Differential Equations I for Students of Engineering Sciences

Sheet 4 (home)

Exercise 1:

Consider the linear system of differential equations

$$
\boldsymbol{y}^{\prime}=\underbrace{\left(\begin{array}{rr}
3 & 4 \\
4 & -3
\end{array}\right)}_{=: \boldsymbol{A}} \boldsymbol{y}
$$

a) Show by induction that

$$
\boldsymbol{A}^{k}=5^{k-1}\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right)+(-5)^{k-1}\left(\begin{array}{rr}
-1 & 2 \\
2 & -4
\end{array}\right)
$$

for $k \in \mathbb{N}$.
b) Compute the matrix exponential solution $e^{x} \boldsymbol{A}$ of the system.
c) Compute the fundamental system by means of eigenvalues and eigenvectors of \boldsymbol{A} and compare the result with b).

Exercise 2:

Consider the differential equation

$$
y^{\prime \prime}+\frac{4}{x} y^{\prime}-\frac{4}{x^{2}} y=-18 .
$$

a) Determine a fundamental system by the method of reduction.

Hint: There is a polynomial solution $u(x)=a x+b$.
b) Rewrite the differential equation as a system of first order and compute a particular solution of the inhomogeneous equation by variation of constants.
c) State the general solution of the differential equation.

