Mathematics III Exam
 (Module: Differential Equations I)

February 28, 2022

Please mark each page with your name and your matriculation number.

Please write your surname, first name and matriculation number in block letters in the designated fields following. These entries will be stored.

BP:

AIW	BU	BV	CI CS	ET	EUT	GES	IN IIW	LUM	MB	MTB MEC	SB	VT	

I was instructed about the fact that the exam performance will only be assessed if the Central Examination Office of TUHH verifies my official admission before the exam's beginning in retrospect.

Exercise	Points	Evaluater
1		
2		
3		
4		
5		

$\sum=$

Exercise 1: (3+2 points)

a) Solve the initial value problem

$$
y^{\prime}-y=2 \quad \text { with } \quad y(0)=3 .
$$

b) Compute the general solution of Euler's differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 .
$$

Hint: There exist solutions of the form $y(x)=x^{\alpha}$ with $\alpha \in \mathbb{R}$.

Exercise 2: (5 points)

Compute the general solution of the following system of differential equations

$$
\boldsymbol{y}^{\prime}=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) \boldsymbol{y}-\binom{1}{1} .
$$

Hint: \quad Note that $\quad \lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)$.

Exercise 3: (4 points)

Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}-3 y=7-6 x, \quad y(0)=0, y^{\prime}(0)=3 .
$$

Hint: Note that $\lambda^{2}+2 \lambda-3=(\lambda-1)(\lambda+3)$.

Exercise 4: (3 points)

Compute the real-valued general solution of the linear differential equation

$$
y^{\prime \prime}+9 y=0 .
$$

Use this solution to obtain all solutions for the corresponding boundary value problem with boundary values $y^{\prime}(0)=6$ and $y\left(\frac{\pi}{6}\right)=2$.

Exercise 5: (3 points)

Compute all equilibria for the nonlinear system of differential equations of first order

$$
\begin{aligned}
& \dot{x}=y-4 \\
& \dot{y}=4 y(x-1)
\end{aligned}
$$

and determine their stability properties.

