The Stokes theorem.

Theorem: (Stokes theorem)

Let $\mathbf{f}:D o\mathbb{R}^3$ be a \mathcal{C}^1 -vector field on a domain $D\subset\mathbb{R}^3$.

Let $F = \mathbf{p}(K)$ be a surface in D, $F \subset D$, with parameterisation $\mathbf{x} = \mathbf{p}(\mathbf{u})$, $\mathbf{u} \in \mathbb{R}^2$. Let $K \subset \mathbb{R}^2$ be a Green area.

The boundary ∂K is parameterised by a piecewise smooth \mathcal{C}^1 —curve \mathbf{c} and the image $\tilde{\mathbf{c}}(t) := p(\mathbf{c}(t))$ parameterises the boundary ∂F of the surface F.

The orientation of the boundary curve $\tilde{\mathbf{c}}(t)$ is chosen such that $\mathbf{n}(\tilde{\mathbf{c}}(t)) \times \dot{\tilde{\mathbf{c}}}(t)$ points in the direction of the surface.

Then we have

$$\int_{F} \operatorname{curl} \mathbf{f}(\mathbf{x}) \, do = \oint_{\partial F} \mathbf{f}(\mathbf{x}) \, d\mathbf{x}$$

Example.

Given the vector field

$$\operatorname{cuff} = \begin{bmatrix} \partial_{x} \partial_{y} \partial_{x} \end{bmatrix} = \begin{pmatrix} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \end{pmatrix}$$

$$\mathbf{f}(x, y, z) = (-y, x, -z)^{T}$$

and let the closed curve $\widetilde{\mathbf{c}}:[0,2\pi]\to\mathbb{R}^3$ be parameterised by

$$\mathbf{\tilde{c}}(t) = (\cos t, \sin t, 0)^T$$
 für $0 \le t \le 2\pi$

Then:

$$\oint_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{0}^{2\pi} \langle \mathbf{f}(\mathbf{c}(t)), \dot{\mathbf{c}}(t) \rangle dt$$

$$= \int_0^{2\pi} \left\langle \begin{pmatrix} -\sin t \\ \cos t \\ 0 \end{pmatrix}, \begin{pmatrix} -\sin t \\ \cos t \\ 0 \end{pmatrix} \right\rangle$$

$$= \int_0^{2\pi} (\sin^2 t + \cos^2 t) \, dt = 2\pi$$

Continuation of the example.

We define a surface $F \subset \mathbb{R}^3$, bounded by the curve $\mathbf{c}(t)$:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \varphi \cos \psi \\ \sin \varphi \cos \psi \\ \sin \psi \end{pmatrix} =: \mathbf{p}(\varphi, \psi)$$

with $(\varphi, \psi) \in K = [0, 2\pi] \times [0, \pi/2]$, i.e. the surface F is the upper half sphere.

Stokes theorem tells us:

$$\int_{F} \operatorname{curl} \mathbf{f}(\mathbf{x}) \, do = \oint_{\mathbf{c} = \partial F} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = 2 \, \mathbf{r}$$

We have already calculated the right side, a **surface integral of a vector field**:

$$\oint_{\mathbf{c}=\partial F} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = 2\pi$$

$$N = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Completion of the example.

It remains a surface integral of a vector field:

$$\int_{F} \operatorname{rot} \mathbf{f}(\mathbf{x}) do = \int_{K} \left\langle \operatorname{rot} \mathbf{f}(\mathbf{p}(\varphi, \psi)), \frac{\partial \mathbf{p}}{\partial \varphi} \times \frac{\partial \mathbf{p}}{\partial \psi} \right\rangle d\varphi d\psi$$

Attention: the right hand side is an intergal over a domain.

We have curl $\mathbf{f}(\mathbf{x}) = (0,0,2)^T$ and

$$\frac{\partial \mathbf{p}}{\partial \varphi} \times \frac{\partial \mathbf{p}}{\partial \psi} = \begin{pmatrix} \cos \varphi \cos^2 \psi \\ \sin \varphi \cos^2 \psi \\ \sin \psi \cos \psi \end{pmatrix} \qquad \mathbf{N} = \begin{pmatrix} \mathbf{x} \\ \mathbf{j} \\ \mathbf{j} \end{pmatrix} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{y} \\ \mathbf{y$$