Fachbereich Mathematik der Universität Hamburg

Prof. Dr. J. Behrens

Dr. K. Rothe

Analysis III für Studierende der Ingenieurwissenschaften

Blatt 5

Aufgabe 17:

Man berechne und klassfiziere die Extremwerte der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = 4x^2 + y^2$ auf dem Kreis $x^2 + y^2 - 2x = 3$

- a) unter Verwendung der Lagrangeschen Multiplikatorenregel und
- b) über Polarkoordinatenparametrisierung \mathbf{c} des Kreises und anschließendes Lösen der Extremalaufgabe $h(t) := f(\mathbf{c}(t))$.

Aufgabe 18:

Für die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ mit $f(x,y,z)=(x+1)^2+y^2+z^2$ berechne und klassifiziere man die Extrema auf dem Schnitt der Kugel $x^2+y^2+z^2=1$ mit der Ebene z=x unter

- a) Verwendung der Lagrangeschen Multiplikatorenregel und
- b) durch Bestimmung der Extremwerte von $f(\mathbf{c}(t))$ auf der Parametrisierung \mathbf{c} der Schnittkurve von Kugel und Ebene.

Aufgabe 19:

a) Man zeige, dass die Wellengleichung $u_{tt}=c^2u_{xx}$ für eine Ortsvariable x und mit einer Konstanten $c\in\mathbb{R}$ von der Funktion

$$u(x,t) = 2\sin(x+ct) + 3e^{x-ct}$$

gelöst wird.

b) Man zeige, dass die Funktion

$$u(x,y) = e^{-x}\sin y + (x+5)(y-6)$$

die Laplace-Gleichung $\Delta u = 0$ löst.

Aufgabe 20:

Man berechne Divergenz und Rotation für folgende Vektorfelder mit $x, y, z \in \mathbb{R}$

a)
$$f(x,y) = (\sin x \cos y, (x+y)^2)^T$$
,

b)
$$\mathbf{g}(x,y) = (\sin y \cos x, -2xy)^T$$
,

c)
$$\boldsymbol{f}(x,y) + \boldsymbol{g}(x,y)$$
,

d)
$$\mathbf{h}(x, y, z) = (e^{x+y+z}, e^{x+y+z}, e^{x+y+z})^T$$
,

e)
$$\mathbf{u}(x, y, z) = (yz, xz, xy)^T$$
,

f)
$$2 \boldsymbol{h}(x, y, z) - \boldsymbol{u}(x, y, z)$$
.

Abgabetermin: 18.12. - 22.12.2017 (zu Beginn der Übung)