction decomposition, possibly lengthy!)

back trafo/table
 solution of IVP: u(t) = 2e3t − et
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Chapter 3: Linear ODEs and linear systems of ODEs 3.6 The Laplace transform

Example 2: solving another linear IVP via Laplace transform

Exemplary IVP: u′′ + u = sin(2t) on [0,∞) with u(0) = 2, u′(0) = 1

linearity, table
 L(u′′)(s) + Lu(s) = 2

s2+4

derivation rule, ICs
 

(
s2Lu(s)−1−2s

)
+ Lu(s) = 2

s2+4

solve for Lu(s)
 Lu(s) = 2

(s2+4)(s2+1)
+ 2s+1

s2+1

=
2
3

(s2+4)− 2
3

(s2+1)

(s2+4)(s2+1)
+ 2s+1

s2+1
= 2s

s2+1
+

5
3

s2+1
−

2
3

s2+4

back trafo/table
 solution of IVP: u(t) = 2 cos(t) + 5

3 sin(t)− 1
3 sin(2t)

(Side remark: Both exemplary IVPs had ICs at 0. In order to apply this method
with ICs at another point t0 6= 0, first implement a change of variables t = t0+τ ,
ũ(τ) = u(t0+τ) to reach an IVP for ũ with ICs at 0.)
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Chapter 3: Linear ODEs and linear systems of ODEs 3.6 The Laplace transform

Transfer functions

For the scalar linear IVP with constant coefficients ak and zero ICs
m∑

k=0

aku
(k) = b on [0,∞) with u(0) = . . . = u(m−1)(0) = 0 ,

Laplace transform and term rearrangement yield Lu(s) = 1∑m
k=0 aks

kL b(s).

On the level of Laplace transforms one thus moves on from inhomogeneity
b to solution u by multiplication with the transfer function 1∑m

k=0 aks
k .

Analogous transfer functions on the level of Laplace transforms exist for ODEs∑m
k=0 aky

(k) =
∑`
k=0 ckw

(k) (with constant ak, ck and zero ICs for y and w) and
govern the transfer from input signal w to output signal y. This has many
applications in theory/engineering of systems and control and in signal processing.

Example: For y′+ λy = λw (ODE of control loop element from Chapter 1)
with y(0) = 0, find Ly(s) = λ

s+λLw(s). Thus, the transfer function is λ
s+λ .

Thomas Schmidt (Maths Dept., UHH) DE I for Engineering TUHH, Winter 24/25 74 / 111



Chapter 4: Visualizing ODE solutions

Chapter 4: Visualizing ODE solutions

In case of low order and few equations one can visualize ODE solutions by
drawings in the plane R2. More precisely, this works out, in slightly
different manners,

for scalar first-order ODEs,

for autonomous systems of two first-order ODEs,

and for autonomous scalar second-order ODEs.

These cases are now discussed in more detail.
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Chapter 4: Visualizing ODE solutions

Scalar first-order ODEs and slope fields

A scalar first-order ODE

u′ = f(t, u)

can be visualized via a slope field,
which prescribes the slope f(t, x)
at each point (t, x) ∈ Df ⊂ R2.
For solutions u, the derivative
u′(t) coincides with the prescribed
slope f(t, u(t)) for all t ∈ I.

t

u(t)

The slope field f(t, x) = 2(t+x)2− 1
2

and some solutions of u′ = 2(t+u)2− 1
2 .
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Chapter 4: Visualizing ODE solutions

Planar systems and trajectories

In case of an ODE system for R2-valued u (called a planar system)

u′ = F (u)

one visualizes the vector field F by attaching to every point x ∈ DF ⊂ R2 the
vector F (x) in form of an arrow. For a solution u, the derivative u′(t) equals

F (u(t)) for all t ∈ I. Thus, the image of u stretches out along the prescribed

vectors and is called a trajectory. (Its orientation is typically indicated by arrows.)

u1(t)

u2(t)

The vector field F (x) = (x2,−x1) on R2

and some trajectories of the correspon-
ding system u′1 = u2, u′2 = −u1.

u1(t)

u2(t)

The vector field F (x) = (−x1
2
, 1) on R2

and some trajectories of the correspon-
ding system u′1 = −u1

2
, u′2 ≡ 1.
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Chapter 4: Visualizing ODE solutions

Scalar second-order ODEs and phase space portraits

An autonomous scalar second-order ODE

u′′ = f0(u, u′)

can be rewritten as a planar system u′ = v, v′ = f0(u, v). Its solutions
(u, v) follow the vector field F (x1, x2) = (x2, f0(x1, x2)) and can be
visualized as before. For instance, in case of the oscillation equation
u′′ = −u one obtains once more the first drawing of the last slide — just
with the axes marked as u(t) and v(t) = u′(t) rather than u1(t) and u2(t).

One calls such drawings — in case of both planar systems and scalar
second-order ODEs — phase space portraits or phase space diagrams
(where the phase space of an explicit order-m ODE system for Rn-valued u is the

joint target space (Rn)m of the functions (u, u′, u′′, . . . , u(m−1))).

Observation: As long as solutions of IVPs are unique, trajectories in a
phase space portrait must not touch or intersect each other.
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Chapter 5: Long-time stability of solutions

Chapter 5: Long-time stability of solutions

In connection with ODEs, stability refers to continuous dependence of
solutions on parameters, initial values, and/or boundary values. Up to a
finite time horizon, this is usually satisfied (but the details are technical!).

This chapter directly deals with an infinite time horizon and the more
intricate long-time stability in dependence on initial values, i.e. with the
question whether arbitrarily small modifications of the initial values reflect
merely in arbitrarily small perturbations of the solutions, even for t→∞.

In view of the reduction-to-first-order principle, the following discussion of
such issues indeed focuses on the first-order case.
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Chapter 5: Long-time stability of solutions 5.1 Ljapunov stability and equilibria

5.1 Ljapunov stability and equilibria

The central notion of the theory is:

Definition (stability notions)

A solution u∗ : I → Kn of an ODE system u′ = f(t, u) on an interval I of
type [α,∞) or (α,∞) is called . . .

(1) (Ljapunov) stable if, for each t0 ∈ I and each ε > 0, there exists some
δ > 0 such that, for initial values y∗0

..= u∗(t0) and y0 ∈ Kn, it holds:

|y0−y∗0| < δ =⇒ |u(t)−u∗(t)| < ε for all t ≥ t0 ,
where u uniquely solves u′ = f(t, u) on [t0,∞) with u(t0) = y0

(existence and uniqueness of u in case |y0−y∗0 | < δ part of the requirement).

Illustration in
caseKn = R:

t0

y0
y∗0

δ
δ

u∗

u ε

ε
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Chapter 5: Long-time stability of solutions 5.1 Ljapunov stability and equilibria

Uniform and asymptotic stability, instability

From the stability notion (1) of the previous slide one further derives:

Definition (stability notions; continued)

A solution u∗ of u′ = f(t, u) on I = [α,∞) or I = (α,∞) is called . . .

(2) uniformly stable if it is stable and if, whenever an arbitrary ε > 0 is
fixed, the implication in (1) holds for all t0 ∈ I with a single δ > 0.

(3) asymptotically stable if it is stable and if, for each t0 ∈ I, there exists
some δ0 > 0 such that, for IVs y∗0, y0 and solution u as in (1), it holds:

|y0−y∗0| < δ0 =⇒ lim
t→∞
|u(t)−u∗(t)| = 0 .

(4) unstable if it is not stable.

Asymptotic stability
in case Kn = R:

t0

y0
y∗0 δ0

δ0
u∗

u
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Chapter 5: Long-time stability of solutions 5.1 Ljapunov stability and equilibria

Equilibria of autonomous systems

Specifically one is interested in stability of equilibria, as they occur in
physical systems modeled by ODEs:

Definition (equilibria of autonomous ODE systems)

Whenever x∗ ∈ DF is a zero of a continuous vector field F : DF → Kn on
DF ⊂ Kn, then u∗ : R→ Kn with u∗ ..≡ x∗ is a constant solution of the
autonomous ODE system u′ = F (u). In this situation one calls both x∗

and u∗ an equilibrium or a stationary point of u′ = F (u).

Observe in this regard:

In phase space portraits, equilibria occur as single
”
non-moving“ points.

For equilibria of autonomous systems (specifically u′ = Au+b with A, b
constant) there is no difference between stability and uniform stability.
(Justification: One can pass from one t0 to another by a suitable time shift.)
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Chapter 5: Long-time stability of solutions 5.2 Equilibria of linear systems and linear stability

5.2 Equilibria of linear systems and linear stability

Basic principles (for equilibria of linear systems)

For A ∈ Kn×n and b ∈ Kn, there hold :

(1) The equilibria of u′ = Au+b are precisely the solutions of the linear
system of equations Ax = −b.

(2) The equilibria of u′ = Au form the vector subspace ker(A) in Kn.
In particular, the null vector is always an equilibrium of the
homogeneous system u′ = Au and is called the null equilibrium.

(3) All equilibria of the inhomogeneous system u′ = Au+b share the
stability properties of null for the homogeneous system u′ = Au.

Proofs: (1) and (2): clear by definition with F (x) = Ax+b and F (x) = Ax.
(3):

”
Translate“ stability of equilibrium u∗ of u′ = Au+b in stability of 0 for

u′ = Au essentially by correspondence

u solution of u′ = Au+b

with |u(t)−u∗(t)| < ε for all t
⇐⇒ u−u∗ solution of u′ = Au

with |(u−u∗)(t)−0| < ε for all t
.
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Chapter 5: Long-time stability of solutions 5.2 Equilibria of linear systems and linear stability

Linear stability

Theorem (on stability of equilibria of linear systems; w.l.o.g. homogeneous)

Denote by λ1, . . . , λ` ∈ C all eigenvalues of A ∈ Kn×n. Then one has the
following necessary and sufficient criteria for (in)stability :

(1) If and only if Re(λi) < 0 holds for all λi, the equilibria of u′ = Au
are asymptotically stable.

(2) If and only if Re(λi) < 0 or
{

Re(λi) = 0, g-mult(λi) = a-mult(λi)
}

holds for all λi, the equilibria of u′ = Au are stable.

(3) If and only if Re(λi) > 0 or
{

Re(λi) = 0, g-mult(λi) < a-mult(λi)
}

holds for one λi at least, the equilibria of u′ = Au are unstable.

Here, for the eigenvalues λ of A, we used the notations . . .

a-mult(λ) for multiplicity of λ as zero of the characteristic polynomial of A,

g-mult(λ) for dimension of the λ-eigenspace of A.

Roughly, g-mult(λ) = a-mult(λ) requires
”
sufficiently many“ λ-eigenvectors of A.
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Chapter 5: Long-time stability of solutions 5.2 Equilibria of linear systems and linear stability

Example for linear stability analysis

Analyze ODE system u′ = Au with A ..=

(
−2 0 1 0
0 0 0 1
−1 0 −2 0
0 0 0 0

)
as follows:

Determine equilibria:

Ax = 0  linear system:
−2x1+x3 = 0

x4 = 0
−x1−2x3 = 0

 ker(A) =

{(
0
x2
0
0

)∣∣∣∣∣x2 ∈ R
}

.

Determine eigenvalues:

ch. polynomial: det

(
λ+2 0 −1 0

0 λ 0 −1
1 0 λ+2 0
0 0 0 λ

)
=
[
(λ+2)2+1

]
λ2 = (λ+2−i)(λ+2+i)λ2

 eigenvalues: −2±i with a-mult(−2±i) = g-mult(−2±i) = 1,
0 with a-mult(0) = 2, g-mult(0) = 1 (e.vectors seen above!).

Conclusion: Re(0) = 0, g-mult(0) < a-mult(0)  all equilibria unstable!
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Chapter 5: Long-time stability of solutions 5.2 Equilibria of linear systems and linear stability

Equilibria of planar model systems: phase space portraits

asympt. stable
vortex point

u′ =
(−1 −4

4 −1
)
u,

e.values −1±4i

stable, not asympt. stable
(on top: circulation point)

u′ =
(

0 1
−1 0

)
u, e.values ±i

u′ =
(−1 0

0 0

)
u, e.values 0,−1

unstable
(on top: saddle point)

u′ =
(
1 0
0 −1

)
u, e.values 1,−1

u′ =
(
0 1
0 0

)
u, e.value 0
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Chapter 5: Long-time stability of solutions 5.2 Equilibria of linear systems and linear stability

Proof of the theorem on linear stability

On the proof: W.l.o.g. consider equilibrium 0, work with K = C and t0 = 0.

In view of 3.3 consider basis solutions (λ ∈ C eigenvalue, v0 ∈ Cn step-s GEV)

u(t) = eλt
s−1∑

j=0

1

j!
tjvj

with |u(0)| = |v0| > 0 arbitrarily small. Then |u(t)| = eRe(λ)t
∣∣∑s−1

j=0
1
j! t

jvj
∣∣ yields:

lim
t→∞

|u(t)| =
{

0 if Re(λ) < 0  asymtotically stable
|v0| if Re(λ) = 0, s = 1  stable, not asymtotically stable
∞ otherwise  unstable

From this deduce all criteria (where (2) and (3) and equivalent by negation).

Technical elaboration e.g. on (2)
”
=⇒“: Given FM W , from boundedness of basis

solutions on [0,∞) get M > 0 such that |W (t)x| ≤M |x| and |W (0)−1x| ≤M |x|
for x ∈ Cn, t ≥ 0. For ε > 0, take δ ..= ε

M2 . For solution u(t) = W (t)W (0)−1u(0)
with |u(0)| < δ, infer |u(t)| ≤M2|u(0)| < M2δ = ε  equilibrium 0 stable.
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5.3 On stability analysis for non-linear systems

Sometimes one can decide on stability of equilibria of non-linear systems
by the following criteria, which resemble the linear case:

Theorem (linearization criteria for stability in non-linear systems)

For a zero x∗ of F : DF → Rn in the interior of DF ⊂ Rn, assume that F
is continuously differentiable in x∗. If λ1, . . . , λ` ∈ C denote all eigenvalues
of the Jacobi matrix JF (x∗) ∈ Rn×n, the following criteria are valid :

(1) If Re(λi) < 0 holds for all λi, the equilibrium x∗ of u′ = F (u) is
asymptotically stable.

(2) If Re(λi) > 0 holds for one λi at least, the equilibrium x∗ of
u′ = F (u) is unstable.

These criteria are sufficient, but not necessary. If the largest real part
is exactly 0, they do not help (since then higher-order effects, which
are not reflected in the first derivative, may enter and may play a role).
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Chapter 5: Long-time stability of solutions 5.3 On stability analysis for non-linear systems

Example: ODE of a simple physical pendulum

The ODE and equivalent ODE system of a simple physical pendulum are

ϕ′′ = −(g/L) sin(ϕ) and

(
ϕ′

v′

)
=

(
(1/L)v
−g sin(ϕ)

)

(with displacement angle ϕ, velocity v, positive constants g, L;

ODE considered already in Chapter 1).

The governing vector field

F (ϕ, v) ..=

(
(1/L)v
−g sin(ϕ)

)

of the system has the equilibria (kπ, 0) with k ∈ Z.

Here, even k correspond to the lower equilibrium position,
odd k to the upper equilibrium position of the physical system.

L

m

ϕ

L

m

ϕ
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Chapter 5: Long-time stability of solutions 5.3 On stability analysis for non-linear systems

Example: stability analysis for pendulum ODE

Now analyze equilibria (kπ, 0) at hand of JF (ϕ, v) =
(

0 1/L
−g cos(ϕ) 0

)
:

k even (
”
lower“ equilibria): JF (kπ, 0) =

(
0 1/L
−g 0

)
, e.values ±i

√
g/L

thm
 stability unclear. But from picture: stable, not asymptotically stable.

k odd (
”
upper“ equilibria): JF (kπ, 0) =

(
0 1/L
g 0

)
, e.values ±

√
g/L

thm, part (2)
 unstable.

Phase space portrait (for g=L=1):
v(t) = ϕ′(t)

ϕ(t)
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Chapter 5: Long-time stability of solutions 5.3 On stability analysis for non-linear systems

Proof of the criterion for asymptotic stability

Proof for part (1) of the theorem in case of symmetric matrix A ..= JF (x∗):

In this case, A has solely negative real eigenvalues and is invertible.

For simplicity, take x∗ = 0 (otherwise analogous with subtraction of x∗).

Choose M > 0 with |A−1x| ≤M |x|, consider sufficiently small ε > 0 such that
|x| ≤ ε =⇒ |F (x)−Ax| ≤ 1

2M |x| holds (exploits F (0) = 0 and JF (0) = A).

Now define L : Rn → R by L(x) ..= −x ·A−1x = −∑n
i,j=1 xi(A

−1)ijxj (with

symbol
”
·“ for inner product), calculate ∇L(x) = −2A−1x (uses symmetry of A).

Whenever solution u of u′ = F (u) satisfies |u(t)| ≤ ε, further deduce
d

dt
L(u(t)) = u′(t) ·∇L(u(t))

ODE
= F (u(t)) ·∇L(u(t)) = −2F (u(t)) ·A−1u(t)

≤ −2Au(t) ·A−1u(t) + 2|F (u(t))−Au(t)| |A−1u(t)|
≤ −2u(t) · u(t) + 1

M |u(t)|M |u(t)| = −|u(t)|2 ≤ 0 .

Conclusion: L(u(t)) decreasing in t ( Ljapunov function, energy interpretation).
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Chapter 5: Long-time stability of solutions 5.3 On stability analysis for non-linear systems

Proof of the criterion for asymptotic stability (continued)

Here, 0 is a strict minimum point of L (thanks to choice of L and solely negative
eigenvalues of A). Choose 0 < δ < ε such that |x| < δ , |y| = ε =⇒ L(x) < L(y).
Then solution u with |u(0)| < δ cannot satisfy |u(t)| = ε for t > 0 (otherwise get
contradiction L(u(0)) < L(u(t))). Thus |u(t)| < ε for t ≥ 0. Equilibrium 0 is stable.

Next show limt→∞ u(t) = 0 (for some ε, δ as before, u solution with |u(0)| < δ):
For simplicity assume the limit exists. In case x0 ..= limt→∞ u(t) 6= 0 deduce
from lim supt→∞

d
dtL(u(t)) ≤ −|x0|2 < 0 (by calculation of previous slide) that

L(x0) = limt→∞ L(u(t)) = −∞ must hold. Contradiction! The sole remaining
possibility is limt→∞ u(t) = 0. Equilibrium 0 is even asymptotically stable.

Remarks on the proof:

In the preceding, a few technical details (in particular reasoning for existence
and uniqueness of solutions u on all of [0,∞)) have been suppressed.

The generalization for non-symmetric matrices JF (x∗) and proofs for part (2)
of the theorem are rather more difficult and are omitted here.
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Chapter 6: Existence and uniqueness of solutions

Chapter 6: Existence and uniqueness of solutions

Existence and uniqueness of the solution in initial value problems have
been used decisively in Chapters 3 and 5. In the sequel this is underpinned
with the precise mathematical statements.
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Chapter 6: Existence and uniqueness of solutions 6.1 Local existence and uniqueness

6.1 Local existence and uniqueness

Denote by B
n
ε (y0) ..= {x ∈ Rn | |x−y0| ≤ ε} the closed ball in Rn with

center y0 ∈ Rn and radius ε > 0. The main theorem of this chapter is:

Picard-Lindelöf Theorem (local existence and uniqueness for IVPs)

If a continuous f : Df → Rn with [t0−ε, t0+ε]× B
n
ε (y0) ⊂ Df ⊂ R×Rn

for t0 ∈ R, y0 ∈ Rn, ε > 0, satisfies the partial Lipschitz condition (pLC )

|f(t, x̃)− f(t, x)| ≤ L|x̃− x| for all t ∈ [t0−ε, t0+ε] , x, x̃ ∈ B
n
ε (y0)

with a constant L ∈ [0,∞), then the IVP

u′ = f(t, u) on [t0−δ, t0+δ] , u(t0) = y0

is uniquely solvable for each sufficiently small δ > 0.

also valid with Cn in place of Rn, as one may here identify Cn = R2n.

Thomas Schmidt (Maths Dept., UHH) DE I for Engineering TUHH, Winter 24/25 94 / 111



Chapter 6: Existence and uniqueness of solutions 6.1 Local existence and uniqueness

Complements to the Picard-Lindelöf theorem

decisive sufficient criterion for pLC: If ∂f
∂x1

, ∂f∂x2 , . . . ,
∂f
∂xn

are continuous

on open Df , a pLC valid on all cylinders [t0−ε, t0+ε]× B
n
ε (y0) ⊂ Df

(with L dependent on t0, y0, ε), and the theorem applies.

(Justification: For Li ..= max[t0−ε,t0+ε]×B
n
ε (x0)

∣∣ ∂f
∂xi

∣∣ and L ..=
∑n
i=1 Li, find

|f(t, x̃)−f(t, x)| FTC
=
∣∣ ∫ 1

0
d
dsf(t, x+s(x̃−x)) ds

∣∣ ≤∑n
i=1 Li|x̃i−xi| ≤ L|x̃−x|.)

In general existence applies only locally, i.e. for small δ:

For instance, u(t) = −1
t−C with C > 0 solves the scalar ODE u′ = u2 on

(−∞, C) with IC u(0) = 1
C , but cannot be extended at t = C. Hence,

in this case existence applies only for δ < C, but not for δ ≥ C.

t

u(t)

C

u
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Chapter 6: Existence and uniqueness of solutions 6.1 Local existence and uniqueness

Complements to the Picard-Lindelöf theorem (continued)

Uniqueness is automatically global, i.e. valid on arbitrary intervals I
(provided a pLC holds near each t0 ∈ I and y0 ∈ Rn).

(Justification: For different solutions u, ũ of u′ = f(t, u) with ũ(t0) = u(t0)
find (by continuity) largest/smallest t∗ in interior of I such that ũ(t∗) = u(t∗).
By Picard-Lindelöf get ũ = u on [t∗−δ, t∗+δ], which contradicts choice of t∗.)

t

u(t)

t∗

u
ũ

In general no uniqueness without pLC!

For instance, the scalar IVP for u′ = 2
√
|u| with IC u(0) = 0 is solved

for every C ∈ [0,∞] by uC(t) =
{

0 for t < C
(t−C)2 for t ≥ C . Hence, this IVP

has infinitely many solutions.

t

u(t)
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Chapter 6: Existence and uniqueness of solutions 6.1 Local existence and uniqueness

Proof of the Picard-Lindelöf theorem

The proof of the Picard-Lindelöf theorem exploits this analysis result:

Banach fixed point theorem

If A is closed subset of a complete normed space and T : A→ A is a strict
contraction, i.e. ‖T (ũ)−T (u)‖ ≤ κ‖ũ−u‖ for u, ũ ∈ A with a constant
κ ∈ [0, 1), then there is one and just one u ∈ A such that T (u) = u.

One calls u ∈ A with T (u) = u a fixed point of T and T (u) = u the
corresponding fixed point equation.

Proof of the Picard-Lindelöf theorem: Set I ..= [t0−δ, t0+δ] (for

sufficiently small δ ≤ ε; soon more on this) and record:

C0(I,Rn) = {u : I → Rn |u continuous} is a complete normed space
with norm ‖u‖∞ ..= maxs∈I |u(s)|.
A ..= C0

(
I,B

n
ε (y0)

)
is a closed subset of C0(I,Rn).
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Chapter 6: Existence and uniqueness of solutions 6.1 Local existence and uniqueness

Proof of the Picard-Lindelöf theorem (continued)

Reformulation of solution property as fixed point equation (for u ∈ A):

u′ = f(t, u) on I , u(t0) = y0
FTC⇐⇒ u(t) = y0 +

∫ t

t0

f(s, u(s)) ds for t ∈ I

⇐⇒ T (u) = u

with T : A→ C0(I,Rn) defined by T (u)(t) ..= y0 +
∫ t
t0
f(s, u(s)) ds.

Now check assumptions of fixed point theorem for this T :

(1) Show T (u) ∈ A for u ∈ A (in order to ensure T : A→ A): For
M ..= maxs∈[t0−ε,t0+ε],x∈B

n
ε (y0) |f(s, x)| and t ∈ I, find

|T (u)(t)− y0| =
∣∣∣∣
∫ t

t0

f(s, u(s)) ds

∣∣∣∣ ≤ |t−t0|M ≤ δM ≤ ε

provided that δ ≤ ε
M . Infer T (u)(t) ∈ B

n
ε (y0) for t ∈ I and T (u) ∈ A.
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Chapter 6: Existence and uniqueness of solutions 6.1 Local existence and uniqueness

Proof of the Picard-Lindelöf theorem (continued)

(2) For checking the strict contraction property

‖T (ũ)− T (u)‖∞ ≤ 1
2 ‖ũ− u‖∞ for all u, ũ ∈ A

of T , first estimate, for t ∈ I,

|T (ũ)(t)− T (u)(t)| =
∣∣∣∣
∫ t

t0

[
f(s, ũ(s))− f(s, u(s))

]
ds

∣∣∣∣
≤ |t−t0| ‖f(s, ũ(s))− f(s, u(s))‖∞

pLC
≤ δL ‖ũ−u‖∞ ≤ 1

2 ‖ũ−u‖∞
provided that δ ≤ 1

2L . Then take maxt∈I( · ) to arrive at the claim.

Conclusion: For δ ≤ min
{
ε, εM ,

1
2L

}
, all assumptions of the fixed point

theorem satisfied! Deduce unique solvability of T (u) = u and of the IVP.

Thomas Schmidt (Maths Dept., UHH) DE I for Engineering TUHH, Winter 24/25 99 / 111



Chapter 6: Existence and uniqueness of solutions 6.1 Local existence and uniqueness

Proof of the Picard-Lindelöf theorem (final technical detail)

Finalize proof by technical reasoning, which extends uniqueness from
A = C0

(
I,B

n
ε (y0)

)
to all solutions on I = [t0−δ, t0+δ]:

Since ε and δ may be slightly decreased, the preceding yields a solution u
such that |u(t)−y0| < ε for all t ∈ (t0−δ, t0+δ).

If there exists a solution ũ on I such that ũ /∈ C0
(
I,B

n
ε (y0)

)
, then . . .

choose (by continuity) t∗ ∈ (t0−δ, t0+δ) with |ũ(t∗)−y0| = ε such
that δ∗ ..= |t∗−t0| < δ is smallest possible,

infer u, ũ ∈ A∗ ..= C0
(
[t0−δ∗, t0+δ∗],B

n
ε (y0)

)
with ũ(t∗) 6= u(t∗) and

thus arrive at a contradiction to already-proven uniqueness in A∗.

So, uniqueness holds even among all solutions. The proof is complete.
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Chapter 6: Existence and uniqueness of solutions 6.2 Global existence

6.2 Global existence

In good cases even global existence on arbitrarily given intervals I is valid:

Theorem (global existence under global pLC)

If a continuous f : I ×Rn → Rn satisfies the global-in-x pLC

|f(t, x̃)− f(t, x)| ≤ `(t) |x̃− x| for all t ∈ I , x, x̃ ∈ Rn

with continuous ` : I → [0,∞), then, for all t0 ∈ I and y0 ∈ Rn, the IVP

u′ = f(t, u) on I , u(t0) = y0

is always uniquely solvable.

The important case are linear systems u′ = Au+b with A ∈ C0(I,Rn×n),
b ∈ C0(I,Rn). Higher-order cases and cases with Cn in place of Rn can
be reduced as usual. The central existence claim of Section 3.1 is covered.
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Chapter 6: Existence and uniqueness of solutions 6.2 Global existence

On the proof of the global existence theorem

Proof: W.l.o.g. consider only case I = R with |f(t, x̃)−f(t, x)| ≤ L|x̃−x|
and |f(t, x)| ≤ L(1+|x|) for all t ∈ R, x, x̃ ∈ Rn and some L ∈ [1,∞).

Use Picard-Lindelöf to subsequently extend solution u of IVP with δ > 0:

(1) u : [t0−δ, t0+δ]→ B
n
ε1(y0) with ε1

..= 1+|y0|,
(2) u : [t0, t0+2δ]→ B

n
ε2(u(t0+δ)) with ε2

..= 1+|u(t0+δ)|,
(3) u : [t0+δ, t0+3δ]→ B

n
ε3(u(t0+2δ)) with ε3

..= 1+|u(t0+2δ)|,
and so on.

Here, in ith step of construction exploit, for x ∈ B
n
εi(u(t0+(i−1)δ)), the

bound |f(t, x)| ≤ L
(
1+|u(t0+(i−1)δ)|+εi

)
= 2Lεi, in order to achieve

extension step with min
{
εi,

εi
2Lεi

, 1
2L

}
= 1

2L =.. δ by proof of Section 6.1.

In conclusion determine u on [t0−δ,∞). In same way treat (−∞, t0+δ].
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Outlook: Variational principles for ODEs

Outlook: Variational principles for ODEs

In several cases, one can motivate and derive ODEs from minimization
problems for an unknown function and then speaks of variational principles.
In the sequel a brief and basic introduction to this theory is given.
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Outlook: Variational principles for ODEs

Variational integrals and minimizers

Consider t1 < t2 in R, n ∈ N, and a given continuous structure function
L : [t1, t2]×Rn×Rn → R, called Lagrange function or simply integrand.

The interest is then in minimization of the variational integral

I[u] ..=

∫ t2

t1

L(t, u(t), u′(t)) dt

among all functions u : [t1, t2]→ Rn with BCs u(t1) = y1, u(t2) = y2.

Definition (minimizers of variational integrals)

A function u ∈ C1([t1, t2],Rn) is called a minimizer of I, if there holds

I[u] ≤ I[ũ ]
for all ũ ∈ C1([t1, t2],Rn)

with ũ(t1) = u(t1) , ũ(t2) = u(t2) .
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Outlook: Variational principles for ODEs

The Euler-Lagrange equation

In order to state the central connection to ODEs, the integrand of

I[u] =

∫ t2

t1

L(t, u(t), u′(t)) dt

is regarded as a function L(t, x, v) of t ∈ [t1, t2], x ∈ Rn, and v ∈ Rn:

Theorem (Euler-Lagrange equation)

Whenever L, ∇xL are continuous and ∇vL is even C1 on [t1, t2]×Rn×Rn,
every minimizer u ∈ C2([t1, t2],Rn) of I satisfies the second-order ODE

d

dt

[
∇vL(t, u(t), u′(t))

]
= ∇xL(t, u(t), u′(t)) for t ∈ [t1, t2] .

This is an analog of the analysis criteria f ′(x) = 0 and ∇f(x) = 0 for
minimum points — but now for minimization among functions and thus with
an ODE instead of simply an equation or a system of equations.

For a variational integral I of arbitrary (rather than first) order m ∈ N, there
is an analogous ODE of order 2m.
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Outlook: Variational principles for ODEs

Derivation/proof of the Euler-Lagrange equation

Proof of theorem: For ϕ ∈ C1([t1, t2],Rn) with ϕ(t1) = ϕ(t2) = 0, it is

I[u] ≤ I[u+sϕ] for all s ∈ R .
The necessary criterion of minimum points (applied to s 7→ I[u+sϕ]) gives

0 =
d

ds s=0
I[u+sϕ]

thm differ.
parameter

=

∫ t2

t1

d

ds s=0
L(t, u(t)+sϕ(t), u′(t)+sϕ′(t)) dt

=

∫ t2

t1

[
∇xL(t, u(t), u′(t)) · ϕ(t) +∇vL(t, u(t), u′(t)) · ϕ′(t)

]
dt

ibp
=

∫ t2

t1

[
∇xL(t, u(t), u′(t))− d

dt

[
∇vL(t, u(t), u′(t))

]]
· ϕ(t) dt .

Since this holds for all ϕ ∈ C1([t1, t2],Rn) with ϕ(t1) = ϕ(t2) = 0, the
fundamental lemma of the calculus of variations (no details on this) implies

0 = ∇xL(t, u(t), u′(t))− d

dt

[
∇vL(t, u(t), u′(t))

]
for t ∈ [t1, t2] .

The claim then follows by rearranging terms.
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Outlook: Variational principles for ODEs

Application 1: variational principles for equations of motion

The motion of a (point-like) particle of mass m > 0 under influence of a
potential V : R3 → R is governed by the variational integral

S[~x ] ..=

∫ t2

t1

[
1
2m|~x ′(t)|2 − V (~x(t))

]
dt for ~x : [t1, t2]→ R3 ,

known as the action functional. The corresponding Lagrange function is

L(t, ~x,~v ) = 1
2m|~v |2 − V (~x) = Ekin(t, ~x,~v )− Epot(t, ~x,~v ) .

One computes ∇~xL(t, ~x,~v ) = −∇V (~x) and ∇~vL(t, ~x,~v ) = m~v and gets
as Euler-Lagrange equation the general equation of motion

m~x ′′ = −∇V
(
~x
)
.

Read off: Acceleration occurs in direction of steepest descent of V .
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Outlook: Variational principles for ODEs

Application 2: the hanging-chain variational principle

Describe freely hanging portion of rope/chain of constant
mass density µ > 0 as graph of u : [x1, x2] → R with
x1 < x2 in R. The potential energy of the portion

E[u] ..= µg

∫ x2

x1

u(x)
√

1+(u′(x))2 dx

(with gravity acceleration g > 0) is a variational integral in
dimension n = 1. Minimizers of the type illustrated occur

x1

u(x1)

x2

u(x2)

(1) if one additionally fixes the length of the rope,

or

(2) if a longer rope is supported and redirected as in the picture, but the
length of the hanging portion stays smaller than the sum u(x1)+u(x2)
of BVs (so the hanging portion cannot

”
drop down“ for physical reasons).

The standard situation (1) requires further theory for treating the
additional constraint and is beyond our scope here. However, situation (2)
is similar in principle and is covered by our computations to follow:
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Outlook: Variational principles for ODEs

Application 2 (continued): the hanging-chain ODE

As the factor µg > 0 does not affect minimization, we are left with
∫ x2

x1

u(x)
√

1+(u′(x))2 dx

with corresponding Lagrange function L(x, y, s) = y
√

1+s2. We first
compute‡ ∂L

∂y (x, y, s) =
√

1+s2 and ∂L
∂s (x, y, s) = sy√

1+s2
and then find the

Euler-Lagrange equation
(

u′u√
1+(u′)2

)′
=
√

1+(u′)2

or equivalently (after applying derivation rules and some rearranging!) the
scalar hanging-chain ODE

u′′u = 1+(u′)2 .

‡Here, in the scalar case, the gradients ∇y,∇s reduce to simple derivatives ∂
∂y
, ∂
∂s

.
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Outlook: Variational principles for ODEs

Application 2 (continued): solving the hanging-chain ODE

For solving the ODE
u′′u = 1+(u′)2

one has options. For instance, one may proceed as follows:

first approach: follow last point on slide 36 to transform to scalar ODE

s′ = 1+s2

sy for function s of variable y; via separation of variables deduce

s(y) = ±
√
C2y2−1 with 0 6= C ∈ R; transform back via (u−1)′ = 1

s to
arrive at u(x) = ± 1

C cosh(C(x−x0)) with x0 ∈ R.

second approach: compute
(

u√
1+(u′)2

)′
= u′ 1+(u′)2−u′′u

(1+(u′)2)3/2
≡ 0; deduce

u√
1+(u′)2

= 1
C with 0 6= C ∈ R; via separation of variables infer once

again u(x) = ± 1
C cosh(C(x−x0)) with x0 ∈ R.

In any case, the solutions u(x) = ± 1
C cosh(C(x−x0)) are shifted and

scaled version of cosh. Their graphs are known as catenaries.

Finally, the constants x0 and C are determined from the BCs.
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