Prof. Dr. M. Hinze Dr. H. P. Kiani

Analysis III für Studierende der Ingenieurwissenschaften Blatt 4, Präsenzaufgaben

Aufgabe 1:

Gegeben ist die Funktion

$$f: D := \left[-\frac{1}{4}, \frac{1}{4} \right] \times \left[-\frac{1}{4}, \frac{1}{4} \right] \to \mathbb{R}$$
$$f(x, y) = 8\cos(x + y) + \sin(x - y) + 12xy + 11x^2 + 8y^2.$$

- a) Besitzt f auf D ein Minimum und ein Maximum?
- b) Bestimmen Sie eine Näherung für ein lokales Minimum der Funktion f auf D indem Sie ein Minimum des Taylorpolynoms zweiten Grades T_2 von f mit dem Entwicklungspunkt $(x_0, y_0)^T = (0, 0)^T$ berechnen.

Hinweis: Sie brauchen für diese Aufgabe keine einzige Ableitung von f zu berechnen. Benutzen Sie die Taylor-Reihen von Cosinus und Sinus.

- c) Zeigen Sie mit Hilfe von Teil b), dass der minimale Wert von f auf dem dort angegebenem Definitionsbereich nicht kleiner als 7.5 sein kann.
- d) T_2 ist stetig auf D. Müsste man nicht auch ein Maximum von T_2 finden?
- e) Bestimmen Sie die globalen Extrema von T_2 auf D.

Lösungshinweise zu 1:

- a) Da D abgeschlossen und beschränkt ist, und f stetig ist, besitzt f auf D ein globales Minimum und ein globales Maximum.
- b) Die polynomialen Anteile von f werden exakt wieder gegeben. Wegen $\cos(z)=1-\tfrac{z^2}{2}+O(z^4),\qquad \sin(z)=z+O(z^3)\,,$

erhält man ohne lange Rechnung der Ableitungen:

$$T_2(x,y) = 8 - 4(x+y)^2 + (x-y) + 12xy + 11x^2 + 8y^2$$

= 8 + x - y + 7x^2 + 4xy + 4y^2,

grad
$$T_2(x,y) = (14x + 4y + 1, 8y + 4x - 1)^T = 0 \implies x = -\frac{1}{8}, y = \frac{3}{16},$$

$$HT_2(x,y) = \begin{pmatrix} 14 & 4 \\ 4 & 8 \end{pmatrix}$$
 $14 > 0 \land 14 \cdot 8 - 4 \cdot 4 > 0 \implies \lambda_1 > 0, \ \lambda_2 > 0.$

Im Punkt $P_0 = (-\frac{1}{8}, \frac{3}{16})^T$ liegt ein Minimum des Taylorpolynoms vor.

c) Die dritten Ableitungen haben alle die Form $8\sin(x+y) \pm \cos(x-y)$. Alle dritten Ableitungen sind also vom Betrag kleiner oder gleich 9. Es gilt daher

$$|R_2(x,y)| \le \frac{(2^3) \cdot 9}{3!} \left(\frac{1}{4}\right)^3 = \frac{3}{16}.$$

Somit gilt

$$f(x_{min}, y_{min}) \ge T_2(x_{min}, y_{min}) - \frac{3}{16} \ge T_2(-\frac{1}{8}, \frac{3}{16}) - \frac{3}{16} = 8 - \frac{5}{32} - \frac{3}{16} = 8 - \frac{11}{32}$$

- d) Da T_2 stetig auf dem Kompaktum D ist, und es im Inneren von D kein Maximum gibt, muss das Maximum auf dem Rand liegen.
- e) Wir bestimmen Kandidaten für Extrema auf dem Rand von D. Im Inneren gibt es nur das (lokale?) Minimum in P_0 .

Man erhält zum Beispiel für $x = \frac{1}{4}$

$$g_1(y) := T_2(\frac{1}{4}, y) = 8 + \frac{1}{4} - y + \frac{7}{16} + y + 4y^2$$

Mit offensichtlichen Maxima in $P_{1,2}:=(\frac{1}{4},\pm\frac{1}{4})$ und Minimum in $P_3:=(\frac{1}{4},0)$.

$$f \ddot{u} r \ x = -\frac{1}{4}$$

$$g_2(y) := T_2(-\frac{1}{4}, y) = 8 - \frac{1}{4} - y + \frac{7}{16} - y + 4y^2$$

Wegen $g_2'(y) = 8y - 2$ gibt es keine lokalen Extrema im Inneren des Intervalls $\left[-\frac{1}{4}, \frac{1}{4}\right]$.

Mögliche Extremwerte liegen in den Eckpunkten $P_{4,5} = (-\frac{1}{4}, \mp \frac{1}{4})$

Für $y = -\frac{1}{4}$

$$g_3(x) := T_2(x, -\frac{1}{4}) = 8 + x + \frac{1}{4} + 7x^2 - x + \frac{1}{4}$$

Mit offensichtlichen Maxima in $P_{2,4}=(\pm\frac{1}{4},-\frac{1}{4})$ und Minimum in $P_6:=(0,-\frac{1}{4})$.

Für $y = \frac{1}{4}$

$$g_4(x) := T_2(x, \frac{1}{4}) = 8 + 2x + 7x^2.$$

Wegen $g_4'(x) = 2 + 14x$ und , $g_4''(x) = 14$ kann es keine lokalen Maxima im Inneren des Intervalls geben. In $P_7 := (-\frac{2}{7}, \frac{1}{4})$ liegt ein lokales Minimum von g_4 vor.

Funktionswertevergleich liefert:

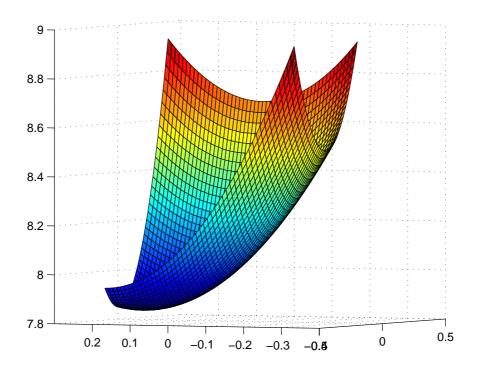
$$T_2(\frac{1}{4}, \pm \frac{1}{4}) = T_2(-\frac{1}{4}, -\frac{1}{4}) = 8 + \frac{15}{16}$$
 und $T_2(-\frac{1}{4}, \frac{1}{4}) = 8 - \frac{1}{16}$

Maximaler Funktionswert ist also $8 + \frac{15}{16}$. In $P_{1,2} = (\frac{1}{4}, \pm \frac{1}{4})^T$ und $P_4 = (-\frac{1}{4}, -\frac{1}{4})^T$ liegen globale Maxima vor.

Oben hatten wir $T_2(x_{min},y_{min})=8-\frac{5}{32}<8-\frac{1}{16}$. Außerdem rechnet man

$$T_2(P_3) = 8 + \frac{1}{4} + \frac{7}{16}$$
 und $T_2(P_6) = 8 + \frac{1}{4} + \frac{1}{4}$, sowie $T_2(P_7) = 8$.

Das globale Minimum liegt in $(x_{min}, y_{min}) = (-\frac{1}{8}, \frac{3}{16})$.



Aufgabe 2) (Klausur Prof. Hinze 2009)

Durch

$$F(x,y) = y^2 \cdot x - y \cdot \exp(x+y) + 2 = 0$$

ist in der Umgebung von P_0 . = (-1,1) implizit eine Funktion y(x) definiert. Es gilt also lokal

$$F(x,y) = 0 \implies y = g(x), \quad g(-1) = 1.$$

Bestimmen Sie das Taylorpolynom ersten Grades der Funktion g(x) zum Entwicklungspunkt $x_0 = -1$.

Zusatz zur Klausuraufgabe: Berechnen Sie g'(-1) mittels impliziter Differentiation.

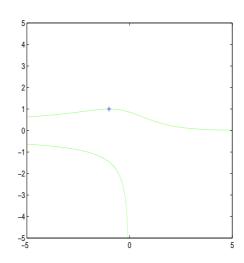
Lösung zu Aufgabe 2)

 $F(x,y) = y^2 \cdot x - y \cdot \exp(x+y) + 2 = 0$ Nach den
m Satz über implizite Funktionen gilt

$$g'(x) = -F_x/F_y = -\frac{y^2 - y \exp(x+y)}{2xy - \exp(x+y) - y \exp(x+y)} \Longrightarrow$$

$$g'(-1) = \frac{1 - 1\exp(0)}{-2 - 1 - 1\exp(0)} = 0$$

$$T_1(x;-1) = g(-1) + g'(-1)(x+1) = 1.$$



Implizites Differenzieren

$$\frac{d}{dx}F(x,y) = 2yy' \cdot x + y^2 - y' \cdot \exp(x+y) - y \cdot \exp(x+y) \cdot (1+y') = 0 \Longrightarrow$$

$$0 = -2y'(-1) + 1 - y'(-1) \cdot \exp(0) - \exp(0) \cdot (1+y'(-1)) = -4y'(-1).$$

Also g'(-1) = y'(-1) = 0.

Bearbeitungstermine: 05.12.-09.12.2016