Chapter 3. Integration in higher dimensions

3.1 Area integrals

Given a function $f: D \to \mathbb{R}$ with domain of defintion $D \subset \mathbb{R}^n$.

Aim: Calculate the volume under the graph of $f(\mathbf{x})$:

$$V = \int_D f(\mathbf{x}) d\mathbf{x}$$

Remember (Analysis II): Riemann–Integral of a function f on the interval [a, b]:

$$I = \int_{a}^{b} f(x) dx$$

The integral I is defined as limit of Riemann upper— and lower-sums, if the limits exist and coincide.

7=K15 $V_{f} = \sum_{i=1}^{4} f(x_{i-1}) \triangle \times$ $O_{f} = \sum_{i=1}^{4} f(x_{i}) \triangle \times$ f monoton - of integrable for a primitive frothir F 1D/mbislow ? F = F(x), F(x) = f(x) $\int_{-\infty}^{\infty} f(x) dx = F(b) - F(e)$

Construction of area integrals.

Procedure: Same as in the one dimensional case.

But: the domain of definition D is more complex.

Starting point: consider the case of two variables $\underline{n} = 2$ and a domain of definition $D \subset \mathbb{R}^2$ of the form

$$D = [a_1, b_1] \times [a_2, b_2] \subset \mathbb{R}^2$$

i.e. D is compact cuboid (rectangle).

Let $f: D \to \mathbb{R}$ be a bounded function.

Definition: We call $Z = \{(x_0, x_1, \dots, x_n), (y_0, y_1, \dots, y_m)\}$ a partition of the cuboid $D = [a_1, b_1] \times [a_2, b_2]$ if it holds

$$a_1 = x_0 < x_1 < \cdots < x_n = b_1$$

$$a_2 = y_0 < y_1 < \cdots < y_m = b_2$$

 $\mathbf{Z}(D)$ denotes the set of partitions of D.

YO X1 X2X3 by Xk

Partitions and Riemann sums.

Definition:

• The fineness of a partition $Z \in \mathbf{Z}(D)$ is given by

$$||Z|| := \max_{i,j} \{|x_{i+1} - x_i|, |y_{j+1} - y_j|\}$$

ullet For a given partition Z the sets

$$Q_{ij} := [x_i, x_{i+1}] \times [y_j, y_{j+1}]$$

are called the <u>subcuboid</u> of the partition Z. The <u>volume</u> of the subcuboid Q_{ij} is given by

$$\mathsf{vol}(Q_{ij}) := (x_{i+1} - x_i) \cdot (y_{j+1} - y_j)$$

ullet For arbitrary points $x_{ij} \in Q_{ij}$ of the subcuboids we call

$$\overbrace{R_f(Z)} := \sum_{i,j} \underbrace{f(\mathbf{x}_{ij})} \cdot \operatorname{vol}(Q_{ij})$$

a Riemann sum of the partition Z.

Riemann upper and lower sums.

Definition:

In analogy to the integral for the univariate case we call for a partition Z

Love
$$G$$
: $U_f(Z):=\sum_{i,j}\inf_{\mathbf{x}\in Q_{ij}}f(\mathbf{x})\cdot \operatorname{vol}(Q_{ij})$

Upper G : $U_f(Z):=\sum_{i,j}\sup_{\mathbf{x}\in Q_{ij}}f(\mathbf{x})\cdot \operatorname{vol}(Q_{ij})$

the Riemann lower sum and the Riemann upper sum of f(x), respectively.

Remark:

A Riemann sum for the partition Z lies always between the lower and the upper sum of that partition i.e.

$$U_f(Z) \leq R_f(Z) \leq O_f(Z)$$

Remark.

20 = {(x0, xn) x (y0, 7)/

If a partition Z_2 is obtained from a partition Z_1 by adding additional intermediate

points x_i and/or y_i , then

honston increased honston decreased
$$U_f(Z_2) \geq U_f(Z_1)$$
 and $O_f(Z_2) \leq O_f(Z_1)$ final

For arbitrary two partitions Z_1 and Z_2 we always have:

$$U_f(Z_1) \subseteq U_f(Z_1) \subseteq U_f(Z_2)$$
 $U_f(Z_2) \subseteq U_f(Z_2) \subseteq U_f(Z_2)$

Question: what happens to the lower and upper sums in the limit $||Z|| \to 0$:

$$U_f:=\sup\{U_f(Z):Z\in \mathbf{Z}(D)\}$$
 $O_f:=\inf\{O_f(Z):Z\in \mathbf{Z}(D)\}$

Observation: Both values U_f and O_f exist since lower and upper sum are monoton and bounded.

Riemann upper and lower integrals.

Definition:

1 The Riemann lower and upper integral of a function $f(\mathbf{x})$ on D is given by

$$\int_{D} f(\mathbf{x}) d\mathbf{x} := \sup\{U_f(Z) : Z \in \mathbf{Z}(D)\} = \mathcal{U}_f(Z)$$

$$\int_{\overline{D}} f(\mathbf{x}) d\mathbf{x} := \inf\{O_f(Z) : Z \in \mathbf{Z}(D)\} = O_f$$

The function $f(\mathbf{x})$ is called Riemann–integrable on D, if lower and upper integral conincide. The Riemann–integral of $f(\mathbf{x})$ on D is then given by

$$\int_{D} f(\mathbf{x}) d\mathbf{x} := \int_{\underline{D}} f(\mathbf{x}) d\mathbf{x} = \int_{\overline{D}} f(\mathbf{x}) d\mathbf{x}$$

 $\frac{1}{\sqrt{1+1}}$ $\frac{1}{\sqrt{1+1}}$ $\frac{1}{\sqrt{1+1}}$ $\frac{1}{\sqrt{1+1}}$ $\frac{1}{\sqrt{1+1}}$ $\frac{1}{\sqrt{1+1}}$

 $f(X) = \begin{cases} 0 & X \text{ notional } X \in \mathbb{Q} \\ \wedge & X \text{ in advanel } X \in \mathbb{R}/\mathbb{Q} \end{cases}$

O(2/= 1 O(= 1 for any partition; ?

frot Rieman Harable

Remark.

Up to now we habe "only" considered the case of **two** variables:

$$f:D\to\mathbb{R},\qquad D\in\mathbb{R}^2$$

In higher dimensions, n > 2, the procdeure is the same.

Notation: for n = 2 and n = 3

$$\int_D f(x,y)dxdy \quad \text{bzw.} \quad \int_D f(x,y,z)dxdydz$$

or

$$\iint_D f(x,y)dxdy \quad \text{bzw.} \quad \iiint_D f(x,y,z)dxdydz$$

respectively.

Elementary properties of the integral.

Theorem:

a) Linearity

$$\int_{D} (\alpha f(\mathbf{x}) + \beta g(\mathbf{x})) d\mathbf{x} = \alpha \int_{D} f(\mathbf{x}) d\mathbf{x} + \beta \int_{D} g(\mathbf{x}) d\mathbf{x}$$

b) Monotonicity

If $f(\mathbf{x}) \leq g(\mathbf{x})$ for all $\mathbf{x} \in D$, then:

$$\int_{D} f(\mathbf{x}) d\mathbf{x} \leq \int_{D} g(\mathbf{x}) d\mathbf{x}$$

$$\int_{D} f(\mathbf{x}) d\mathbf{x} \leq \int_{D} g(\mathbf{x}) d\mathbf{x}$$

$$0 \leq f(\mathbf{x}) = 0 \leq f(\mathbf{x}) \leq 0 \leq f(\mathbf{x}$$

$$0 \le \beta \times 1 \Rightarrow 0 \le \beta \times 1 \times 1$$

c) Positivity

If for all $\mathbf{x} \in D$ the relation $f(\mathbf{x}) \geq 0$ holds, i.e. $f(\mathbf{x})$ is non-negativ, then

$$\int_D f(\mathbf{x}) d\mathbf{x} \ge 0$$

 $f(k,y) = x^2 + y$ $(xy) \in [0,9] \times [0,b]$ i=Q.... $ezaiotsdaml <math>X_i = \frac{Q}{h}$ j=0,..., m Dy= b 15 Of beau c-Y; = = = j Of = Z Xi+yi) in in = fmonton increasing . It all the horardy, we take allows the night volume $=\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^$ n(n+n)(2n+n) n = n = n n = n- 236 1 (1+1/2+1/2+1/2 + 262 1 (1+1/2) 11-200 $U_{f} = \sum_{i=1}^{n} \sum_{j=1}^{n} (x_{i-1} + y_{j-1}) = \sum_{i=1}^{n} (x_{i-1} + y_{i-1}) = \sum_{i=1}^{n} (x_{i-1}$ Uf=Of futurble / 55 (2-y bydx = 2 b + eb? $\longrightarrow \frac{2^3b}{3^3b} + 0 \stackrel{b}{\geq}^2$ 212 = m(n+1)(2n+1) $\sum_{i=1}^{n} i = \frac{h(n+1)}{2}$

Additional properties of the integral.

Theorem:

a) Let D_1 , D_2 and D be cuboids, $D=D_1\cup D_2$ and $\operatorname{vol}(D_1\cap D_2)=0$, then $f(\mathbf{x})$ is on D integrable if and only if $f(\mathbf{x})$ is integrable on D_1 and D_2 . And we have

$$\int_D f(\mathbf{x}) d\mathbf{x} = \int_{D_1} f(\mathbf{x}) d\mathbf{x} + \int_{D_2} f(\mathbf{x}) d\mathbf{x}$$

b) The following estimate holds for the integral $\left| \int_{D} f(\mathbf{x}) d\mathbf{x} \right| \leq \sup_{\mathbf{x} \in D} |f(\mathbf{x})| \cdot \text{vol}(D)$

 $f(\mathbf{x})$ is integrable on D if and only if :

$$\forall \varepsilon > 0 \quad \exists Z \in \mathbf{Z}(D) \quad : \quad O_f(Z) - U_f(Z) < \varepsilon$$

Fubini's theorem.

Theorem: (Fubini's theorem) Let $f:D\to\mathbb{R}$ be integrable, $D=[a_1,b_1]\times[a_2,b_2]$ be a cuboid. If the integrals

$$F(x) = \int_{a_2}^{b_2} f(x, y) dy$$
 und $G(y) = \int_{a_1}^{b_1} f(x, y) dx$

exist for all $x \in [a_1, b_1]$ and $y \in [a_2, b_2]$, respectively, then

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) dy dx = \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) dx dy = \int_{a_{2}}^{b_{1}} \int_{a_{1}}^{b_{2}} f(x, y) dx dy = \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y) dx dy = \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{1}} f(x, y) dx dy = \int_{a_{2}}^{b_{2}} \int_{a_{1}}^{b_{2}} f(x, y) dx dy = \int_{a_{2}}^{b_{2}} \int_{a_{2}}^{b_{2}} f(x, y) dx dy = \int_{a_{2}}^{b_{2}} f(x, y) dx dx dx = \int_{a_{2}}^{b_$$

holds true.

Importance:

Fubini's theorem allows to reduce higher-dimensional integrals to one-dimensional integrals.

$$\int_{0}^{b} \int_{0}^{a} \left(x + y \right) dx dy = \int_{0}^{b} \left(x + y \right) dx dy = \int_{0}^{b} \left(x + y \right) dx dy = \int_{0}^{b} \left(x + y \right) dy = \int_{0}^{a} \left(x + y \right) dy =$$

Example.

Given the cuboid
$$D = [0,1] \times [0,2]$$
 and the function
$$f(x,y) = 2 - xy$$

We will show that continuous functions are integrable on cuboids. Thus we can apply Fubini's theorem:

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{0}^{2} \int_{0}^{1} f(x, y) dx dy = \int_{0}^{2} \left[2x - \frac{x^{2}y}{2} \right]_{x=0}^{x=1} dy$$

$$= \int_{0}^{2} \left(2 - \frac{y}{2} \right) dy = \left[2y - \frac{y^{2}}{4} \right]_{y=0}^{y=2} = 3$$

Remark: Fubini's theorem requires the integrability of $f(\mathbf{x})$. The existence of the two integrals F(x) and G(y) does **not** guarantee the integrability of $f(\mathbf{x})$!

The characteristic function.

Definition: Let $D \subset \mathbb{R}^n$ compact and $f: D \to \mathbb{R}$ bounded. We set

$$f^*(\mathbf{x}) := \begin{cases} f(\mathbf{x}) & : & \text{if } \mathbf{x} \in D \\ 0 & : & \text{if } \mathbf{x} \in \mathbb{R}^n \setminus D \end{cases}$$

The characteristic function of D is called $\mathcal{X}_D(\mathbf{x})$.

$$\int_D f(\mathbf{x}) d\mathbf{x} := \int_Q f^*(\mathbf{x}) d\mathbf{x}$$

Measurability and null sets.

Definition: The compact set $D \subset \mathbb{R}^n$ is called measurable, if the integral

closed and bowled

$$\mathsf{vol}(D) := \int_D 1 d\mathbf{x} = \int_Q \mathcal{X}_D(\mathbf{x}) d\mathbf{x}$$

exists. We call vol(D) the volume of D in \mathbb{R}^n .

The compact set D is called null set, if D is measurable and if vol(D) = 0 holds.

Remark:

• If D a cuboid, then Q = D and thus

$$\int_{D} f(\mathbf{x}) d\mathbf{x} = \int_{Q} f^{*}(\mathbf{x}) d\mathbf{x} = \int_{Q} f(\mathbf{x}) d\mathbf{x}$$

i.e. the introduced concepts of integrability coincide.

- Cuboids are measurable sets.
- vol(D) is the volume of the cuboid on \mathbb{R}^n .

$$D = [0, a] \times [0, o]$$

$$\int (a) dx = 0$$

Three more properties of integration.

We have the following theorems for integrals in higher dimensions.

Theorem: Let $D \subset \mathbb{R}^n$ be compact. D is measurable if and only if the boundary ∂D of D is a null set.

Theorem: Let $D \subset \mathbb{R}^n$ be compact and measurable. Let $f: D \to \mathbb{R}$ be continuous. Then $f(\mathbf{x})$ is integrable on D.

Theorem: (Mean value theorem) Let $D \subset \mathbb{R}^n$ be compact, connected and measurable, and let $f: D \to \mathbb{R}$ be continuous, then there exist a point $\xi \in D$ with

$$\int_D f(\mathbf{x}) d\mathbf{x} = f(\xi) \cdot \text{vol}(D)$$

"Normal" areas.

Definition:

• A subset $D \subset \mathbb{R}^2$ is called "normal" area, there exist continuous functions g, h and \tilde{g}, \tilde{h} with

$$D = \{(x, y) \mid a \le x \le b \text{ und } g(x) \le y \le h(x)\}$$

and 5

$$D = \{(x,y) \mid \tilde{a} \leq y \leq \tilde{b} \text{ und } \tilde{g}(y) \leq x \leq \tilde{h}(y)\}$$

respectively.

ullet A subset $D\subset \mathbb{R}^3$ is called "normal" area , if there is a representation

$$D = \{ (x_1, x_2, x_3) \mid a \leq x_i \leq b, \ g(x_i) \leq x_j \leq h(x_i) \}$$

and
$$\varphi(x_i, x_j) \leq x_k \leq \psi(x_i, x_j)$$
 }

with a permutation (i, j, k) of (1, 2, 3) and continuos functions g, h, φ and ψ .