Exercise 1: (1+4 points)
a) Compute the general solution of the following differential equation by using separation of variables

$$
x y^{\prime}-3 y=0 .
$$

b) Solve the following initial value problem for the given Bernoulli differential equation

$$
y^{\prime}-y+2 y^{2}=0 \quad \text { and } \quad y(0)=\frac{1}{3}
$$

Solution:

a) (1 point)

$$
\begin{aligned}
& x y^{\prime}-3 y=0 \Rightarrow y^{\prime}=\frac{3 y}{x} \Rightarrow \quad \frac{y^{\prime}}{y}=\frac{3}{x} \quad \Rightarrow \quad \int \frac{d y}{y}=3 \int \frac{d x}{x} \\
& \Rightarrow \quad \ln |y|=3 \ln |x|+c=\ln \left|x^{3}\right|+c \quad \Rightarrow \quad y=k x^{3}
\end{aligned}
$$

b) (4 points)

Bernoulli differential equation:
$y^{\prime}+a(x) y+b(x) y^{\alpha}=y^{\prime}-y+2 y^{2}=0=0 \quad \Rightarrow \quad \alpha=2, a(x)=-1, b(x)=2$.
Substitution: $\quad u(x)=y^{(1-\alpha)}(x)=\frac{1}{y(x)} \Leftrightarrow y(x)=u^{1 /(1-\alpha)}(x)=\frac{1}{u(x)}$
Transformed linear inhomogeneous differential equation:

$$
u^{\prime}(x)+(1-\alpha) a(x) u(x)=(\alpha-1) b(x) \quad \Rightarrow \quad u^{\prime}+u=2 .
$$

General homogeneous solution: $u_{h}(x)=k e^{-x}$ for $k \in \mathbb{R}$.
Ansatz for a particular solution of the inhomogeneous ODE:
$u_{p}(x)=c \quad \Rightarrow \quad c=2$
General solution of the transformed equation and back substitution:
$\Rightarrow \quad u(x)=k e^{-x}+2 \quad \Rightarrow \quad y(x)=\frac{1}{k e^{-x}+2}$
Solution of the initial value problem:
$\Rightarrow \quad \frac{1}{3}=y(0)=\frac{1}{k+2} \quad \Rightarrow \quad k=1 \quad \Rightarrow \quad y(x)=\frac{1}{e^{-x}+2}$

Exercise 2: (3 points)
Compute the general solution of the following system of differential equations

$$
\boldsymbol{y}^{\prime}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \boldsymbol{y}
$$

Hint: Note that $(1-\lambda)^{2}-1=\lambda(\lambda-2)$.

Solution:

(3 points)
Compute the eigenvalues of the matrix \boldsymbol{A} :

$$
\begin{aligned}
p_{\boldsymbol{A}}(\lambda) & =\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 1-\lambda & 1 \\
0 & 1 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right| \\
& =(1-\lambda)\left((1-\lambda)^{2}-1\right)=(1-\lambda) \lambda(\lambda-2) \\
\Rightarrow & \lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=2
\end{aligned}
$$

Compute the corresponding eigenvectors by $(\boldsymbol{A}-\lambda \boldsymbol{E}) \boldsymbol{v}=\mathbf{0}$
Eigenvector \boldsymbol{v}^{1} corresponding to $\lambda_{1}=1$:

$$
\left(\begin{array}{lll|l}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{v}^{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Eigenvector \boldsymbol{v}^{2} corresponding to $\lambda_{2}=0$ as well as \boldsymbol{v}^{3} corresponding to $\lambda_{3}=2$ (the eigenvectors are orthogonal because \boldsymbol{A} is symmetric):

$$
\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{v}^{2}=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{v}^{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Alternatively: computation of \boldsymbol{v}^{3} corresponding to $\lambda_{3}=2$ by:

$$
\left(\begin{array}{rrr|r}
-1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right) \quad \rightarrow \quad\left(\begin{array}{rrr|r}
1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{v}^{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

For $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ the general solution is given by

$$
\boldsymbol{y}(x)=c_{1} e^{x}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right)+c_{3} e^{2 x}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) .
$$

Exercise 3: (4 points)
Solve the following initial value problem

$$
y^{\prime \prime}+y^{\prime}-2 y=e^{x}, \quad y(0)=1, y^{\prime}(0)=\frac{4}{3} .
$$

Solution:

a) (1 point)

For the general solution of the homogeneous equation $y^{\prime \prime}+y^{\prime}-2 y=0$ we compute the characteristic polynomial:

$$
p(\lambda)=\lambda^{2}+\lambda-2=(\lambda-1)(\lambda+2) \stackrel{!}{=} 0 \Rightarrow \lambda_{1}=1, \lambda_{2}=-2
$$

and obtain the general homogeneous solution
$y_{h}(x)=c_{1} e^{x}+c_{2} e^{-2 x} \quad$ for $\quad c_{1}, c_{2} \in \mathbb{R}$.
b) (1 point)

We use the following ansatz for a particular solution of the inhomogenous ODE: $y_{p}(x)=a x e^{x}$, as for the inhomogeneity $e^{\mu x}=e^{x}$ it holds that $\mu=1=\lambda_{1}$. Plugging the ansatz into the inhomogeneous differential equation yields

$$
\begin{gathered}
\left(a x e^{x}\right)^{\prime \prime}+\left(a x e^{x}\right)^{\prime}-2 a x e^{x}=((x+2)+(x+1)-2 x) a e^{x}=3 a e^{x} \stackrel{!}{=} e^{x} \\
\Rightarrow \quad a=\frac{1}{3} \quad \Rightarrow \quad y_{p}(x)=\frac{1}{3} x e^{x}
\end{gathered}
$$

c) (1 point)

The general inhomogeneous solution is given by $\quad y(x)=c_{1} e^{x}+c_{2} e^{-2 x}+\frac{1}{3} x e^{x}$
d) (1 point)
$y^{\prime}(x)=c_{1} e^{x}-2 c_{2} e^{-2 x}+\frac{1}{3}(x+1) e^{x}$ and the initial values yield:
$1=y(0)=c_{1}+c_{2} \Rightarrow c_{1}=1-c_{2}$,
$\frac{4}{3}=y^{\prime}(0)=c_{1}-2 c_{2}+\frac{1}{3}=1-c_{2}-2 c_{2}+\frac{1}{3} \Rightarrow c_{2}=0 \Rightarrow c_{1}=1$.
Solution of the initial value problem: $y(x)=e^{x}+\frac{1}{3} x e^{x}$

Exercise 4: (3 points)

Consider the linear differential equation

$$
y^{\prime \prime}+y=0 .
$$

a) State a complex-valued fundamental system,
b) compute the real-valued general solution and
c) obtain all solutions of the corresponding boundary value problem with boundary values $y(0)=2$ and $y(\pi)=-2$.

Solution:

a) (1 point)

The characteristic polynomial: $\quad p(\lambda)=\lambda^{2}+1=0 \Rightarrow \lambda_{1,2}= \pm i$ yields the complex-valued fundamental system

$$
e^{i x}=\cos (x)+i \sin (x), \quad e^{-i x}=\cos (x)-i \sin (x)
$$

b) (1 point)

Real and imaginary part lead to the real-valued general solution:
$y(x)=c_{1} \cos (x)+c_{2} \sin (x) \quad$ for $\quad c_{1}, c_{2} \in \mathbb{R}$
c) (1 point)

The boundary values yield:
$2=y(0)=c_{1} \cos (0)+c_{2} \sin (0) \quad \Rightarrow \quad c_{1}=2 \quad$ and
$-2=y(\pi)=c_{1} \cos (\pi)+c_{2} \sin (\pi)=-c_{1} \quad \Rightarrow \quad c_{1}=2$
Solutions of the boundary value problem are given by:

$$
y(x)=2 \cos (x)+c_{2} \sin (x) \quad \text { for } \quad c_{2} \in \mathbb{R}
$$

Exercise 5: (5 points)

Consider the following system of linear first-order differential equations:

$$
\begin{aligned}
& \dot{x}=x+2 y-4 \\
& \dot{y}=2 x+y-5 .
\end{aligned}
$$

a) State the system in matrix-vector notation ,
b) compute all stationary solutions (equilibria),
c) and determine their stability properties.
d) Compute the general solution of the system of linear differential equations.

Solution:

a) (1 point)

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\binom{x}{y}-\binom{4}{5}
$$

b) (1 point)
$\binom{0}{0}=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\binom{x}{y}-\binom{4}{5} \rightarrow\left(\begin{array}{ll|l}1 & 2 & 4 \\ 2 & 1 & 5\end{array}\right) \rightarrow\left(\begin{array}{rr|r}1 & 2 & 4 \\ 0 & -3 & -3\end{array}\right)$
We obtain the equilibrium $\boldsymbol{x}^{*}=\binom{2}{1}$.
c) (1 point)

The eigenvalues λ_{1}, λ_{2} are computed by:

$$
p(\lambda)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right)=\lambda^{2}-2 \lambda-3=(\lambda+1)(\lambda-3)=0
$$

As $\lambda_{1}=-1<0<\lambda_{2}=3$, we conclude that \boldsymbol{x}^{*} is an instable saddle point.
d) (2 points)

The equilibrium \boldsymbol{x}^{*} solves the (inhomogeneous) system of differential equations and thus serves as a particular solution. The eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are orthogonal, due to the symmetry of the matrix.
We compute the eigenvector \boldsymbol{v}_{1} corresponding to $\lambda_{1}=-1$:

$$
\left(\begin{array}{ll|l}
2 & 2 & 0 \\
2 & 2 & 0
\end{array}\right) \quad \Rightarrow \quad \boldsymbol{v}_{1}=\binom{-1}{1} \quad \Rightarrow \quad \boldsymbol{v}_{2}=\binom{1}{1}
$$

And obtain the general solution of the system

$$
\binom{x}{y}=c_{1} e^{-t}\binom{-1}{1}+c_{2} e^{3 t}\binom{1}{1}+\binom{2}{1}, \quad c_{1}, c_{2} \in \mathbb{R}
$$

