Chapter 2. Applications of multivariate differential calculus

2.3 Extrem value problems under constraints

Question: What is the size of a metallic cylindrical can in order to minimize the
material amount by given volume?

Ansatz for solution: Let r > 0 be the radius and h > 0 the height of the can.

Then
U — Wrzhj g
/,O = 27r —|—27Trh

Let ¢ € R, be the given volume (with x :=r,y := h

@,y) — 27TX2—|—27TXB
W) = szy—C:ﬂ \CM« (/e{«{c,

Determine the minimum of the function f(x,y) on the set

E:: {(x,y) e R% | g(x,y) =0}

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 82 /155




Solution of the constraint minimisation problem.

From /g(x,y) = mx°y — ¢ = 0/follows

-

C
= — /(
Y= = (<]

We plug this into f(x, y) and obtain %@(1 7{()((\,@4) 2wt

2
h(x) = 2mx° + 27TXL2 —omx? 4
TX X

Determine the minimum of the function h(x):

2C 2C C
/ _ _ _ _
h(X)—47TX——X2—0 = 47TX—; :}E (%

Sufficient condition

1/3
h”(X):47T+E = h”(c />:127T>0

,(\()(m»:/\/[/w)j = ZWXZ:\ ZLQWA/«,‘/%- )i_ Zn_é;(/?/} . 7 /53452 «; @CE/?_/é :@F‘//)“/;

1w

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering

83 /155



General formulation of the problem.

Determine the extrem values of the function f : R” — R under the S bobnn

constraint
g(X) =0 [N Q?M@/C\

where g : R" — R™.

The constraints are

I
o

gl(Xl, c e ,Xn)

gm(x1,...,xn) = 0

Alternatively: Determine the extrem values of the function f(x) on the

set
G :={xeR"|g(x) =0}
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SEN

The Lagrange—function and the Lagrange—Lemma.

We define the Lagrange—function

F(x) := f(x)+ Z Aigi(x)

and look for the extrem values of F(x) for fixed A = (Ag,...,Am)".
The numbers A\;, i = 1,..., m are called Lagrange—multiplier.

Theorem: (Lagrange-Lemma) If x minimizes (or maximizes) the
Lagrange—function F(x) (for a fixed A) on D and if g(x°) = 0 holds, then x° is
the minimum (or maximum) of f(x) on G := {x € D|g(x) = 0}.

Proof: For an arbitrary x € D we have  murive— Feo < [762

R = () + ATg(x%) < F(x) + A Tg(x). = &

=0

If we choose x € G, then g(x) = g(x°) = 0, thus f(x°) < f(x).
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A necessary condition for local extrema.

Let f and g;, i = 1,..., m, C'—functions, then a necessary condition for an
extrem value x° of F(x) is given by

;( hj b BATHOWN S Egrad F(x) = grad f(x) + Z Aigrad gi(x) —’/0\} hn QZZJN; 4l
[r " i=1 19N

Together with the constraint@e obtain a set of (non-linear) equations
with (n + m) equations and (n + m) unknowns x and A.

The solutions (x°, A\Y) are the candidates for the extrem values, since these
solutions satisfy the above necessary condition.

Alternatively: Define a Langrange—function
G(x,A) = f(x) + Y Nigi(x)
i=1

and look for the extrem values of G(x, ) with respect to x and .
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Some remarks on suffiecient conditions.

o < O

©@ We can formulate a sufficient condition:
If the functions f and g are C°—functions and if the Hesse—-matrix
HF (x") of the Lagrange—function is positiv (negativ) definit, then x°
is a strict local minimum (maximum) of f(x) on G.

In most of the applications the necessary condition are not satisfied,
allthough x° is a strict local extremum.

And from the indefinitness of the Hesse—-matrix HF(x°) we cannot
conclude, that x° is not an extremum.

&)

@ We have a similar problem with the necessary condition which is
obtained from the Hesse—matrix of the Lagrange—function G(x, \)
with respect to x and .
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An example of a minimisation problem with constraints.

We look for extrem values of [f(x, y) := xy on the disc
5>

K= {(x0)T |2 +y? <1}
—— e

Since the function f is continuous and K C R? compact we conclude from
the min—max—property the existence of global maxima and minima on K.

We consider first the interior KV of K, i.e. the open set

A <Te K® = {(x,y)" |x* +y* <1} ufo s
- %
The necessary condition for an extrem value is given by
7 gradf =(y,x)=0

Thus the origin x° = 0 is a candidate for a (local) extrem value.

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 88 /155



continuation of the example.

The Hesse-matrix at the origin is given by

Hf(O):<(1) é)

0'is a saddel point.

and is indefinit. Thus x

Therefore the extrem values have to be on the boundary which is
represented by a constraint equation:

\\

gg(x,y)=X2+y2—1=0

Therefore we look for the extrem values of f(x, y) = xy under the
constraint g(x,y) = 0.

The Lagrange—function is given by

= F(xy)=xy A +y? - 1)
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Completion of the example.

We obtain the non-linear system of equations /—ZA— L

| = y+2xx = 0 < 2
7 { x+2ly = 0 Y"%\/zfﬂ%ﬁ/ B

54
_ 4|4
Jlxy ) = X4y = 1 Jx* - x=F72
with the four solution /\:"‘da
)\:% . X(l):(w/1/2’—1/1/2)7— x(2):(_\/1/2,\/1/2)7-

A=l KOS (VIBVIDT X = (-1 T

Minima and Maxima can be concluded from the values of the function
f(xP) = f(x?) = —1/2 F(x®) = F(x*¥) =1/2

i.e. minima are x(1) and x(®) maxima are x®) and x*.
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Lagrange—multiplier—rule.

Satz: Let f,g1,...,8m : D — R be C!'—functions, und let x’ € D a local
extrem value of f(x) under the constraint g(x) = 0. In addition let the
regularity condition

0
rang (Jg X )) —m
mM X /4 &/\% A
hold true. Then there exist Lagrange—multiplier A1, ..., Am, such that for

the Lagrange function

F(x) : x)+Z)\g,(x

the following first order necessary condition holds true:

grad F(x°) =0
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Necessary condition of second order and sufficient
condition.

Theorem: 1) Let x° € D a local minimum of f(x) under the constraint g(x) = 0,
let the regularity condition be satistied and let A1, ..., Ap, be the related

Lagrange—multiplier. Then the Hesse—-matrix HF(x°) of the Lagrange—function is
positiv semi-definit on the tangential space

TG(x°) = {y ER”\gradg;(xo)-y:Ofori: 1,...,m}

ie.itisy’ HF(x®)y >0 forally € TG(xO)
2) Let the regularity condition for a point xY € G be staisfied. If there exist

Lagrange—multlpller A1, ..., Am, such that gg_lsWof the related
Lagrange—function. Let the Hesse—matrix HF (x°) be positiv definit on the

tangential space TG(x?), i.e. it holds

y' HF(x®)y >0 Vye TG(x°)\ {0},

0

then x” is a strict local minimum of f(x) under the constraint g(x) = 0.

—_ —
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Example.

Determine the global maximum of the function hN=<& s A

under the constraint
gx,y)=x"+y*—1=0

The Lagrange—function is given by

F(x) = —x*+8x —y* 4+ 94+ A(x* 4+ y* —
From the necessary condition we obtain the non-linear system

B —2x+8 = —2Xx
=2y = =2\y

1

pa=e = Xty
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Continuation of the example.

From the necessary condition we obtain the non-linear system
—2x+8 = —2)\x =D /L ;EA
—2y = =2y =y =2
x2 + y2 = 1 = d

The first equation gives A # 1. Using this in the second equation we get y = 0.
From the third equation we obtain x = £1.

Therefore the two pomts@ y)=(1 O] andﬁ jare candidates for a

global maximum. Since

f(1,00=16  f(-1,0)=0

the global maximum of f(x, y) under the constraint g(x, y) = 0 is given at the
point (x,y) = (1,0).

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 94 /155



Another example.

Determine the local extrem values of =2 2

/
/@,y,z)2x—|——|—22 7

on the intersection of the cylinder surface

Mz = {(x,y,2)T € R3|x? +y? = 2}h 1)

N

/

with the plane
E={(y. )T €RPxtz=1)

Reformulation: Determine the extrem values of the function f(x, y, z)
under the constraint

gi(x,y,z) = x*+y*—=2=0

o(x,y,z) = x+z—1=0
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Continuation of the example.

The Jacobi—matrix {
2x 2 0 _
Jg(x):(l 8’ 1) /&j/l‘fjjw/g

has rank 2, i.e. we can determine extrem values using the Lagrange—function:

F(x,y,z) =2x+3y + 2z 4+ M (x> + y* —2) + Xo(x + z — 1)

——t
———
—— —

The necessary condition gives the non-linear system AT.E A’/tl Az
24+2Mx+X = 0
poel F=t = 3+2\y = 0
2+X =0
b =o Xyt = 2
Cff’-‘ ~ x+z = 1
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Continuation of the example.

The necessary condition gives the non-linear system

24 Mx+ A = 0 — glAy:; x=0
/
3420y = 0 | = HFO
24X = 0 ]
-
x> +y* = 2 Ve 'E?
r=/1
x+z = 1

From the first and the third equation it follows
2)\1X =0

From the second equation it follows A\; # 0, i.e. x = 0.
Thus we have possible extrem values

/ (x,y,z) = (0,2, 1)/ (x,y,z) = (0,—V2, 1J
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Completion if the example.

The possible extrem values are
(x.y.2)=(0,V2,1) (xy.2)=(0,—v21)
and lie on the cylinder surface My of the cylinder Z with
Z = {(xy.2) eR’|x*+y* <2}
Mz = {(x,y,z)! eR3|x*+y* =2}
We calculate the related functiuon values

3vV2 42

—= £(0,v2,1)

e

—~ f(0,—v2,1) = —3V2+2

Thus the point (x,y, z) = (0,/2,1) is a maximum an the point
(x,y,z) = (0,—+/2,1) a minimum.

Ingenuin Gasser (Mathematik, UniHH) Analysis Il for students in engineering 98 / 155



