Chapter 2. Applications of multivariate differential calculus

2.3 Extrem value problems under constraints

Question: What is the size of a metallic cylindrical can in order to minimize the material amount by given volume?

Ansatz for solution: Let r > 0 be the radius and h > 0 the height of the can.

Then

$$\begin{array}{ccc}
V & = & \pi r^2 h \\
\hline
O & = & 2\pi r^2 + 2\pi rh
\end{array}$$

Let $c \in \mathbb{R}_+$ be the given volume (with x := r, y := h),

$$f(x,y) = 2\pi x^2 + 2\pi xy$$

$$g(x,y) = \pi x^2 y - c = 0$$

plan Volume C

Determine the minimum of the function f(x, y) on the set

$$G := \{(x,y) \in \mathbb{R}^2_+ | g(x,y) = 0\}$$

Solution of the constraint minimisation problem.

From
$$g(x, y) = \pi x^2 y - c = 0$$
 follows

$$y = \frac{c}{\pi x^2} - \gamma (x)$$

We plug this into f(x, y) and obtain

$$h(x) := 2\pi x^2 + 2\pi x \frac{c}{\pi x^2} = 2\pi x^2 + \frac{2c}{x}$$

Determine the minimum of the function h(x):

$$h'(x) = 4\pi x - \frac{2c}{x^2} = 0 \quad \Rightarrow \quad 4\pi x = \frac{2c}{x^2} \quad \Rightarrow \quad x = \left(\frac{c}{2\pi}\right)^{1/3}$$

Sufficient condition

$$h''(x) = 4\pi + \frac{4c}{x^3} \Rightarrow h''\left(\left(\frac{c}{2\pi}\right)^{1/3}\right) = 12\pi > 0 \qquad \text{in } 1/3 = 300 \text{in }$$

General formulation of the problem.

Determine the extrem values of the function $f: \mathbb{R}^n \to \mathbb{R}$ under the constraint

$$\mathbf{g}(\mathbf{x}) = 0$$
 mequation

where $\mathbf{g}: \mathbb{R}^n \to \mathbb{R}^m$.

The constraints are

$$g_1(x_1,\ldots,x_n) = 0$$

$$g_m(x_1,\ldots,x_n) = 0$$

Alternatively: Determine the extrem values of the function $f(\mathbf{x})$ on the set

$$G:=\{\mathbf{x}\in\mathbb{R}^n\,|\,\mathbf{g}(\mathbf{x})=\mathbf{0}\}$$

The Lagrange-function and the Lagrange-Lemma.

We define the Lagrange—function

$$F(\mathbf{x}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) - G(\mathbf{x})$$

and look for the extrem values of $F(\mathbf{x})$ for fixed $\lambda = (\lambda_1, \dots, \lambda_m)^T$.

The numbers λ_i , $i=1,\ldots,m$ are called Lagrange–multiplier.

Theorem: (Lagrange–Lemma) If \mathbf{x}^0 minimizes (or maximizes) the Lagrange–function $F(\mathbf{x})$ (for a fixed λ) on D and if $\mathbf{g}(\mathbf{x}^0) = 0$ holds, then \mathbf{x}^0 is the minimum (or maximum) of $f(\mathbf{x})$ on $G := {\mathbf{x} \in D \mid \mathbf{g}(\mathbf{x}) = \mathbf{0}}$.

Proof: For an arbitrary $\mathbf{x} \in D$ we have $f(x) \in F(x)$

$$F(\mathbf{x}^0) = f(\mathbf{x}^0) + \lambda^T \mathbf{g}(\mathbf{x}^0) \leq f(\mathbf{x}) + \lambda^T \mathbf{g}(\mathbf{x}) = F(\mathbf{x})$$

If we choose $\mathbf{x} \in G$, then $\mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{x}^0) = \mathbf{0}$, thus $f(\mathbf{x}^0) \leq f(\mathbf{x})$.

A necessary condition for local extrema.

Let f and g_i , $i=1,\ldots,m$, \mathcal{C}^1 -functions, then a necessary condition for an extrem value \mathbf{x}^0 of $F(\mathbf{x})$ is given by

$$\lambda_i$$
 in M has unknowns $\text{grad } F(\mathbf{x}) = \text{grad } f(\mathbf{x}) + \sum_{i=1}^m \lambda_i \text{grad } g_i(\mathbf{x}) = \mathbf{0}$ in M exclusions when M is M in M i

Together with the constraints $\mathbf{g}(\mathbf{x}) = 0$ we obtain a set of (non-linear) equations with (n+m) equations and (n+m) unknowns **x** and λ .

The solutions $(\mathbf{x}^0, \lambda^0)$ are the candidates for the extrem values, since these solutions satisfy the above necessary condition.

Alternatively: Define a Langrange–function
$$O = \operatorname{prod}_{(\mathbf{x}, \lambda)} G = \left(\operatorname{prod}_{\mathbf{x}, \lambda} \right) = G(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

and look for the extrem values of $G(\mathbf{x}, \lambda)$ with respect to \mathbf{x} and λ .

Some remarks on sufficient conditions.

We can formulate a sufficient condition: If the functions f and g are C^2 -functions and if the Hesse-matrix $\mathbf{H}F(\mathbf{x}^0)$ of the Lagrange-function is positiv (negativ) definit, then \mathbf{x}^0 is a strict local minimum (maximum) of $f(\mathbf{x})$ on G.

② In most of the applications the necessary condition are **not** satisfied, allthough \mathbf{x}^0 is a strict local extremum.

3 And from the indefinitness of the Hesse–matrix $\mathbf{H}F(\mathbf{x}^0)$ we cannot conclude, that \mathbf{x}^0 is not an extremum.

We have a similar problem with the necessary condition which is obtained from the Hesse-matrix of the Lagrange-function $G(\mathbf{x}, \lambda)$ with respect to \mathbf{x} and λ .

$$\begin{cases}
k_{17} = 2\pi x^{2} + 2\pi x_{7} \\
y(x_{7}) = 17x^{2}y - C = 0
\end{cases}$$

$$\begin{cases}
F(x_{17}) = F(x_{7}) + A y(x_{7}) \\
y(x_{7}) = 17x^{2}y - C = 0
\end{cases}$$

$$\begin{cases}
7\pi x + \lambda \pi x^{2} \\
7\pi x + \lambda \pi x^{2}
\end{cases}$$

$$\begin{cases}
7\pi x + \lambda \pi x^{2} \\
7\pi x^{2}y - C
\end{cases}$$

$$\begin{cases}
7\pi x^{2}y - C
\end{cases}$$

$$7\pi x^{2}y - C$$

$$7\pi x^{2}y -$$

$$44x + 247 = 0$$
 $2xx = 0 \Rightarrow x = 0 \Rightarrow 7 = 0$
 $\pi x_1^2 - 0 = 0$

An example of a minimisation problem with constraints.

We look for extrem values of f(x, y) := xy on the disc

$$K := \{(x,y)^T \mid x^2 + y^2 \le 1\}$$

Since the function f is continuous and $K \subset \mathbb{R}^2$ compact we conclude from the min–max–property the existence of global maxima and minima on K.

We consider first the interior K^0 of K, i.e. the open set

$$K^0 := \{(x,y)^T \mid x^2 + y^2 < 1\}$$

The necessary condition for an extrem value is given by

$$ightharpoonup grad f = (y, x) = 0$$

Thus the origin $\mathbf{x}^0 = \mathbf{0}$ is a candidate for a (local) extrem value.

continuation of the example.

The Hesse-matrix at the origin is given by

$$\mathbf{H}f(\mathbf{0}) = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

and is indefinit. Thus x^0 is a saddel point.

Therefore the extrem values have to be on the boundary which is represented by a constraint equation:

$$g(x,y) = x^2 + y^2 - 1 = 0$$

Therefore we look for the extrem values of f(x, y) = xy under the constraint g(x, y) = 0.

The Lagrange-function is given by

$$F(x,y) = xy + \lambda(x^2 + y^2 - 1)$$

Completion of the example.

We obtain the non-linear system of equations

the non-linear system of equations
$$y + 2\lambda x = 0$$

$$x + 2\lambda y = 0$$

$$y(xy) - x^2 + y^2 = 1$$

$$2x^2 - 1$$

$$x + 2\lambda y = 0$$

$$x + 3\lambda y$$

with the four solution

$$\lambda = \frac{1}{2}$$
 : $\mathbf{x}^{(1)} = (\sqrt{1/2}, -\sqrt{1/2})^T$ $\mathbf{x}^{(2)} = (-\sqrt{1/2}, \sqrt{1/2})^T$ $\lambda = -\frac{1}{2}$: $\mathbf{x}^{(3)} = (\sqrt{1/2}, \sqrt{1/2})^T$ $\mathbf{x}^{(4)} = (-\sqrt{1/2}, -\sqrt{1/2})^T$

Minima and Maxima can be concluded from the values of the function

$$f(\mathbf{x}^{(1)}) = f(\mathbf{x}^{(2)}) = -1/2$$
 $f(\mathbf{x}^{(3)}) = f(\mathbf{x}^{(4)}) = 1/2$

i.e. minima are $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$, maxima are $\mathbf{x}^{(3)}$ and $\mathbf{x}^{(4)}$.

Lagrange-multiplier-rule.

Satz: Let $f, g_1, \ldots, g_m : D \to \mathbb{R}$ be C^1 -functions, und let $\mathbf{x}^0 \in D$ a local extrem value of $f(\mathbf{x})$ under the constraint $\mathbf{g}(\mathbf{x}) = \mathbf{0}$. In addition let the regularity condition

$$\operatorname{rang}\left(\operatorname{\mathbf{J}}\operatorname{\mathbf{g}}(\mathbf{x}^0)\right)=m$$
 hold true. Then there exist Lagrange–multiplier $\lambda_1,\ldots,\lambda_m$, such that for

hold true. Then there exist Lagrange–multiplier $\lambda_1, \ldots, \lambda_m$, such that for the Lagrange function

$$F(\mathbf{x}) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$$

the following first order necessary condition holds true:

$$\operatorname{grad} F(\mathbf{x}^0) = \mathbf{0}$$

Necessary condition of second order and sufficient condition.

Theorem: 1) Let $\mathbf{x}^0 \in D$ a local minimum of $f(\mathbf{x})$ under the constraint $\mathbf{g}(\mathbf{x}) = 0$, let the regularity condition be satisfied and let $\lambda_1, \ldots, \lambda_m$ be the related Lagrange-multiplier. Then the Hesse-matrix $\mathbf{H}F(\mathbf{x}^0)$ of the Lagrange-function is positiv semi-definit on the tangential space

$$TG(\mathbf{x}^0) := \{ \mathbf{y} \in \mathbb{R}^n \mid \operatorname{grad} g_i(\mathbf{x}^0) \cdot \mathbf{y} = 0 \text{ for } i = 1, \dots, m \}$$

i.e. it is $\mathbf{y}^T \mathbf{H} F(\mathbf{x}^0) \mathbf{y} \geq 0$ for all $\mathbf{y} \in TG(\mathbf{x}^0)$.

2) Let the regularity condition for a point $\mathbf{x}^0 \in G$ be staisfied. If there exist Lagrange-multiplier $\lambda_1, \ldots, \lambda_m$, such that \mathbf{x}^0 is a stationary point of the related Lagrange-function. Let the Hesse-matrix $\mathbf{H}F(\mathbf{x}^0)$ be positive definit on the tangential space $TG(\mathbf{x}^0)$, i.e. it holds

$$\mathbf{y}^T \mathbf{H} F(\mathbf{x}^0) \mathbf{y} > 0 \quad \forall \mathbf{y} \in TG(\mathbf{x}^0) \setminus \{0\},$$

then \mathbf{x}^0 is a strict local minimum of $f(\mathbf{x})$ under the constraint $\mathbf{g}(\mathbf{x}) = \mathbf{0}$.

Example.

Determine the global maximum of the function

N=2 m=7

$$f(x,y) = -x^2 + 8x - y^2 + 9 = -x^2 + 8x - y^2$$

under the constraint

$$g(x,y) = x^2 + y^2 - 1 = 0$$

The Lagrange-function is given by

$$F(x) = -x^2 + 8x - y^2 + 9 + \lambda(x^2 + y^2 - 1)$$

From the necessary condition we obtain the non-linear system

Continuation of the example.

From the necessary condition we obtain the non-linear system

$$-2x + 8 = -2\lambda x \implies \lambda + \Lambda$$

$$-2y = -2\lambda y \implies y = 0$$

$$x^{2} + y^{2} = 1 \qquad x = \pm \Lambda$$

The first equation gives $\lambda \neq 1$. Using this in the second equation we get y=0. From the third equation we obtain $x=\pm 1$.

Therefore the two points (x,y)=(1,0) and (x,y)=(-1,0)/are candidates for a global maximum. Since

$$f(1,0) = 16$$
 $f(-1,0) = 0$

the global maximum of f(x, y) under the constraint g(x, y) = 0 is given at the point (x, y) = (1, 0).

Another example.

Determine the local extrem values of

on the intersection of the cylinder surface

$$M_Z := \{(x, y, z)^T \in \mathbb{R}^3 \mid x^2 + y^2 = 2\}$$

with the plane

$$E := \{(x, y, z)^T \in \mathbb{R}^3 \,|\, x + z = 1\}$$

Reformulation: Determine the extrem values of the function f(x, y, z) under the constraint

$$\begin{cases} g_1(x, y, z) &:= x^2 + y^2 - 2 = 0 \\ g_2(x, y, z) &:= x + z - 1 = 0 \end{cases}$$

Continuation of the example.

The Jacobi-matrix

$$\mathbf{Jg}(\mathbf{x}) = \left(\begin{array}{ccc} 2x & 2y & 0 \\ 1 & 0 & 1 \end{array}\right)$$

roght Fran = 2

has rank 2, i.e. we can determine extrem values using the Lagrange-function:

$$F(x,y,z) = 2x + 3y + 2z + \underbrace{\lambda_1(x^2 + y^2 - 2) + \underbrace{\lambda_2(x + z - 1)}}_{===}$$

The necessary condition gives the non-linear system

$$\begin{cases} 2+2\lambda_1 x + \lambda_2 &= 0 \\ 3+2\lambda_1 y &= 0 \end{cases}$$

$$2+\lambda_2 &= 0$$

$$\begin{cases} 2+2\lambda_1 x + \lambda_2 &= 0 \\ 2+\lambda_2 &= 0 \end{cases}$$

$$\begin{cases} x^2+y^2 &= 2 \\ x+z &= 1 \end{cases}$$

Continuation of the example.

The necessary condition gives the non-linear system

$$2 + 2\lambda_1 x + \lambda_2 = 0$$

$$3 + 2\lambda_1 y = 0$$

$$2 + \lambda_2 = 0$$

$$x^2 + y^2 = 2$$

$$x + z = 1$$

From the first and the third equation it follows

$$2\lambda_1 x = 0$$

From the second equation it follows $\lambda_1 \neq 0$, i.e. x = 0.

Thus we have possible extrem values

$$(x, y, z) = (0, \sqrt{2}, 1) (x, y, z) = (0, -\sqrt{2}, 1)$$

Completion if the example.

The possible extrem values are

$$(x, y, z) = (0, \sqrt{2}, 1)$$
 $(x, y, z) = (0, -\sqrt{2}, 1)$

and lie on the cylinder surface M_Z of the cylinder Z with

$$Z = \{(x, y, z)^T \in \mathbb{R}^3 \mid x^2 + y^2 \le 2\}$$

$$M_Z = \{(x, y, z)^T \in \mathbb{R}^3 \mid x^2 + y^2 = 2\}$$

We calculate the related function values

$$f(0,\sqrt{2},1) = 3\sqrt{2} + 2$$

$$f(0,-\sqrt{2},1) = -3\sqrt{2}+2$$

Thus the point $(x, y, z) = (0, \sqrt{2}, 1)$ is a maximum an the point $(x, y, z) = (0, -\sqrt{2}, 1)$ a minimum.