The Theorem of Steiner.

Theorem: (Theorem of Steiner) For the moment of inertia of a homogeneous solid K with total mass m with respect to a given axis of rotation A we have

$$\Theta_A = md^2 + \Theta_S$$

S is the <u>axis</u> through to center of mass of the solid K parallel to the axis A and d the distance of the center of mass \mathbf{x}_s from the axis A.

Idea of the proof: Set $\mathbf{x} := \Phi(\mathbf{u}) = \mathbf{x}_s + \mathbf{u}$. Then with the unit vector \mathbf{a} in direction of the axis A

$$\Theta_{A} = \rho \int_{K} (\langle \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{x}, \mathbf{a} \rangle^{2}) d\mathbf{x} = (\mathbf{x} - \mathbf{x})^{2}$$

$$= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u} \rangle - \langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$$

$$= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u} \rangle - \langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$$

 $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u} \rangle - \langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u} \rangle - \langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf{a} \rangle^{2}) d\mathbf{x}$ $= \rho \int_{D} (\langle \mathbf{x}_{s} + \mathbf{u}, \mathbf{x}_{s} + \mathbf{u}, \mathbf$

Chapter 3. Integration over general areas

3.2 Line integrals

We already had a defintion of a line integral of a scalar field for a piecewise C^1 -curve $\mathbf{c}:[a,b]\to D,\ D\subset\mathbb{R}^n$, and a continuous scalar function $f:D\to\mathbb{R}$

$$\int_{\mathbf{c}} f(\mathbf{x}) ds := \int_{a}^{b} f(\mathbf{c}(t)) ||\dot{\mathbf{c}}(t)|| dt$$

where $\|\cdot\|$ denotes the Euklidian norm.

Generalisation: Line integrals of vector valued functions, i.e.

$$\int_{\mathbf{c}} \mathbf{f}(\mathbf{x}) d\mathbf{x} := ?$$

Application: A point mass is moving along c(t) in a force field f(x).

Question: How much physical work has to be done along the curve?

<(+)

Work = force x path

Line integral on vector fields.

Definition: For a continuous vector field $\mathbf{f}:D\to\mathbb{R}^n$, $D\subset\mathbb{R}^n$ open, and a piecewise \mathcal{C}^1 —curve $\mathbf{c}:[a,b]\to D$ we define the line integral on vector fields by

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} := \int_{a}^{b} \langle \mathbf{f}(\mathbf{c}(t)), \dot{\mathbf{c}}(t) \rangle dt$$

Derivation: Approximate the curve by piecewise linear line segments with corners $\mathbf{c}(t_i)$, where

$$Z = \{a = t_0 < t_1 < \cdots < t_m = b\}$$

is a partition of the interval [a, b].

Then the workload along the curve $\mathbf{c}(t)$ in the force field $\mathbf{f}(\mathbf{x})$ is approximately given by :

$$Approx \sum_{i=0}^{2m-1} \langle \mathbf{f}(\mathbf{c}(t_i)), \mathbf{c}(t_{i+1}) - \mathbf{c}(t_i)
angle$$

Continuation of the derivation.

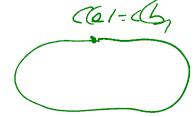
$$A \approx \sum_{j=1}^{n} \sum_{i=0}^{m-1} f_{j}(\mathbf{c}(t_{i})) (c_{j}(t_{i+1}) - c_{j}(t_{i})) \qquad (f_{i+1} - f_{i})$$

$$= \sum_{j=1}^{n} \sum_{i=0}^{m-1} f_{j}(\mathbf{c}(t_{i})) \dot{c}_{j}(\tau_{ij}) (t_{i+1} - t_{i})$$

For a sequence of partitions Z with $||Z|| \to 0$ the left side converges to the above defined line integral on vector fields.

Remarks: For a closed curve $\mathbf{c}(t)$, i.e. $\mathbf{c}(a) = \mathbf{c}(b)$, we use the notation

$$\oint_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x}$$



Properties of the line integral on vector fields.

Linearity:

$$\int_{c} (\alpha \mathbf{f}(\mathbf{x}) + \beta \mathbf{g}(\mathbf{x})) d\mathbf{x} = \alpha \int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} + \beta \int_{c} \mathbf{g}(\mathbf{x}) d\mathbf{x}$$

It is:

$$\int_{-c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = -\int_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x},$$

where $(-\mathbf{c})(t) := c(b+a-t)$, $a \le t \le b$, denotes the inverted path.

It is

$$\int_{c_1+c_2} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{c_1} \mathbf{f}(\mathbf{x}) d\mathbf{x} + \int_{c_2} \mathbf{f}(\mathbf{x}) d\mathbf{x}$$

where $\mathbf{c}_1 + \mathbf{c}_2$ denotes the path composed by \mathbf{c}_1 and \mathbf{c}_2 such that the end point of \mathbf{c}_1 coincides with the starting point of \mathbf{c}_2 .

f(x,7/= x2+2 (7) $\left(\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) \right) \right) = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) \right) = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) \right) = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) \right) = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} \right) = \frac{1}{$ $f(xy) = \begin{pmatrix} -y \\ x \end{pmatrix}$ $f(xy) = \begin{pmatrix} -x \sin t \\ x \sin t \end{pmatrix}, x \begin{pmatrix} -s^{n}t \\ ast \end{pmatrix} \Rightarrow x = x^{2} + 2x$

Further properties of the line integral on vector fields.

- The line integral on vector fields is invariant under paramterisation.
- It is

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{a}^{b} \langle \mathbf{f}(\mathbf{c}(t)), \mathbf{T}(t) \rangle \| \dot{\mathbf{c}}(t) \| dt = \int_{c} \langle \mathbf{f}, \mathbf{T} \rangle ds$$

with the tangent unit vector $\mathbf{T}(t) := \frac{\dot{\mathbf{c}}(t)}{\|\dot{\mathbf{c}}(t)\|}$.

Formal notation:

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{c} \sum_{i=1}^{n} f_{i}(\mathbf{x}) dx_{i} = \sum_{i=1}^{n} \int_{c} f_{i}(\mathbf{x}) dx_{i}$$

with

$$\int_{C} f_{i}(\mathbf{x}) dx_{i} := \int_{a}^{b} f_{i}(\mathbf{c}(t)) \dot{c}_{i}(t) dt$$

Example.

Let $\mathbf{x} \in \mathbb{R}^3$ and

$$f(x) := (-y, x, z^2)^T$$

$$\mathbf{c}(t) := (\cos t, \sin t, at)^T \quad \text{with } 0 \le t \le 2\pi$$

 $= 2\pi + \frac{a^3}{2}(2\pi)^3$

with
$$0 \le t \le 2\pi$$

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{c} (-ydx + xdy + z^{2}dz) = \int_{c} (-\sin t)(-\sin t) + \cos t \cos t + a^{2}t^{2}a) dt$$

$$= \int_{0}^{2\pi} (-\sin t)(-\sin t) + \cos t \cos t + a^{2}t^{2}a) dt$$

$$= \int_{0}^{2\pi} (1 + a^{3}t^{2}) dt$$

The circulation of a field along a curve.

Definition: Let $\mathbf{u}(\mathbf{x})$ be the velocity field of a moving fluid. We call the line integral $\oint_c \mathbf{u}(\mathbf{x}) d\mathbf{x}$ along a closed curve the circulation of the field $\mathbf{u}(\mathbf{x})$.

Example: For the field $\mathbf{u}(x,y) = (y,0)^T \in \mathbb{R}^2$ we obtain along the curve

 $\mathbf{c}(t) = (r \cos t, 1 + r \sin t)^T$, $0 \le t \le 2\pi$ the circulation

$$\int_{0}^{2\pi} \left(\frac{ynt}{n} \right) dt = \int_{0}^{2\pi} (1 + r\sin t)(-r\sin t) dt$$

$$= \int_{0}^{2\pi} (-r\sin t - r^{2}\sin^{2}t) dt$$

$$= \left[r\cos t - \frac{r^{2}}{2}(t - \sin t \cos t) \right]_{0}^{2\pi} = -\pi r^{2}$$

Curl free vector fields.

Definition: A continuous vector field $\mathbf{f}(\mathbf{x})$, $\mathbf{x} \in D \subset \mathbb{R}^n$, is called <u>curl free</u>, if the line integral along all closed and piecewise \mathcal{C}^1 —curves $\mathbf{c}(t)$ in D vanishes, i.e.

 $\oint_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = 0 \qquad \text{for all closed } \mathbf{c}.$

Remark: A vector field is curl free if an only if the value of the line integral $\int_c \mathbf{f}(\mathbf{x}) d\mathbf{x}$ depends only from the starting and the end point of the path, but not on the specific path \mathbf{c} . In this case we call the line integral path independent.

path independent.

Spark - Spark = Spark - (-1) Spark = Spark = Spark = Condx = Condx

Question: Which criteria on the vector field f(x) guarantee the path independency of the line integral?

Connected sets.

Definition: A subset $D \subset \mathbb{R}^n$ is called connected, if any two points in D can be connected by a piecewise C^1 -curve:

$$\forall \mathbf{x}^0, \mathbf{y}^0 \in D : \exists \mathbf{c} : [a, b] \to D : \mathbf{c}(a) = \mathbf{x}^0 \land \mathbf{c}(b) = \mathbf{y}^0$$

An open and connected set $D \subset \mathbb{R}^n$ is called domain in \mathbb{R}^n .

Remark: An **open** set $D \subset \mathbb{R}^n$ is **not** connected if and only if there exist **disjoint** and open sets $U_1, U_2 \subset \mathbb{R}^n$ with

$$U_1 \cap D \neq \emptyset$$
, $U_2 \cap D \neq \emptyset$, $D \subset U_1 \cup U_2$

Not connected sets are - in contrary to connected sets - a separable in at least two disjoint open sets.

simply connected = connected + every closed were con be Shrifted to a point In D Connectes

Gradient fields, antiderivatives, potentials.

Definition: Let $\mathbf{f}: D \to \mathbb{R}^n$ be a vector field on a domain $D \subset \mathbb{R}^n$. The vector field is called gradient field, if there is a scalar C^1 -function $\varphi: D \to \mathbb{R}$ with

$$\mathbf{f}(\mathbf{x}) =
abla arphi(\mathbf{x})$$

The function $\varphi(\mathbf{x})$ is called antiderivative or potential of $\mathbf{f}(\mathbf{x})$, and the vector field $\mathbf{f}(\mathbf{x})$ is called conservativ.

Remark: Suppose a mass point is moving in a conservative force field K(x), i.e.

K has a potential $\varphi(\mathbf{x})$ such that $\mathbf{K}(\mathbf{x}) = \nabla \varphi(\mathbf{x})$. The the function $U(\mathbf{x}) = -\varphi(\mathbf{x})$

gives the potential energy:

Newton
$$K(\mathbf{x}) = m\ddot{\mathbf{x}} = -\nabla U(\mathbf{x})$$

$$K(\mathbf{x}) = m\ddot{\mathbf{x}} = -\nabla U(\mathbf{x})$$

Multiplying this relation with $\dot{\mathbf{x}}$ we obtain

$$m\langle \ddot{\mathbf{x}}, \dot{\mathbf{x}} \rangle + \langle \nabla U(\mathbf{x}), \dot{\mathbf{x}} \rangle = \frac{d}{dt} \left(\frac{1}{2} m \|\dot{\mathbf{x}}\|^2 + U(\mathbf{x}) \right) = 0$$

$$\frac{1}{2} \frac{d}{dt} \|\dot{\mathbf{x}}\|^2 = \frac{1}{2} \frac{d}{dt} \langle \dot{\mathbf{x}}, \dot{\mathbf{x}} \rangle = 0$$

$$\frac{1}{2} \frac{d}{dt} \|\dot{\mathbf{x}}\|^2 = \frac{1}{2} \frac{d}{dt} \langle \dot{\mathbf{x}}, \dot{\mathbf{x}} \rangle = \frac{1}{2} \frac{d}{dt} \langle \dot{\mathbf{x}}, \dot{\mathbf{x}} \rangle = 0$$

$$\frac{1}{2} \frac{d}{dt} \|\dot{\mathbf{x}}\|^2 = \frac{1}{2} \frac{d}{dt} \langle \dot{\mathbf{x}}, \dot{\mathbf{x}} \rangle = 0$$

Fundamental theorem on line integrals.

Theorem: (Fundamental theorem on line integrals)

Let $D \subset \mathbb{R}^n$ be a domain and $\mathbf{f}(\mathbf{x})$ a continuous vector field on D.

If $f(\mathbf{x})$ has a potential $\varphi(\mathbf{x})$, then for all piecewise \mathcal{C}^1 -curves $\mathbf{c}:[a,b]\to D$ we have:

$$\int_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \varphi(\mathbf{c}(b)) - \varphi(\mathbf{c}(a))$$

In particular the line integral is path independent and f(x) is curl free.

In the opposite direction we have: If f(x) is curl free, then f(x) has a potential $\varphi(x)$.

Let $\mathbf{x}^0 \in D$ be a fixed point and $\mathbf{c}_{\mathbf{x}}$ (for $\mathbf{x} \in D$) denotes an arbitrary piecewise \mathcal{C}^1 -curve in D connecting the points \mathbf{x}^0 and \mathbf{x} , then $\varphi(\mathbf{x})$ is given by:

$$\varphi(\mathbf{x}) = \int_{c_{\mathsf{x}}} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} + \mathsf{const.}$$

Example I.

The central force field

$$\mathbf{K}(\mathbf{x}) := \frac{\mathbf{x}}{\|\mathbf{x}\|^3} - \frac{\mathbf{x}}{\|\mathbf{x}\|}$$

has the potential

$$U(\mathbf{x}) = -\frac{1}{\|\mathbf{x}\|} = -(x_1^2 + x_2^2 + x_3^2)^{-1/2}$$

since

$$\nabla U(\mathbf{x}) = (x_1^2 + x_2^2 + x_3^2)^{-3/2} (x, y, z)^T = \frac{\mathbf{x}}{\|\mathbf{x}\|^3}$$

The workload along a piecewise \mathcal{C}^1 -curve $\mathbf{c}:[a,b] o \mathbb{R}^3 \setminus \{\mathbf{0}\}$ is given by

$$A = \int_{c} \mathbf{K}(\mathbf{x}) d\mathbf{x} = \left(\frac{1}{\|\mathbf{c}(a)\|} - \frac{1}{\|\mathbf{c}(b)\|}\right)$$

$$U(\mathbf{c}(a)) - U(\mathbf{c}(a))$$

Example II.

The vector field

$$\mathbf{f}(\mathbf{x}) := \begin{pmatrix} 2xy + z^3 \\ x^2 + 3z \\ 3xz^2 + 3y \end{pmatrix}$$

has the potential

$$\varphi(\mathbf{x}) = x^2y + xz^3 + 3yz \qquad \forall \varphi = \langle \varphi(\mathbf{x}) \rangle = \langle \varphi(\mathbf{$$

For an arbitrary \mathcal{C}^1 -curve $\mathbf{c}(t)$ from P=(1,1,2) to Q=(3,5,-2) we have

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \varphi(Q) - \varphi(P) = -9 - 15 = -24$$

If we interpret f(x) as electrical field, then the line integral on vector fields represents the electrical voltage between the two points P and Q.

Example III.

Consider the vector field

Her the vector field
$$\mathbf{f}(x,y) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \end{pmatrix} \quad \text{mit } (x,y)^T \in D = \mathbb{R}^2 \setminus \{\mathbf{0}\}$$

$$\text{where we have the definition of the property of the$$

For the unit sphere $\mathbf{c}(t) := (\cos t, \sin t)^T$, $0 \le t \le 2\pi$, we obtain

$$\int_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x} = \int_{0}^{2\pi} \langle \mathbf{f}(\mathbf{c}(t), \dot{\mathbf{c}}(t)) dt
= \int_{0}^{2\pi} \left\langle \left(-\sin t \atop \cos t \right), \left(-\sin t \atop \cos t \right) \right\rangle dt
= \int_{0}^{2\pi} 1 dt = 2\pi$$

 $\mathbf{f}(x,y)$ is therefore not curl free and has no potential on D.

Requirements for potentials.

Remark: If f(x), $x \in D \subset \mathbb{R}^3$ is a C^1 -vector field with potential $\varphi(x)$, then

$$\operatorname{curl} \mathbf{f}(\mathbf{x}) = \operatorname{curl} (\nabla \varphi(\mathbf{x})) = 0 \qquad \text{für alle } \mathbf{x} \in D$$

Thus curl $\mathbf{f}(\mathbf{x}) = 0$ is a necessary condition for the existence of a potential.

If we define for a vector field $\mathbf{f}:D\to\mathbb{R}^2$, $D\subset\mathbb{R}^2$, the **scalar** curl

curl
$$\mathbf{f}(x,y) := \frac{\partial f_2}{\partial x}(x,y) - \frac{\partial f_1}{\partial y}(x,y)$$

then curl $\mathbf{f}(x, y) = 0$ is a necessary condition even in 2 dimensions.

The condition

$$\operatorname{curl} \mathbf{f}(\mathbf{x}) = 0$$

is a sufficient condition, if the domain D is simply connected, i.e. if D has no "holes".

Example.

We consider the vector field

$$\mathbf{f}(x,y) = \frac{1}{x^2 + y^2} \begin{pmatrix} -y \\ x \end{pmatrix} \quad \text{with } (x,y)^T \in D = \mathbb{R}^2 \setminus \{\mathbf{0}\}$$

Calculating the curl gives

$$\operatorname{curl}\left[\frac{1}{r^2}\begin{pmatrix} -y \\ x \end{pmatrix}\right] = \frac{\partial}{\partial x}\left(\frac{x}{x^2+y^2}\right) + \frac{\partial}{\partial x}\left(\frac{y}{x^2+y^2}\right)$$

$$= \frac{1}{x^2+y^2} - \frac{2x^2}{(x^2+y^2)^2} + \frac{1}{x^2+y^2} - \frac{2y^2}{(x^2+y^2)^2}$$

$$= 0$$

The curl of $\mathbf{f}(x, y)$ vanishes.

But $\mathbf{f}(x,y)$ has on the set $D = \mathbb{R}^2 \setminus \{\mathbf{0}\}$ no potential.

The domain is **not** simply connected.

The integral theorem of Green for vector fields in \mathbb{R}^2 .

Theorem: (Integral theorem of Green)

Let $\mathbf{f}(\mathbf{x})$ be a \mathcal{C}^1 -vector field on a domain $D \subset \mathbb{R}^2$. Let $K \subset D$ be compact and projectable with respect to both coordinates, such that K is bounded by a closed and piecewise \mathcal{C}^1 -curve $\mathbf{c}(t)$.

The parameterisation of $\mathbf{c}(t)$ is chosen such that K is always on the left when going along the curve with increasing parameter (positive circulation). Then:

$$\oint_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \int_{K} \operatorname{curl} \, \mathbf{f}(\mathbf{x}) \, d\mathbf{x}$$

Remark:

The integral theorem is also valid for domains which can be splittet in *finite* many domains which all are projectable with respect to both coordinate directions, so called **Green domains**.

Alternative formulation of the integral theorem of Green I.

We have seen that the relation

$$\oint_{c} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \oint_{c} \langle \mathbf{f}, \mathbf{T} \rangle \, ds$$

holds, where $\mathbf{T}(t) = \frac{\dot{\mathbf{c}}(t)}{\|\dot{\mathbf{c}}(t)\|}$ denotes the tangent unit vector.

With the intergral thoerem of Green we obtain

$$\int_{K} \operatorname{curl} \mathbf{f}(\mathbf{x}) \, d\mathbf{x} = \oint_{\partial K} \langle \mathbf{f}, \mathbf{T} \rangle \, ds$$

Is f(x) a velocity field, then the fluid motion described by f is curl free if curl f(x) = 0, since

$$\oint_{c} \mathbf{f}(\mathbf{x}) d\mathbf{x}$$

is the circulation of f(x).