Directional derivative.

Definition: Let $f:D\to\mathbb{R},\ D\subset\mathbb{R}^n$ open, $\mathbf{x}^0\in D$, and $\mathbf{v}\in\mathbb{R}\setminus\{0\}$ a vector. Then $D_{\mathbf{v}}f(\mathbf{x}^0):=\lim_{t\to 0}\frac{f(\mathbf{x}^0+t\mathbf{v})-f(\mathbf{x}^0)}{t}$

is called the directional derivative (Gateaux-derivative) of $f(\mathbf{x})$ in the direction of \mathbf{v} .

Example: Let $f(x,y) = x^2 + y^2$ and $\mathbf{v} = (1,1)^T$. Then the directional derivative in the direction of \mathbf{v} is given by:

$$D_{\mathbf{v}} f(x,y) = \lim_{t \to 0} \frac{(x+t)^2 + (y+t)^2 - x^2 - y^2}{t}$$

$$= \lim_{t \to 0} \frac{2xt + t^2 + 2yt + t^2}{t}$$

$$= 2(x+y)$$

Remarks.

• For $\mathbf{v} = \mathbf{e}_i$ the directional derivative in the direction of \mathbf{v} is given by the partial derivative with respect to x_i :

$$D_{\mathbf{v}} f(\mathbf{x}^0) = \frac{\partial f}{\partial x_i}(\mathbf{x}^0)$$

- If **v** is a unit vector, i.e. $\|\mathbf{v}\| = 1$, then the directional derivative $D_{\mathbf{v}} f(\mathbf{x}^0)$ describes the slope of f(x) in the direction of v.
- If f(x) is differentiable in x^0 , then all directional derivatives of f(x) in x^0 exist. With $\mathbf{h}(t) = \mathbf{x}^0 + t\mathbf{v}$ we have

$$D_{\mathbf{v}} f(\mathbf{x}^{0}) = \frac{d}{dt} (f \circ \mathbf{h})|_{t=0} = \operatorname{grad} f(\mathbf{x}^{0}) \cdot \mathbf{v}$$

This follows directely applying the chain rule.

Properties of the gradient.

Theorem: Let $D \subset \mathbb{R}^n$ open, $f: D \to \mathbb{R}$ differentiable in $\mathbf{x}^0 \in D$. Then we have

a) The gradient vector grad $f(\mathbf{x}^0) \in \mathbb{R}^n$ is orthogonal in the level set

$$N_{\mathbf{x}^0} := \{ \mathbf{x} \in D \mid f(\mathbf{x}) = f(\mathbf{x}^0) \}$$

In the case of n=2 we call the level sets contour lines, in n=3 we call the level sets equipotential surfaces.

2) The gradient grad $f(\mathbf{x}^0)$ gives the direction of the steepest slope of $f(\mathbf{x})$ in \mathbf{x}^0 .

Idea of the proof: het a 1/2 to the low Dy (6/3) = 0 = pool f(6/5).V

- a) application of the chain rule.
- b) for an arbitrary direction **v** we conclude with the Cauchy–Schwarz inequality

$$|D_{\mathbf{v}} f(\mathbf{x}^0)| = |(\operatorname{grad} f(\mathbf{x}^0), \mathbf{v})| \leq \|\operatorname{grad} f(\mathbf{x}^0)\|_2\|\mathbf{v}\|_2$$

Equality is obtained for $\mathbf{v} = \operatorname{grad} f(\mathbf{x}^0) / \|\operatorname{grad} f(\mathbf{x}^0)\|_2$.

Level set h=2 $f(x,y)=x^2+y^2$ $N(x,y)=\{x \mid f(x,y)=f(x,y)=1\}$ $N(x,y)=\{x \mid f(x,y)=f(x,y)=8\}$

h=2 $f(x_1,k_1,k_3) = \Omega(x) = |x_1|^2 + x_2^2 + x_3^2$ $V(x_1,x_2,k_3) = \int x |f(x_1,k_2,k_3) = f(1,0,0) = 1/9$

Curvilinear coordinates.

Definition: Let $U, V \subset \mathbb{R}^n$ be open and $\Phi: U \to V$ be a \mathcal{C}^1 -map, for which the Jacobimatrix $\mathbf{J}\Phi(\mathbf{u}^0)$ is regular (invertible) at every $\mathbf{u}^0 \in U$. In addition there exists the inverse map $\Phi^{-1}: V \to U$ and the inverse map is also a \mathcal{C}^1 -map.

Then $\mathbf{x} = \Phi(\mathbf{u})$ defines a coordinate transformation from the coordinates \mathbf{u} to \mathbf{x} .

Example: Consider for n=2 the polar coordinates $\mathbf{u}=(r,\varphi)$ with r>0 and $-\pi<\varphi<\pi$ and set

$$x = r \cos \varphi$$

$$y = r \sin \varphi$$

with the cartesian coordinates $\mathbf{x} = (x, y)$.

Calculation of the partial derivatives.

For all $\mathbf{u} \in U$ with $\mathbf{x} = \mathbf{\Phi}(\mathbf{u})$ the following relations hold

$$\Phi^{-1}(\Phi(\mathbf{u})) = \mathbf{u}$$

$$\mathbf{J}\Phi^{-1}(\mathbf{x}) \cdot \mathbf{J}\Phi(\mathbf{u}) = \mathbf{I}_n \quad \text{(chain rule)}$$

$$\mathbf{J}\Phi^{-1}(\mathbf{x}) = (\mathbf{J}\Phi(\mathbf{u}))^{-1}$$

Let $\widetilde{f}:V \to \mathbb{R}$ be a given function. Set

$$f(\Phi(\mathbf{u})) = f(\mathbf{u}) := \tilde{f}(\Phi(\mathbf{u})) = \tilde{f}(\mathbf{x})$$

the by using the chain rule we obtain

$$\frac{\partial f}{\partial u_i} = \sum_{j=1}^n \frac{\partial \tilde{f}}{\partial x_j} \frac{\partial \Phi_j}{\partial u_i} =: \sum_{j=1}^n g^{ij} \frac{\partial \tilde{f}}{\partial x_j}$$

with

$$g^{ij} := \frac{\partial \Phi_j}{\partial u_i}, \qquad \mathbf{G}(\mathbf{u}) := (g^{ij}) = (\mathbf{J} \Phi(\mathbf{u}))^T$$

Notations.

We use the short notation

$$\frac{\partial}{\partial u_i} = \sum_{j=1}^n g^{ij} \frac{\partial}{\partial x_j}$$

Analogously we can express the partial derivatives with respect to x_i by the partial derivatives with respect to u_j

$$\frac{\partial}{\partial x_i} = \sum_{j=1}^n g_{ij} \frac{\partial}{\partial u_j}$$

where

$$(g_{ij}) := (g^{ij})^{-1} = (\mathbf{J} \Phi)^{-T} = (\mathbf{J} \Phi^{-1})^{T}$$

We obtain these relations by applying the chain rule on Φ^{-1} .

Example: polar coordinates.

We consider polar coordinates

$$\mathbf{x} = \Phi(\mathbf{u}) = \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \end{pmatrix}$$

We calculate

$$\mathbf{J}\Phi(\mathbf{u}) = \begin{pmatrix} \cos\varphi & -r\sin\varphi \\ \sin\varphi & r\cos\varphi \end{pmatrix}$$

and thus

$$(g^{ij}) = egin{pmatrix} \cos arphi & \sin arphi \\ -r \sin arphi & r \cos arphi \end{pmatrix}$$

and thus
$$(j) = \begin{pmatrix} \sin \varphi & r \cos \varphi \end{pmatrix}$$

$$(g^{ij}) = \begin{pmatrix} \cos \varphi & \sin \varphi \\ -r \sin \varphi & r \cos \varphi \end{pmatrix}$$

$$(g_{ij}) = \begin{pmatrix} \sin \varphi & \frac{1}{r} \sin \varphi \\ \sin \varphi & \frac{1}{r} \cos \varphi \end{pmatrix}$$

= (34) = (64) = - 2 sing 34 (64) = - 2 sing 54 = = 64 32 + 2 604 sing 34 - 2 604 sing 32 + 2 sing 64 36 + 2 sing 64 36 + 2 sing 64 36 + 2 sing 64 36

Partial derivatives for polar coordinates.

The calculation of the partial derivatives gives

$$\frac{\partial}{\partial x} = \cos \varphi \frac{\partial}{\partial r} - \frac{1}{r} \sin \varphi \frac{\partial}{\partial \varphi}$$

$$\frac{\partial}{\partial y} = \sin \varphi \frac{\partial}{\partial r} + \frac{1}{r} \cos \varphi \frac{\partial}{\partial \varphi}$$

Example: Calculation of the Laplacian-operator in polar coordinates

$$\frac{\partial^{2}}{\partial x^{2}} = \cos^{2}\varphi \frac{\partial^{2}}{\partial r^{2}} - \frac{\sin(2\varphi)}{2} \frac{\partial^{2}}{\partial r \partial \varphi} + \frac{\sin^{2}\varphi}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} + \frac{\sin(2\varphi)}{r^{2}} \frac{\partial}{\partial \varphi} + \frac{\sin^{2}\varphi}{r} \frac{\partial}{\partial r}$$

$$\frac{\partial^{2}}{\partial y^{2}} = \sin^{2}\varphi \frac{\partial^{2}}{\partial r^{2}} + \frac{\sin(2\varphi)}{r} \frac{\partial^{2}}{\partial r \partial \varphi} + \frac{\cos^{2}\varphi}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} - \frac{\sin(2\varphi)}{r^{2}} \frac{\partial}{\partial \varphi} + \frac{\cos^{2}\varphi}{r} \frac{\partial}{\partial r}$$

$$\Delta = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} = \frac{\partial^{2}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} + \frac{1}{r} \frac{\partial}{\partial r}$$

Example: spherical coordinates.

We consider spherical coordinates

$$\mathbf{x} = \Phi(\mathbf{u}) = \begin{pmatrix} r\cos\varphi\cos\theta \\ r\sin\varphi\cos\theta \\ r\sin\theta \end{pmatrix}$$

The Jacobian-matrix is given by:

$$\mathbf{J}\Phi(\mathbf{u}) = \begin{pmatrix} \cos\varphi\cos\theta & -r\sin\varphi\cos\theta & -r\cos\varphi\sin\theta \\ \sin\varphi\cos\theta & r\cos\varphi\cos\theta & -r\sin\varphi\sin\theta \\ \sin\theta & 0 & r\cos\theta \end{pmatrix}$$

Partial derivatives for spherical coordinates.

Calculating the partial derivatives gives

$$\frac{\partial}{\partial x} = \cos \varphi \cos \theta \frac{\partial}{\partial r} - \frac{\sin \varphi}{r \cos \theta} \frac{\partial}{\partial \varphi} - \frac{1}{r} \cos \varphi \sin \theta \frac{\partial}{\partial \theta}$$

$$\frac{\partial}{\partial y} = \sin \varphi \cos \theta \, \frac{\partial}{\partial r} + \frac{\cos \varphi}{r \cos \theta} \, \frac{\partial}{\partial \varphi} - \frac{1}{r} \sin \varphi \sin \theta \, \frac{\partial}{\partial \theta}$$

$$\frac{\partial}{\partial z} = \sin\theta \, \frac{\partial}{\partial r} + \frac{1}{r} \cos\theta \, \frac{\partial}{\partial \theta}$$

Example: calculation of the Laplace-operator in spherical coordinates

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2 \cos^2 \theta} \frac{\partial^2}{\partial \varphi^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{\tan \theta}{r^2} \frac{\partial}{\partial \theta}$$