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Overview:;
e Introduction
e Modelling

e Analysis
— Stationary Problem
— Transient Problem
— Stability

e Validation of the Model
— Tunnel on the A22

e [Tunnel Networks



Background:

2006 -
2005 -
2001 -
2001 -
2000 -
1999 -
1999 -
1996 -
1995 -

Viamala Tunnel: 9 dead
Frejus Tunnel: 2 dead
Baltimore: O dead

Gotthard Tunnel: 11 dead
Kaprun: 155 dead

Mont Blanc Tunnel: 39 dead
Tauern Tunnel: 12 dead
Euro Tunnel: O dead

Baku: 300+ dead



Typical questions:

e In which direction is the smoke going?

e How fast?

e \What are the temperatures in the tunnel?

e \Which is the right direction to escape?

e How can mobile ventilation systems be used?
Available software tools: (Oleinick & Carpenter ('03))

e Zone models (indoor fires)

e CFD Tools: Smartfire, Veti, Fire Dynamics Simulator, Sol-
vent, Hitecosp, ...

e One dimensional tools: NewVendis, Camatt, Sprint,...



Problem (for long tunnels):
Relations:  height/length = 10m/10km <« 1

e 3d (CFD) is (very) expensive.

e 3d needs many data (which often are not known).
e 3d needs a good " postprocessing’.

e 3d needs a sofisticated turbulence model.

e in 3d layered air/smoke flows can be described.

e 1d modells (for mean values in the cross-section) are a good
alternative.

Problem :
Chemistry of the fire:

e fire is modeled as a heat source.



2 more Problems :
Velocities: =~ 0—20 m/s
Temperatures: 10° — 2000° Celsius

Small Mach number = incompressible model?

Energy transport in an incompressible model = Boussinesq
approximation?

Bussinesque approximation is only valid for small temperature
differences

Big temperature differences = compressible model?

Compressible models have many problems in the small mach
number regime



Model tunnel: 4 km long, 100 m2 crossection, 3% slope, in the
middle a fire.

Buoyancy force induces an“overpressure of 1.92 mbar or 19200
Newton on the upper exit.

buoyancy force

air 10 Celsius



Starting point: 1d compressible Navier—Stokes equations

- e 1_ 1_ — _
uy + uuz + EPEE - 775%;5 p|t+ f,
(oD + (cipT)z + Pz = T3z + § — puf — niitizz.

Variables: #,%,p = p(%,0), 4 = u(%,0),p = p(z,5), T = T(z,1)
e Viscosity 1, heat conductivity A, specific heat ¢,
e 7 (gravitational + external force), heat source g (fire)
e ideal gas law: p = RpT

e pressure loss in the tunnel p;



Dimensional analysis:

Set a=ar-a

Quantity Unit Referencevalue Typical Referencevalue
t S r = L/u, 900 s = 15 min
x, Y, z m L 103-10* m
Tunnelheight m d 10 m
A (crosssection ) m? A, 102 m?
u m s 1 Uy 1ms?
0 kg m—3 Or 1.2 kg m—3
D kg m—1 s72 Dr 1 bar = 10°> kg m~1 s72
f m s—2 fr 10 m s=2
T K T, = p]:—}% 300 K
q W m-3 qr 10°-10° W m~3
R m?2 s—2 K1 287 m? s72 K1
Cp m?2 s72 K1 1005 m? s72 K1
n kg m—1 g1 18 x 107% kg m—1 s-1
A kg ms3 K1 25 x 1003 kg m s3 K1
Machnumber M
M2 =P g6 1076
YPr




Scaled compressible NS equations I:

pt + (pu)a = O,

1 1 1 —
ut + uug + ( )—px N—uzz + | D01 |+ [ f,

YM?2"p p
(/OT)t + (UPT)x + (v — 1)pux Nz +1|0q
—M?y(v = 1) f puf — M nuuzs

Variables: (longitudinal) space x, time ¢, density p = p(x,t), ve-
locity u = u(x,t), temperature T'=T'(x,t), pressure p = p(x,t)

e Vviscosity n, heat conductivity A, adiabatic Constant ~

e Mach number M

e ideal gas law: p = RpT



Scaled compressible NS equations II:

pt + (pu)z = O,

1 1 1 o
ut + uuy + (—2)_paz = 7N—Ugx t PPy + 1 f,
yM=<"p p
(/OT)t + (UPT):C + (’Y — 1)pu3; = ANz +1|7qq

—M?~(y — 1) [ puf — M?nuuzy

e gravitational force f-f =g¢g-(—sina) (slope profile a(z))

e heat source q = q(x,t) (fire)

. o Eulu
e pressure loss in the tunnel pjp; = 5 (turbulence)



Scaled compressible NS equations III:

MT@?x=(ﬁ
Ut + Uy + (—2)_pic — TN~ Uxx + PPl + ?f)
yM=<"p p
(/OT)t + (UPT):C + ('Y - 1)pu3; = NIz + qq

—M?~(y — 1) [ puf — M?nuuzy

Limitn—0X—0

Asymptotics from Navier-Stokes to Euler

(Gilbarg '51) (for travelling waves)

(I.G., P.Szmolyan '93) (for travelling waves with combustion)
(Wagner '89) (with combustion)



Scaled compressible NS equations 1V:

Pt —1|- (pit):c = 071
Ut + vuy + (—2)—p:c N—Uxx + PPy + 7f7
yM=<"p p

(pT)t + (upT) sz + (v — 1)puy AN ex 4+ Gugw + 7q
—M?~y(y — 1) f puf — M?nuugs

Charakteristic values:
Mach number M ~ 1073 = e=-M2« 1

Small Mach number asymptotics:
p = po + ep1 + O(c?)
momnetum balance gives
(po)z =0 = po = po(t)
Assumption: pg = const.  (leading order pressure) T = £



Initial boundary value problem (I.G., J.Struckmeier '02)

pt +upr = —pq,
1 u|u :
ur + uug + —(p1)z = —fl—fds'”a
P 2
Uy — (

Initial values:
u(z,0) =wug(x) p(x,0) = po(x)
Boundary values:
p1(0,1) p10, Pp1(1,t) =p11
p(0,t) = po (u(0,t) >0), p(1,t) =p1 (u(l,t) <0)
p density, u velocity, p; pressure (corrections)

a = a(x) slope profile, £ = £(x) pressure loss, [, scaled gravita-
tional constant, ¢ = q(z,t) scaled heat source

Contains only one paramter (£) !



Asymptotical model in the 3d case: For 7, )\, f,g = 0O(1)

pt +div(pu) = 0,

1 1 -
ut-l-’qu-l-;Vm - ﬁ;Au-l-ff,
A1 g
divu = ~A-+ -1 4
P PO

(Majda '84, Embid '87)



Analysis

e Stationary problem (I.G. '02):

upr = —pg,
1 ulu .
wugz + —(p1)z = —§L — f4Sina
o) 2
Uy — (
Boundary values:
p1(0) = pi1o, p1(1) =p11

p(0) = po (u(0) >0), p(1)=p1 (u(1)<O0)
There exist multiple (non-vacuum) solutions



No fire: air at rest

D N
D N

With fire: at least two possibilities

BN



e [ransient problem I:
Reformulation
with u(z,t) = v(t) + & q(y, dy = v(t) + Q(a, 1)
and I;(t) = fol f(x,t)p(x,t)dr we eliminate the pressure
This gives a PDE for p = p(x,t) and an ODE for v = v(t),

pt + v+ Q)px = —pgq,
1
Ivg 4 Igv + /o fp(v i va ip —1Qu+Qq+/,sina — 11+ Dr
Initialdata:
v(0) = uo(a) = [ a(u,0)dy  p(z,0) = po(a)

Boundary data:
p(0,t) = pg (u(0,t) >0), p(1,t) =p1 (u(l,t) <O)



Global existence- and unigueness result
(I.G., H.Steinrlick '06)

Solutions of the type:
v € C1[0,T] but in p we have to admit discontinuities.

These are natural due to the inflow conditions.
Idea of the proof:

Fixed-point- argument in the ODE
Use estimates on the density from the PDE in the ODE



e [ransient problem II:
Stability (I.G., H.Steinrlick '06)

Stability of the solutions of the stationary problem as soluti-
ons of the transient problem,

Linear stabiltiy anaylsis gives a stability problem of a Volterra-
Integro-Differential equation.

Numerical bifurcation analysis (for example depending on the
pressure difference at the boundaries).



Areas of stabilty

15 T T ! | |
variation of Ap, example 1
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10 -
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5 —
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bifurcation diagram
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Example 1: Model tunnel

Length 4 km
cross-section 100 m?2
slope 3%
pressure loss coefficient & 0.1
pressure loss p(L) — p(0) 12.75 mbar
altitude difference 14.4 mbar
pressure difference (altitude corrected) | —1.65 mbar
mean initial velocity —2.4ms~ 1
heat source 5/20 MW

Experiment: 28. April 2001, Brenner—highway A22
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Example 2: Elbtunnel (Hamburg)

Langth 2.65 km
Crosssection 41 m?
( —3.5%,
0 <x<0.6km
—3.5% +420.3(x — 0.6) %!}
Slope a(z) ) 0.6 < x < 0.9km
2.6 %,
\ 0.9km < x < 2.65k
Pressure loss coefficient & 0.007
Pressure diff. p(L) — p(0) 1.89 mbar
Pressure diff. (due to difference in altitude) | 2.59 mbar
Pressure diff.(altitude corrected) —0.7 mbar
Mean initial velocity Oms 1
Heatsource 15/25 MW

Experiment with Turboloscher 1999



Elbtunnel 15 MW
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Elbtunnel 35 MW

velocity u [m/s] velocity u [m/s]
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Tunnelnetworks: ( 1.G., M. Kraft '04)
ventilation exits, ventilation systems, Tunnel bifurcatios etc.

Model: Graph: tunnel-pieces are the edges, bifurcations are the
knodes

On the edges: one-dimensional Model for p,u, p.

In the knodes: mass-, momentum-, energy conservation give di-
rectly the densities for the “outflowing” tunnels . The velocities
for the “outflowing” tunnels and the pressure in the knodes are
unknowns. The nodes are easy to handle compared to an com-
pressible approach.

Physically motivated monotonicity property:
increasing the pressure in a knode increases the outflow and
decreases the inflow.

For explicit numerical methods in every time-step we solve a
linear system for the pressures in the knodes.



Outlook

e Modeling:
variable cross-sections
big slopes
radiation
sprinkling systems
higher dimensions in regions of special interest

e Analysis:

stability
small Mach number limit
initial time layer problem

e Numerics:
adaptive scheme



