Chapter 3. Integration in higher dimensions

3.1 Area integrals gcaln
Given a function f : D —>®With domain of defintion D C R@.

Aim: Calculate the volume under the graph of f(x):

lV/Df(x)dx

Remember (Analysis 1l): Riemann—Integral of a function f on the

interval |a, b]:
b
l:/ f(x)dx
a

The integral | is defined as limit of Riemann upper— and lower-sums, if the
limits exist and coincide.
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Construction of area integrals.

Procedure: Same as in the one dimensional case.

But: the domain of definition D is more complex.

Starting point: consider the case of two variables n = 2 and a domain of
definition D C R? of the form

D = [31, b1] X [32, b2] C R? »
i.e. D is@mﬂact cuboid (rectangle)] 7’9/
Let f : D — R be a bounded function. ///\/
)/g "y Xaxs 4)/

Definition: We call Z = {(xo, x1,---,%n), (Yo, ¥1,---,¥m)} a partition of the
cuboid D = [ay, b1] X [az, bo] if it holds

N =xX<x1<--<xp,=Db
=Yoo <y < <Ym= b
Z(D) denotes the set of partitions of D.
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Partitions and Riemann sums.

Definition:

@ The fineness of a partition Z € Z(D) is given by

1Z|| = max{|xiy1 — x|, lyj+1 — i}
PaYaty &\70[

@ For a given partition Z the sets

[ i =[x xita] X [ijy.lﬂ

are called the subcuboid of the partition Z. The volume of the subcuboid @

Is given by
leﬂ xi) - (Yj+1 L)S

@ For arbitrary points Xjj € Wjj. € Qj; of the subcuboids we call

? Re(Z) - Zf x,J) vol( QU)

a Riemann sum of the partition Z.

IS
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Riemann upper and lower sums.

Definition:

In analogy to the integral for the univariate case we call for a partition Z

‘Q&AAC\‘ Ur(Z) = Z inf f(x) - vol(Qj)

_ — x€Qy
S b’ Or(Z) = f I(Q;
[ 02 = 3 s ) ve()

the Riemann lower sum and the Riemann upper sum of f(x), respectively.

Remark:

A Riemann sum for the partition Z lies always between the lower and the
upper sum of that partition i.e.
. v
Ur(Z) < Re(Z) < 06(2) |
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Remark.

2o =1 Co.5) % (o]
If a partition 2, is obtained from a partition Z; by adding additional intermediate

points x; and/or y;, then _
h«toww[om }u\&)eay.j L‘—v_)w ?[:9«« a/e,m

Uf(ZQ) > Uf(Z]_) and Of(Zz < Of Zl
fm@n el
For arbitrary two partitions Z; and Z, we always have:
/

Ui ¢ M{(/) < Orf.) Ur(Z1) < Or(2)
{L O{E&W/ “F;Low\{éé @é BOM/‘M s{w« a%m& @‘((g é D&go)

Question: what happens to the lower and upper sums in the[lmlt 1 Z|| — Oj

Us ::/sfp{uf(z Zez(D /\

Observation: Both values Ur and Or exist since lower and upper sum are
monoton and bounded.

uqu‘o{ ewy&/éw '“M U%#QQL
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Riemann upper and lower integrals.

Definition:

@ The Riemann lower and upper integral of a function f(x) on D is given by

/f(x)dx = sup{UA(2): ZeZ(D)} =
—

/@f(x)dx = inf{Or(2) : ZeZ(D)} = Of

P
© The function f(x) is called Riemann—integrable on D, if lower and upper
intergral conincide. The Riemann—integral of f(x) on D is then given by
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Remark.

Up to now we habe "only” considered the case of two variables:
f:D— R, D € R?

In higher dimensions, n > 2, the procdeure is the same.

Notation: for n=2 and n= 3

/f(x,y)dxdy bzw. /f(x,y,z)dxdydz
D D

//Df(x’)/)dXdy bzw. ///Df(x7)/,2)dXdydz

respectively.
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Elementary properties of the integral.

Theorem:

a) Linearity
- D /D(af(x)+Bg(x))dx:a/[)f(x)dx+5/[)g(x)dx

b) Monotonicity Uf (5} £ U@? %}[2
If f(x) < g(x) for all x € D, then: @/c ugf@ e

m fom 1
=7 OLJ%( | =2 © Cﬁf&éa&(
c) Positivity

If for all x € D the relation f(x) > 0 holds, i.e. f(x) is non—negativ,

then
/ f(x)dx >0
D
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Additional properties of the integral.

Theorem:

a) Let Dy, D, and D be cuboids, D = D; U D, and vol(D; N D,) = 0, then
f()Q is on D integrable if and only if f(x) is integrable on D, and\QL And

e /D F(x)dx — /D RS / £ (x) dx

b) The following estimate holds for the integral M,L %L_/ //%\

‘/Df(x)dx < sup|f(x)] - vol(D)

xeD
c) Riemann criterion
f(x) is integrable on D if and only if :
Ve>0 HZEZ(D) : Of(Z)—Uf(Z)<€
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Fubini's theorem.

Theorem: (Fubini's theorem) Let f : D — R be integrable, D = [a;, b1] X [a2, b?]
be a cuboid. If the integrals

b>
F(x) = / f(x,y)dy

a

b1 bg 1
/ f(x)dx = / f(x,y)dydx — Fea d o«
D al al
EGEE 2,
by pb;
/f(x)dx — f(x,y)dxdy — f\{%o‘y
D ar al QZ
4G,
holds true.
Importance:

Fubini’'s theorem allows to reduce higher-dimensional integrals to one-dimensional
integrals.
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Example.

Given the cuboid/D = [0, 1] x [0, 2]/ and the function
f(Xay) =2 - Xy

We will show that continuous functions are integrable on cuboids. Thus we can
apply Fubini's theorem:

2 1 2 X2y x=1
/f(x)dx = //f(x,y)dxdy:/ [2x——] dy
D oJo _— 0 2 Jx=0
%77

_ /j(Q—%)dy: lzyy:]yz:s

y=0

Remark: Fubini's theorem requires the integrability of f(x). The existence of the
two integrals F(x) and G(y) does not guarantee the integrability of f(x)!
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The characteristic function.

Definition: Let D C R” compact and f : D — R bounded. We set

7o N
oy [ 00 ifxeD L/
(x)'_{ 0 : ifxeR"\D /
’\>M

Let @ be the smallest cuboid with D C Q. The function f(x) is called
integrable on D, if f*(x) is integrable on Q. We set £~ (T
/ f(x)dx := / f*(x)dx €
D @ A

—
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Measurability and null sets.

Definition: The compact set D C R" is called measurable, if the integral

Wpsed od bodg
vol(D) ::/ 1dx:/ X (x)dx
D Q

exists. We call vol(D) the volume of D in R".

The compact set D is called null set, if D is measurable and if vol(D) = 0 holds.

Remark:

@ If D a cuboid, then @ = D and thus

dx = f*(x dx— f(x)dx v =Ua)
E / j f féo%/(w

I.e. the introduced concepts of integrability coincide.

@ Cuboids are measurable sets.

@ vol(D) is the volume of the cuboid on R".
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Three more properties of integration.

We have the following theorems for integrals in higher dimensions.

Theorem: Let D C R"” be compact. D is measurable if and only if the

boundary 9D of D is a null set. g O

Theorem: Let D C R" be compact and measurable. Let f : D — R be
continuous. Then f(x) is integrable on D.

¢ € D with
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"Normal’ areas.

Definition: ot no el @

@ A subset D C R? is called "normal” area, there exist continuous functions
Lé«/

g, h and g, h with
&
D={(x,y)|a<x<bund g(x) <y < h(x >
B/Hd’CS\ - ~ e
D:{(x,y)|5§)/§bundg()’)ﬁxﬁh()’)}§ >

respectively. -

@ A subset D C R3 is called "normal” area , if there is a representation
D = {(x,xx)|a<x <b, g(x)<x < h(x)

and ¢(x;, xj) < xx < P(x;,x;) }

with a permutation (i, j, k) of (1,2, 3) and continuos functions g, h, ¢ and .
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