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Exercise 1 (6 points)

Determine the general solution of the differential equation

y′(t) + 2y(t) − t y(t)4 = 0.

Solution:

The differential equation is a Bernoulli equation.
With α = 4, a = 2 and b = t and u = y1−α = y−3 one obtains the linear differential
equation in u

u′(t) − 6u(t) = −3t. (1 point)

u′
h = 6uh =⇒ duh

dt
= 6uh =⇒ duh

uh
= 6dt =⇒ ln(|uh|) = 6t + k

=⇒ uh(t) = Ce6t. (2 points)

Ansatz for a particular solution:
Version 1) Special ansatz

up(t) = k1 + k2t
ODE−→ k2 − 6k1 − 6k2t

!= −3t

Comparison of coefficients returns k2 = 1
2 and k1 = 1

12 .

Version 2) Variation of constants

up(t) = C(t)e6t ODE−→ Ċ(t)e6t != −3t

C(t) =
∫

−3te−6tdt =
[
−3t

e−6t

−6

]
−
∫

−3e−6t

−6 dt = t

2e−6t − 1
2

∫
e−6tdt

=
(

t

2 + 1
12

)
e−6t + K.

Thus for example with K = 0
up(t) = C(t)e6t =

(
t
2 + 1

12

)
e−6t · e6t .

=⇒ up(t) = t
2 + 1

12 . (2 points)

Hence altogether
u(t) = Ce6t + t

2 + 1
12

and

y(t) =
(1

u

) 1
3

= 3

√
1
u

(1 point)
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Exercise 2 (3 points)

Rewrite the following initial value problem as equivalent initial value problem for a system
of first-order differential equations

y′′′(x) − y′′(x) + 2y′(x) − 3y(x) = 0 , y(1) = 1, y′(1) = 4, y′′(1) = 9.

Solution: (2 points)

Rearranging the differential equation it results

y′′′(x) = y′′(x) − 2y′(x) + 3y(x).

We now define

y (t) :=

y1(x)
y2(x)
y3(x)

 :=

 y(x)
y′(x)
y′′(x)

 and from this y ′ =

 y′

y′′

y′′′


hence

y′
1 = y2, y′

2 = y3, y′
3 = y′′′ = y3 − 2y2 + 3y1 .

The equivalent initial value problem for a system of first order is thus

y ′ =

 y′

y′′

y′′′

 =

0 1 0
0 0 1
3 −2 1


y1

y2
y3

 , y (1) =

y1(1)
y2(1)
y3(1)

 =

1
4
9

 . (3 points)
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Exercise 3: (5 points)

Consider the boundary value problem

y
′′ − 4 y ′ + 4 y = h(x) x ∈ ]0, 1[

αy(0) − y ′(0) = γ1

y (1) = γ2 α, γ1, γ2 ∈ R .

For which values of α is the boundary problem uniquely solvable for any γ1, γ2 ∈ R and
any continuous function h(x) on the interval [0, 1] ?
Solution:

Computation of roots of the characteristic polynomial.

λ2 − 4λ + 4 = (λ − 2)2 = 0 ⇐⇒ λ = 2 .

The functions
y1(x) = e2x , y2(x) = xe2x (2 points)

build a fundamental system of the corresponding homogeneous differential equation.

It holds y′
1(x) = 2e2x , y′

2(x) = (1 + 2x)e2x and

R1(y1) = αy1(0) − y1
′(0) = α − 2 ,

R1(y2) = αy2(0) − y2
′(0) = −1 ,

R2(y1) = y1 (1) = e2 ,

R2(y2) = y2 (1) = e2 .

The boundary problem is uniquely solvable for any γ1, γ2 ∈ R and any h continuous if and
only if the matrix

R :=
(

R1(y1) R1(y2)
R2(y1) R2(y2)

)
=
(

α − 2 −1
e2 e2

)
is invertible. Thus, if and only if

(α − 2)e2 + e2 = e2(α − 1) ̸= 0 ⇐⇒ α ̸= 1. (3 points)
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Exercise 4: (2 points)

Consider the system of differential equations

ẏ (t) =
(

0 1
− 1

t2
3
2t

)
y (t) +

(
t3

2t2

)
, t ≥ 1.

The functions
y [1](t) =

(
2
√

t
1√
t

)
and y [2](t) =

(
t2

2t

)
are solutions of the corresponding homogeneous system of differential equations.
Do y [1] and y [2] build a fundamental system for the space of solutions of the corresponding
homogeneous system of differential equations?

Solution:

We compute the Wronskian

W (t) = det Y (t) = det
(

2
√

t t2

1√
t

2t

)

for example at point t = 1 .

W (1) = det
(

2 1
1 2

)
= 4 − 1 ̸= 0 .

It is therefore a fundamental system. (2 points



Differential Equations I, 05.09.2023, SuSe 2023 (Behrens, Kiani) 6

Exercise 5: (4 points)

Consider the initial value problem

y ′′(t) + 4y ′(t) + 3y(t) = 2 cos(t) + t2e−2t , for t > 0 , y(0) = 0 , y′(0) = 5 .

Into which algebraic equation can the initial value problem be transformed by Laplace trans-
formation?

Solution:

Let Y be the image of y under the Laplace transformation. Then it holds
y ◦—• Y, y′ ◦—• sY − y(0) = sY,

y′′ ◦—• s2Y − sy(0) − y′(0) = s2Y − 5, [1 point]

cos(t) ◦—• s

s2 + 1 , t2 ◦—• 2!
s2+1 , e−2tt2 ◦—• 2

(s + 2)3 . [2 points]

The initial value problem is transformed into

(s2 + 4s + 3)Y − 5 = 2s

s2 + 1 + 2
(s + 2)3 . [1 point]


