Differential Equations I for Students of Engineering Sciences

Sheet 4 (in-class)

Exercise 1:

a) Determine the general real-valued solution of the homogeneous system of differential equations

$$
\boldsymbol{y}^{\prime}=\left(\begin{array}{rr}
1 & 1 \\
-2 & -1
\end{array}\right) \boldsymbol{y} \text {. }
$$

b) Consider the initial value problem

$$
\boldsymbol{y}^{\prime}=\left(\begin{array}{rr}
-2 & 1 \\
3 & -4
\end{array}\right) \boldsymbol{y}+\binom{3}{-2}, \quad \boldsymbol{y}(0)=\binom{3}{2} .
$$

(i) Determine the general solution of the homogeneous system.
(ii) Compute a particular solution of the inhomogeneous system by variation of constants and alternatively using the ansatz $\boldsymbol{y}_{p}(x)=\boldsymbol{a}$ with $\boldsymbol{a} \in$ \mathbb{R}^{2}.
(iii) Solve the initial value problem.

Exercise 2:

a) Consider the differential equation $y^{\prime \prime \prime}-4 y^{\prime \prime}-20 y^{\prime}+48 y=0$
(i) compute the general real-valued solution,
(ii) rewrite the differential equation as a system of first order and
(iii) compute eigenvalues, eigenvectors and a fundamental matrix of the system.
b) Compute the general real-valued solution for the following differential equations:
(i) $y^{\prime \prime \prime}-y^{\prime \prime}-15 y^{\prime}-25 y=0$,
(ii) $y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}-2 y^{\prime \prime}+12 y^{\prime}+9 y=0$.

